Astronomy 121 Solar System Test 2 February 26, 2010 | NameStduent ID | | |--|---| | | | | MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the ques | tion. Write you | | tudent ID in the space provided on the SCANTRON form and bubble in the appropriate circles. When | you are are | | inished with exam place the SCANTRON form into the exam form and turn in both the exam form and | the | | SCANTRON at the front desk. | | | 1) Active geology on a planet is driven by: | 1) | | A) heating caused by the absorption of Solar energy | | | B) heat flow from the interior of the planet to the surface of the planet | | | C) rotation of the asthenosphere | | | D) the impacts of large bodies | | | E) the rapid rotation of the planet's core | | | 2) How do the densities of the Jovian and Terrestrial planets compare? | 2) | | A) Made from the same Solar Nebula, they are all similar. | : | | B) More massive Jovians all have high densities, compared to the tiny Terrestrials. | | | C) The closer a planet lies to the Sun, the less its density. | | | D) All Terrestrials are more dense than any of the Jovians. | | | E) No real pattern here; densities vary greatly and are very individual to each world. | | | 3) Plate motion on the Earth is driven by: | 3) | | A) .cracking of and large scale earthquakes in the lithosphere | | | B) slips along transform faults | | | C) convective motions in the asthenosphere | | | D) the motion of large mountain ranges such as the Himalayas | | | E) convective motions in the atmosphere | | | 4) If a Martian meteorite has 1/8 of the original U 235 which has not yet decayed into lead 207, and | 4) | | the half life of U 235 is 700 million years, this rock was formed: | *************************************** | | A) about 350 million years ago. | | | B) 700 million years ago. | | | C) 1.4 billion years ago. | | | D) less than 100 million years ago. | | | E) 2.1 billion years ago. | | | 5) Mercury, as does the Moon, experiences extreme high and low temperature variations between | 5) | | night and day because: | | | A) Mercury has no axial tilt, with its equator always exposed to direct Sunlight. | | | B) it rotates very slowly. | | | C) its oceans are much hotter than ours. | | | D) it has no atmosphere to moderate temperatures over the globe. | | | E) its dense atmosphere creates a runaway greenhouse. | | | 6) Beyond our own Solar System, the planets found to date have tended to be: | 6) | |---|----------| | A) imaginary, with no concrete proof that they really exist. | • | | B) large Jovians far from their stars like in our Solar System | | | C) Kuiper Belt Objects, far from the glare of their stars. | | | D) large Jovians with orbits much more like the Terrestrial planets in our Solar System. | | | E) small Terrestrial planets, much like the Moon and asteroids, with orbits which place them | | | very close to their stars | | | 7) Why are the Jovian planets so large? | 7) | | A) They started out as small stars, but lost most of their mass through an enhanced wind | <i>'</i> | | because the fusion reactions in their cores were unstable. | | | B) The gas and dust were hotter in the outer regions, making it easier for the planets to form. | | | C) The Jovian planets are at least a billion years older than the Terrestrial planets and have | | | constantly gained matter from comets. | | | D) The Jovian planets are normal in size; the Terrestrial planets were just as large but the Sun's | | | heat reduced their size. | | | E) They formed from large protoplanets in the outer cooler parts of the Solar Nebula which | | | allowed them to sweep up gas from the Solar Nebula. | | | 9) The detection of most outro Colon about it down how | ο\ | | 8) The detection of most extra-Solar planets is done by: | 8) | | A) imaging them with the Hubble Space Telescope and a occulting disk over their star. | | | B) seeing planetary transits and gravitational lensing using the Hubble Space Telescope and | | | Kepler | | | C) receiving radio signals from them. | | | D) noting Doppler shifts in the emission from their stars due to the gravitational influence of the | | | planets on their star's motion. F) seeing the drap in light as they transit their star's diek | | | E) seeing the drop in light as they transit their star's disk. | * | | 9) Various observations suggest there may be recent or even continuing volcanic activity on Venus. | 9) | | Which of the following has NOT been observed? | - | | A) surface features resembling rift valleys on Earth | | | B) spacecraft detection over a period of days of active flowing lava on Venus | | | C) chains of large shield volcanoes similar to Hawaii | | | D) fluctuations in the level of sulfur dioxide in the planet's atmosphere | | | E) observed bursts of radio energy, similar to those produced by lightning discharges occurring | | | in the plumes of erupting volcanoes on Earth | | | 10) The rate of cratering: | 10) | | A) has remained constant over the last 4.6 billion years. | 10) | | | | | B) has recently increased with more collisions in the asteroid belt. | | | C) shows that most interplanetary debris was swept up soon after the formation of the Solar
System. | | | D) shows that large asteroid impacts are more common now than in the past. | | | E) fluctuates over time, with massive bodies occasionally coming in from the Oort Cloud. | | | 11) Which of the following is NOT a year that Tomostaid and Jacking 11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | 11\ | | 11) Which of the following is NOT a way that Terrestrial and Jovian planets differ? | 11) | | A) Jovians have larger escape velocities than do the solid Terrestrials. B) Jovians are less dense than any of the Terrestrials. | | | B) Jovians are less dense than any of the Terrestrials. | | | C) Jovians have many more satellites than do Terrestrials.D) Jovians have rings, Terrestrials don't. | | | E) Jovian orbits are much more eccentric than are Terrestrials, and farther off the ecliptic. | | | 2) 10 mail ordina are mach more eccentric man are refreshials, and lattilet off the ecliptic. | | | 12) Currently we know of how many extra-Solar planets? | 12) | |---|-----| | A) None; ours is the only Solar System now known. | | | B) 37 planets, including some around pulsars as well as normal stars | | | C) three planets, all around Gliese 851 | | | D) over 400 planets, the number growing by the day | | | E) 18 Earth-like planets, all in the habitable zones around nearby solar type stars | | | 13) What percentage of the surface of Venus could be characterized as continental-sized highlands? A) less than 10% | 13) | | B) 100% | | | C) 45% | | | D) about 30%, like the Earth | | | E) 75% | | | 14) What property of Mars is responsible for producing the great heights of its volcanos? | 14) | | A) Mars has more radioactive material than the Earth. | | | B) Its lower temperature and higher surface gravity allows higher peaks to form. | | | C) Its lower surface gravity does not pull them down as much as on Earth. | | | D) Its volcanoes spout steam, similar to the geyser Old Faithful on the Earth | | | E) Its cold temperatures allows the magma to freeze faster. | | | | | | 15) Our best data about the surface topography of Venus has come from: | 15) | | A) radio and visual observations from Earth-based observatories. | | | B) spacecraft flybys like Mariner 2 and visual observations of the planet. | | | C) orbiter photos from Pioneer Venus Orbiter. | | | D) visual observations made by the Hubble Space Telescope | | | E) radar data taken by the orbiting spacecraft Magellan. | | | 16) In comparing our own Solar System with others found to date, we find that: | 16) | | A) after planets form, strong orbital migration likely occurs. | | | B) almost 50 % of the discovered systems show Earth-like planets in habitable zones | | | C) other planetary systems must form exactly as did ours because of the similarities of the | | | discovered planets and their orbits compared to those of the planets in our Solar System. | | | D) the newly discovered planetary systems completely disprove our current model for how our | | | Solar System formed. | | | E) Earth-like planets are common in our Galaxy. | | | 17) The largest difference between Mars' northern and southern hemispheres is that: | 17) | | A) the southern has higher elevation and is dominated by the Tharsis Bulge near the southern pole. | | | B) the southern has higher elevation and appears older, with more impact craters. | | | C) the northern is higher overall, despite some high volcanoes in the south. | | | D) the southern is much darker and younger, with large mare-like basaltic lava flows. | | | E) the northern is dominated by the Tharsis Bulge and large volcanic chains near the northern
pole. | | | 18) The lunar highlan | ds are: | | | | 18) | | |------------------------------------|-----------------------|------------------------------|----------------------|----------------|------------------|--| | A) brighter that | n the maria, since t | hey are covered with refle | ective glass from th | e rays. | | | | B) made of ligh | iter colored, young | ger rocks than the maria. | _ | • | | | | _ | | the Earth's Himalayas. | | | | | | | | much like our Andes. | | | | | | | | , and older than the lunar | · maria. | | | | | , | , | , | | | | | | 10) The masses of th | | | to discretion discre | | 10\ | | | - | _ | round the Earth is a good | | | ¹⁹⁾ – | | | | | Mercury's, as both have | | | | | | | | npletely molten to the cer | | | | | | | | e to solidify, with a rigid | • | | | | | - | | ewhere high up in the ma | | • | | | | E) we have a lie | quid metal outer co | ore, spinning rapidly as w | e rotate. | | | | | | | | | | | | | 20) Mercury's surface | most resembles th | at of which other body? | | | 20) | | | A) Moon | B) Io | C) Mars | D) Earth | E) Venus | · - | | | • | , | , | , | , | | | | 21) When Kenler is lu | cky enough to see | an extra-solar planet trar | eit ite etar | | 21) | | | _ | | n the light from the star, | | acc and honce | | | | | the planet's tempe | | me planet s size, m | ass, and hence | | | | | | | of the Touth | | | | | | | nts are in the atmosphere | or the Earth. | | | | | C) we can deter | - | · | | | | | | | the star to vanish i | | | | | | | E) we can be ce | rtain it is a Terrest | rial, not a Jovian. | | | | | | 22) Magellan did not : | find which of these | e on Venus? | | | 22) | | | | ge but very flat circ | | | | | | | B) large shield | • | | | | | | | C) continent siz | | | | | | | | | | the Mid-Atlantic ridge. | | | | | | | | ive kilometers across | | | | | | L) Impact crate. | is, an larger man i | ive knometers across | | | | | | 23) From the center of | itward the correct | ordering of the layers of | the Forth is: | | 23) | | | | | antle, solid rock crust. | ule Latur 15. | | 23) _ | | | | - | | tla cilicata amust | | | | | | | kel outer core, rocky man | | | | | | | | mantle, rocky lithosphere | • | ere. | | | | | | n metal outer core, silicate | | | | | | E) moiten meta | llic core, molten ro | ck lithosphere, solid silica | ite crust. | | | | | 0.4\ TA75. 1.1 | | (4 | | | | | | | | of the Solar Nebula theo | ry our current mod | iei for the | ²⁴⁾ – | | | formation of the So | • | | e .a | Arm | | | | | | ucial for our understandi | ng of the formation | of Jupiter. | | | | _ | ts should follow th | * * | | | | | | | | ser to their star, where the | | | | | | | | Sun counterclockwise as | | orth. | | | | E) Planete chou | ld rotate countoral | ackretica ac rejoured from | ha narth | | | | | 25) Of the following, which is not considered to be one of the fundamental observational results any viable theory for the formation of the Solar System must explain. A) The large sizes of the orbits of the Jovian planets in our Solar System B) All of the planet's orbits are in the counter-clockwise sense as viewed from the north C) There is a dichotomy in the properties of the planets, that is, there are distinct classes of planets known as Terrestrial and Jovian planets D) The anomalous spins of Venus, Uranus, and Pluto E) The orbits of the planets are nearly circular in shape and roughly confined to the ecliptic plane | 25) _ | | |---|----------|-------| | 26) What happens when the cloud from which the Solar System formed, the Solar Nebula, first starts to contract? | 26) _ | | | A) It flattens out. B) It spins faster. | | | | C) It develops large condensations called protoplanets. | | | | D) only A and B E) A, B, and C | | | | 27) In noting that the Earth is "differentiated", we mean that: | 27) | | | A) the density of its materials decreases as you go downward toward the core.B) the Earth's magnetic field is different now in that its polarity has reversed from it was 700,000 years ago. | , | | | C) radioactive heating in the core is at a slower pace than when the Earth was new.D) the iron and nickel core is denser than the silicate mantle and crust.E) the Earth has evolved in a different pattern than any other planet. | | | | 28) Maxwell Montes on Venus is a huge: | 28) _ | | | A) impact crater larger than Texas. B) rift valley. | | | | C) ocean basin larger than the Pacific Ocean. | | | | D) tectonic mountain chain, like the Himalayas.E) shield volcano. | | | | 29) What factor caused different planets to form out of different types of material? | 29) | | | A) the quantity of dust particles in the Solar Nebula | , | | | B) the variation in temperature throughout the Solar Nebula | | | | C) the spin (angular momentum) of the forming planet | | | | D) all of the above E) none of the above | | | | 30) The lunar maria are radioactively dated at: | 30) | | | A) 3.9-3.2 billion years old, forming after most of the bombardment was over. | , | · · · | | B) 4.6 billion years old, forming first among the lunar features. | | | | C) less than a billion years old, the most recent additions to the Moon. | | | | D) 3.5–2.5 billion years old, similar to the formation of our own oceans. | | | | E) 4.2-3.9 billion years old, comparable to the adjacent highlands. | | | | 31) When an oceanic p | late and a contine | ental plate collide: | | | 31) | | |---------------------------------------|--------------------------|---------------------------|---------------------|-----------------------|-------------|-------------| | _ | | uakes because now the | plates are static. | | • | | | B) they both sto | - | • | • | | | | | | | ong strings of coronae a | s found on Venus. | | | | | | | dary between them. | | | | | | | | such as the mid-Atlant | ic ridoe | | | | | E, aley produce | iurge mit vancys | such as the man-man | ic nage. | | | | | 32) Of the following, w | which is not comm | nonly associated with a | subduction zone? | | 32) | | | A) the production | | - | | | | | | | of chains of shie | ld volcanoes | | | | | | C) volcanism | | | | | | | | D) the destruction | on of crust. | | | | | | | E) frequent eartl | | | | | | | | | | | | | | | | 33) Seismic waves hav | e been most usefi | ul for mapping: | | | 33) | | | A) the Earth's co | re and mantle. | | | | | | | B) the depths of | the oceans on the | e Earth. | | | | | | C) the interior of | | | | | | | | | f the lithosphere o | on the Moon. | | | | | | E) the surface of | • | | | | | | | 24) In terms of chemical | al commonition of | the interiors of the mlan | oto | | 24\ | | | | | the interiors of the plan | | _ | 34) | | | | | same elements, and in t | | 15. | | | | | | e the Sun than are the To | | | | | | | | he Sun, for they formed | | | | | | _ | - | similarities among then | | | | | | E) the Sun is uni | que in having fai | r more light elements th | an any of the plane | ts do. | | | | 35) Large impacts such | as the one sugge | ested to have led to the | demise of the dinos | aurs occur roughly | 35) | | | every | | | | | , | | | | ears or so on the | Earth | | | | | | • | | mely rare only a couple | are expected to occ | Tur over the lifetime | | | | of the Earth | are the court | mery rure orny a couple | ure expected to oct | tor over the memic | | | | C) 10,000 years of | on the Farth | | | | | | | · · · · · · · · · · · · · · · · · · · | | e impact occurred duri | as the Enech of He | avv Rombardmont | | | | E) 3.2 billion year | | e impact occurred duri | ig the Epoch of He | avy bombardment | | | | L) 5.2 billion yea | is on the Earth | | | | | | | 36) The oldest rocks for | und in the crust o | of the Earth are radioact | ively dated at abou | ıt: | 36) | | | A) 64.9 million y | | | • | | · | | | B) 2.7 billion yea | | | | | | | | C) 3.2 billion yea | | | | | | | | D) 4 billion years | | | | | | | | E) 200 million ye | | | | | | | | | | | | | | | | 37) The crust of the Ear
A) 80% | th is about
B) 45% | oceanic crust. | D) 55% | E) 25% | <i>37</i>) | | | m LOUTO | 131 47% | 1 1 77% | 111 77% | H 1 /7% | | | | 38) Earth and venus are often called sister planets; in which ways are they most alike? | 36) | |---|-----| | A) cloud composition and weather | | | B) polar caps and rusty red deserts | | | C) surface temperature and atmospheric pressure | | | D) atmospheric composition and density | | | E) size, density, and surface gravity | | | 39) Which of the following characterizes a shield volcano? | 39) | | A) It erupts only briefly before subsiding forever. | | | B) It sits above a hot spot in the planet's mantle. | | | C) It will be smaller than cinder cones like Maxwell Mons on Venus. | | | D) It cannot grow very large, for the plates are constantly moving. | | | E) It is formed by moving tectonic plates. | | | 40) Venus has features named Aphrodite Terra and Ishtar Terra. What are these features? | 40) | | A) very large volcanos | | | B) large basins similar to the maria on the Moon | | | C) large impact craters | | | D) great rift valleys like Valles Marineris on Mars | | | E) continental-sized plateaus | | | | | ## Answer Key Testname: ASTR.121.X2.WTR10 - 1) B - 2) D - 3) C - 4) E - 5) D - 6) D - 7) E - 8) D - 9) B 10) C - 11) E - 12) D - 13) A - 14) C - 15) E - 16) A - 17) B - 18) E - 19) E - 20) A - 21) A - 22) D - 23) D - 24) C - 25) D - 26) D 27) D - 28) E - 29) B - 30) A - 31) D - 32) B - 33) A - 34) B - 35) A - 36) D - 37) D - 38) E - 39) B 40) E