1. Show that cancellation works in integral domains: if \(R \) is an integral domain and \(a, b, c \in R \) such that \(ac = bc \), show that \(b = c \).

2. Show that if \(R \) is an integral domain, the degree of the product of two polynomials \(f(x), g(x) \) in \(R[x] \) is the sum of the degrees of \(f \) and \(g \). Find an example of a ring \(R \) that isn’t an integral domain and some polynomials with coefficients in \(R \) that don’t obey this rule!

3. Show that if \(R \) is an integral domain then so is \(R[x] \).

4. Show that when you divide \(f(x) = x^2 + \frac{1}{2} \) by \(x - 3 \) in \(\mathbb{Q}[x] \), the remainder is the constant polynomial \(f(3) \).

Check this box if you would like feedback □