Astronomy 121 Solar System Test 2 February 26, 2010

NameStduent ID	
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the ques	tion. Write you
tudent ID in the space provided on the SCANTRON form and bubble in the appropriate circles. When	you are are
inished with exam place the SCANTRON form into the exam form and turn in both the exam form and	the
SCANTRON at the front desk.	
1) Active geology on a planet is driven by:	1)
A) heating caused by the absorption of Solar energy	
B) heat flow from the interior of the planet to the surface of the planet	
C) rotation of the asthenosphere	
D) the impacts of large bodies	
E) the rapid rotation of the planet's core	
2) How do the densities of the Jovian and Terrestrial planets compare?	2)
A) Made from the same Solar Nebula, they are all similar.	:
B) More massive Jovians all have high densities, compared to the tiny Terrestrials.	
C) The closer a planet lies to the Sun, the less its density.	
D) All Terrestrials are more dense than any of the Jovians.	
E) No real pattern here; densities vary greatly and are very individual to each world.	
3) Plate motion on the Earth is driven by:	3)
A) .cracking of and large scale earthquakes in the lithosphere	
B) slips along transform faults	
C) convective motions in the asthenosphere	
D) the motion of large mountain ranges such as the Himalayas	
E) convective motions in the atmosphere	
4) If a Martian meteorite has 1/8 of the original U 235 which has not yet decayed into lead 207, and	4)
the half life of U 235 is 700 million years, this rock was formed:	***************************************
A) about 350 million years ago.	
B) 700 million years ago.	
C) 1.4 billion years ago.	
D) less than 100 million years ago.	
E) 2.1 billion years ago.	
5) Mercury, as does the Moon, experiences extreme high and low temperature variations between	5)
night and day because:	
A) Mercury has no axial tilt, with its equator always exposed to direct Sunlight.	
B) it rotates very slowly.	
C) its oceans are much hotter than ours.	
D) it has no atmosphere to moderate temperatures over the globe.	
E) its dense atmosphere creates a runaway greenhouse.	

6) Beyond our own Solar System, the planets found to date have tended to be:	6)
A) imaginary, with no concrete proof that they really exist.	•
B) large Jovians far from their stars like in our Solar System	
C) Kuiper Belt Objects, far from the glare of their stars.	
D) large Jovians with orbits much more like the Terrestrial planets in our Solar System.	
E) small Terrestrial planets, much like the Moon and asteroids, with orbits which place them	
very close to their stars	
7) Why are the Jovian planets so large?	7)
A) They started out as small stars, but lost most of their mass through an enhanced wind	<i>'</i>
because the fusion reactions in their cores were unstable.	
B) The gas and dust were hotter in the outer regions, making it easier for the planets to form.	
C) The Jovian planets are at least a billion years older than the Terrestrial planets and have	
constantly gained matter from comets.	
D) The Jovian planets are normal in size; the Terrestrial planets were just as large but the Sun's	
heat reduced their size.	
E) They formed from large protoplanets in the outer cooler parts of the Solar Nebula which	
allowed them to sweep up gas from the Solar Nebula.	
9) The detection of most outro Colon about it down how	ο\
8) The detection of most extra-Solar planets is done by:	8)
A) imaging them with the Hubble Space Telescope and a occulting disk over their star.	
B) seeing planetary transits and gravitational lensing using the Hubble Space Telescope and	
Kepler	
C) receiving radio signals from them.	
D) noting Doppler shifts in the emission from their stars due to the gravitational influence of the	
planets on their star's motion. F) seeing the drap in light as they transit their star's diek	
E) seeing the drop in light as they transit their star's disk.	*
9) Various observations suggest there may be recent or even continuing volcanic activity on Venus.	9)
Which of the following has NOT been observed?	-
A) surface features resembling rift valleys on Earth	
B) spacecraft detection over a period of days of active flowing lava on Venus	
C) chains of large shield volcanoes similar to Hawaii	
D) fluctuations in the level of sulfur dioxide in the planet's atmosphere	
E) observed bursts of radio energy, similar to those produced by lightning discharges occurring	
in the plumes of erupting volcanoes on Earth	
10) The rate of cratering:	10)
A) has remained constant over the last 4.6 billion years.	10)
B) has recently increased with more collisions in the asteroid belt.	
 C) shows that most interplanetary debris was swept up soon after the formation of the Solar System. 	
D) shows that large asteroid impacts are more common now than in the past.	
E) fluctuates over time, with massive bodies occasionally coming in from the Oort Cloud.	
11) Which of the following is NOT a year that Tomostaid and Jacking 11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	11\
11) Which of the following is NOT a way that Terrestrial and Jovian planets differ?	11)
A) Jovians have larger escape velocities than do the solid Terrestrials. B) Jovians are less dense than any of the Terrestrials.	
B) Jovians are less dense than any of the Terrestrials.	
C) Jovians have many more satellites than do Terrestrials.D) Jovians have rings, Terrestrials don't.	
E) Jovian orbits are much more eccentric than are Terrestrials, and farther off the ecliptic.	
2) 10 mail ordina are mach more eccentric man are refreshials, and lattilet off the ecliptic.	

12) Currently we know of how many extra-Solar planets?	12)
A) None; ours is the only Solar System now known.	
B) 37 planets, including some around pulsars as well as normal stars	
C) three planets, all around Gliese 851	
D) over 400 planets, the number growing by the day	
E) 18 Earth-like planets, all in the habitable zones around nearby solar type stars	
13) What percentage of the surface of Venus could be characterized as continental-sized highlands? A) less than 10%	13)
B) 100%	
C) 45%	
D) about 30%, like the Earth	
E) 75%	
14) What property of Mars is responsible for producing the great heights of its volcanos?	14)
A) Mars has more radioactive material than the Earth.	
B) Its lower temperature and higher surface gravity allows higher peaks to form.	
C) Its lower surface gravity does not pull them down as much as on Earth.	
D) Its volcanoes spout steam, similar to the geyser Old Faithful on the Earth	
E) Its cold temperatures allows the magma to freeze faster.	
15) Our best data about the surface topography of Venus has come from:	15)
A) radio and visual observations from Earth-based observatories.	
B) spacecraft flybys like Mariner 2 and visual observations of the planet.	
C) orbiter photos from Pioneer Venus Orbiter.	
D) visual observations made by the Hubble Space Telescope	
E) radar data taken by the orbiting spacecraft Magellan.	
16) In comparing our own Solar System with others found to date, we find that:	16)
A) after planets form, strong orbital migration likely occurs.	
B) almost 50 % of the discovered systems show Earth-like planets in habitable zones	
C) other planetary systems must form exactly as did ours because of the similarities of the	
discovered planets and their orbits compared to those of the planets in our Solar System.	
D) the newly discovered planetary systems completely disprove our current model for how our	
Solar System formed.	
E) Earth-like planets are common in our Galaxy.	
17) The largest difference between Mars' northern and southern hemispheres is that:	17)
A) the southern has higher elevation and is dominated by the Tharsis Bulge near the southern pole.	
B) the southern has higher elevation and appears older, with more impact craters.	
C) the northern is higher overall, despite some high volcanoes in the south.	
D) the southern is much darker and younger, with large mare-like basaltic lava flows.	
 E) the northern is dominated by the Tharsis Bulge and large volcanic chains near the northern pole. 	

18) The lunar highlan	ds are:				18)	
A) brighter that	n the maria, since t	hey are covered with refle	ective glass from th	e rays.		
B) made of ligh	iter colored, young	ger rocks than the maria.	_	•		
_		the Earth's Himalayas.				
		much like our Andes.				
		, and older than the lunar	· maria.			
,	,	,				
10) The masses of th			to discretion discre		10\	
-	_	round the Earth is a good			¹⁹⁾ –	
		Mercury's, as both have				
		npletely molten to the cer				
		e to solidify, with a rigid	•			
-		ewhere high up in the ma		•		
E) we have a lie	quid metal outer co	ore, spinning rapidly as w	e rotate.			
20) Mercury's surface	most resembles th	at of which other body?			20)	
A) Moon	B) Io	C) Mars	D) Earth	E) Venus	· -	
•	,	,	,	,		
21) When Kenler is lu	cky enough to see	an extra-solar planet trar	eit ite etar		21)	
_		n the light from the star,		acc and honce		
	the planet's tempe		me planet s size, m	ass, and hence		
			of the Touth			
		nts are in the atmosphere	or the Earth.			
C) we can deter	-	·				
	the star to vanish i					
E) we can be ce	rtain it is a Terrest	rial, not a Jovian.				
22) Magellan did not :	find which of these	e on Venus?			22)	
	ge but very flat circ					
B) large shield	•					
C) continent siz						
		the Mid-Atlantic ridge.				
		ive kilometers across				
L) Impact crate.	is, an larger man i	ive knometers across				
23) From the center of	itward the correct	ordering of the layers of	the Forth is:		23)	
		antle, solid rock crust.	ule Latur 15.		23) _	
	-		tla cilicata amust			
		kel outer core, rocky man				
		mantle, rocky lithosphere	•	ere.		
		n metal outer core, silicate				
E) moiten meta	llic core, molten ro	ck lithosphere, solid silica	ite crust.			
0.4\ TA75. 1.1		(4				
		of the Solar Nebula theo	ry our current mod	iei for the	²⁴⁾ –	
formation of the So	•		e .a	Arm		
		ucial for our understandi	ng of the formation	of Jupiter.		
_	ts should follow th	* *				
		ser to their star, where the				
		Sun counterclockwise as		orth.		
E) Planete chou	ld rotate countoral	ackretica ac rejoured from	ha narth			

 25) Of the following, which is not considered to be one of the fundamental observational results any viable theory for the formation of the Solar System must explain. A) The large sizes of the orbits of the Jovian planets in our Solar System B) All of the planet's orbits are in the counter-clockwise sense as viewed from the north C) There is a dichotomy in the properties of the planets, that is, there are distinct classes of planets known as Terrestrial and Jovian planets D) The anomalous spins of Venus, Uranus, and Pluto E) The orbits of the planets are nearly circular in shape and roughly confined to the ecliptic plane 	25) _	
26) What happens when the cloud from which the Solar System formed, the Solar Nebula, first starts to contract?	26) _	
A) It flattens out. B) It spins faster.		
C) It develops large condensations called protoplanets.		
D) only A and B E) A, B, and C		
27) In noting that the Earth is "differentiated", we mean that:	27)	
A) the density of its materials decreases as you go downward toward the core.B) the Earth's magnetic field is different now in that its polarity has reversed from it was 700,000 years ago.	,	
C) radioactive heating in the core is at a slower pace than when the Earth was new.D) the iron and nickel core is denser than the silicate mantle and crust.E) the Earth has evolved in a different pattern than any other planet.		
28) Maxwell Montes on Venus is a huge:	28) _	
A) impact crater larger than Texas. B) rift valley.		
C) ocean basin larger than the Pacific Ocean.		
D) tectonic mountain chain, like the Himalayas.E) shield volcano.		
29) What factor caused different planets to form out of different types of material?	29)	
A) the quantity of dust particles in the Solar Nebula	,	
B) the variation in temperature throughout the Solar Nebula		
C) the spin (angular momentum) of the forming planet		
D) all of the above E) none of the above		
30) The lunar maria are radioactively dated at:	30)	
A) 3.9-3.2 billion years old, forming after most of the bombardment was over.	,	· · ·
B) 4.6 billion years old, forming first among the lunar features.		
C) less than a billion years old, the most recent additions to the Moon.		
D) 3.5–2.5 billion years old, similar to the formation of our own oceans.		
E) 4.2-3.9 billion years old, comparable to the adjacent highlands.		

31) When an oceanic p	late and a contine	ental plate collide:			31)	
_		uakes because now the	plates are static.		•	
B) they both sto	-	•	•			
		ong strings of coronae a	s found on Venus.			
		dary between them.				
		such as the mid-Atlant	ic ridoe			
E, aley produce	iurge mit vancys	such as the man-man	ic nage.			
32) Of the following, w	which is not comm	nonly associated with a	subduction zone?		32)	
A) the production		-				
	of chains of shie	ld volcanoes				
C) volcanism						
D) the destruction	on of crust.					
E) frequent eartl						
33) Seismic waves hav	e been most usefi	ul for mapping:			33)	
A) the Earth's co	re and mantle.					
B) the depths of	the oceans on the	e Earth.				
C) the interior of						
	f the lithosphere o	on the Moon.				
E) the surface of	•					
24) In terms of chemical	al commonition of	the interiors of the mlan	oto		24\	
		the interiors of the plan		_	34)	
		same elements, and in t		15.		
		e the Sun than are the To				
		he Sun, for they formed				
_	-	similarities among then				
E) the Sun is uni	que in having fai	r more light elements th	an any of the plane	ts do.		
35) Large impacts such	as the one sugge	ested to have led to the	demise of the dinos	aurs occur roughly	35)	
every					,	
	ears or so on the	Earth				
•		mely rare only a couple	are expected to occ	Tur over the lifetime		
of the Earth	are the court	mery rure orny a couple	ure expected to oct	tor over the memic		
C) 10,000 years of	on the Farth					
· · · · · · · · · · · · · · · · · · ·		e impact occurred duri	as the Enech of He	avv Rombardmont		
E) 3.2 billion year		e impact occurred duri	ig the Epoch of He	avy bombardment		
L) 5.2 billion yea	is on the Earth					
36) The oldest rocks for	und in the crust o	of the Earth are radioact	ively dated at abou	ıt:	36)	
A) 64.9 million y			•		·	
B) 2.7 billion yea						
C) 3.2 billion yea						
D) 4 billion years						
E) 200 million ye						
37) The crust of the Ear A) 80%	th is about B) 45%	oceanic crust.	D) 55%	E) 25%	<i>37</i>)	
m LOUTO	131 47%	1 1 77%	111 77%	H 1 /7%		

38) Earth and venus are often called sister planets; in which ways are they most alike?	36)
A) cloud composition and weather	
B) polar caps and rusty red deserts	
C) surface temperature and atmospheric pressure	
D) atmospheric composition and density	
E) size, density, and surface gravity	
39) Which of the following characterizes a shield volcano?	39)
A) It erupts only briefly before subsiding forever.	
B) It sits above a hot spot in the planet's mantle.	
C) It will be smaller than cinder cones like Maxwell Mons on Venus.	
D) It cannot grow very large, for the plates are constantly moving.	
E) It is formed by moving tectonic plates.	
40) Venus has features named Aphrodite Terra and Ishtar Terra. What are these features?	40)
A) very large volcanos	
B) large basins similar to the maria on the Moon	
C) large impact craters	
D) great rift valleys like Valles Marineris on Mars	
E) continental-sized plateaus	

Answer Key Testname: ASTR.121.X2.WTR10

- 1) B
- 2) D
- 3) C
- 4) E
- 5) D
- 6) D
- 7) E
- 8) D
- 9) B 10) C
- 11) E
- 12) D
- 13) A
- 14) C
- 15) E
- 16) A
- 17) B
- 18) E
- 19) E
- 20) A
- 21) A
- 22) D
- 23) D
- 24) C
- 25) D
- 26) D 27) D
- 28) E
- 29) B
- 30) A
- 31) D
- 32) B
- 33) A
- 34) B
- 35) A
- 36) D
- 37) D
- 38) E
- 39) B 40) E