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The nonrelativistic motion with self-collision of an inelastic billiard ball in spacetime with a time
machine is discussed. We consider the wormhole-type time machine, assuming that e=(radius of
wormhole mouth)/(distance between mouths) << 1, and that (radius of ball)/(distance between wormhole
mouths)= 0 (e?). The coefficient of friction of the balls is of order ¢, and the balls can have an arbitrary
amount of inelasticity. Solutions are sought with an accuracy up through order €*. We demonstrate that
the generic class of initial data has self-consistent solutions of the equations of motion. Up to the order
studied the friction does have an effect, but the inelasticity has no effect whatsoever.

PACS number(s): 04.20.Cv

I. INTRODUCTION

" In the paper by Echeverria, Klinkhammer, and Thorne
[1], the motion with self-collision of a nonrelativistic elas-
tic billiard ball in spacetime with a time matching has
been investigated. The time machine was treated as a
wormhole that takes the ball backward in time. These in-
vestigations have been performed in the framework of the
hypothesis of the principle of self-consistency (PSC).
This PSC was declared and discussed in papers [2—-5]. It
states that the only solution to the laws of physics that
can occur locally in the real Universe are those which are
globally self-consistent. Echeverria, Klinkhammer, and
Thorne have found that generic classes of initial data
have multiple, and even infinite numbers of self-
consistent solutions to the equation of motion, and they
have found no evidence for the existence of generic initial
data with no self-consistent solutions.

The purpose of this paper is to investigate a more real-
istic, more complex case, namely, the nonrelativistic
motion with self-collision of an inelastic billiard ball in
spacetime with a time machine. The billiard ball col-
lisions are treated in the approximation where the param-
eter e=(radius of wormhole mouth)/(distance between
mouths)<<1. We assume also that (radius of
ball)/(distance between wormhole mouths)=0 (€?). The
balls are assumed to have an arbitrary amount of inelasti-
city, and their coefficient of friction is of order €. The
sglutions are sought with an accuracy up through order
€.

We will demonstrate that in this case the generic class
of initial data has self-consistent solutions to the equa-
tions of motion. At least one solution is found to this or-
der €* for all initial data, and two solutions are found for
all ““dangerous” (see the definition in the paper [1]) initial
data. Up to the order studied, the inelasticity has no
effect whatsoever, but friction does have an effect. The
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explanation of this fact is given in the concluding Sec. V.
To probe the effects of inelasticity itself one needs to car-
ry the calculations to higher order.

II. THE FORMULATION OF THE PROBLEM

In this paper we discuss the wormhole-type time
machine. The simplest toy model of this time machine is
the following.

In flat, Minkowskii spacetime one cuts out the world
tubes of two equal balls that are at rest in some Lorentz
coordinate system, and identifies the surfaces of the balls
(it is the wormhole with vanishingly short length), with a
time delay AT between them. We shall call these balls
the mouths of the time machine. Throughout this paper
we measure spatial distances in units of the separation be-
tween the centers of the mouths in the external space and
time in units of AT. We denote by A the radii of the two
mouths, and by R the radius of the billiard ball. In the
problem under discussion the ball enters mouth A (see
Fig. 1), exits from the mouth B, thereby traveling back-
ward in time, and collides with itself in the past. We re-
strict attention to the initial trajectories of a billiard ball
being coplanar with the line of centers of the mouths,
and, for simplicity, to solutions in which the ball
traverses the time machine only once. It corresponds to
the class-I and class-II solutions in the analysis of
Echeverria, Klinkhammer, and Thorne [1].

These classes of solutions are small perturbations of the
self-inconsistent solution, in the sense that the ball’s path
is displaced by only enough to permit the ball to undergo
a glancing collision rather than a head-on collision.

We suppose that the time machine—ball system does
not interact with the external matter. We shall presume
also that the ball is small enough (R << 1) that we can ig-
nore the tidal force exerted on the ball by the mouths of
the time machine. The ball is treated as a “test object”
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that moves through the fixed wormhole geometry. The
“time machine traversal rules” are the same as in [1] [see
(2.1a), (2.1b) in the paper [1]]. They follow from energy
conservation and simple geometrical consideration, and
can be summarized by the following: (a) the absolute
value of velocity of the ball is not changed by the traver-
sal, (b) the relations between angles of the enter and exit
are clear from Fig. 1.

Our purpose is to discuss inelastic collision between
younger and older versions of the billiard ball and to ob-
tain self-consistent solutions to the equations of motion.

An inelastic impact is characterized by two parame-
ters. The first parameter e characterizes the recovery of a
ball after the collision. It is defined as the ratio of the
components of the relative velocities which are normal to
the contacting plate after and before collision.

The equality e =0 corresponds to sticking together;
e =1 corresponds to elastic impact. Throughout this pa-
per we shall use another parameter, a =(1+e)/2.

The second parameter is the coefficient of friction f. It
is defined as

__ magnitude of frictional force
magnitude of normal thrust

for the case of ideal smooth surfaces f =0, and there is
no change in the tangent components of velocities. The
case f— o corresponds to absolutely rough surfaces,
and the final tangent component of the relative velocity is
equal to zero.

For standard billiard balls e =0.8-0.95; f~=0.04 (see
[en.

In the next section we present a set of equations that
govern self-consistent solutions for an ideal elastic ball.
We shall give the solutions to this set for the case
R << A << 1 in the form which is different from [1], and
with an accuracy that is enough for the discussion of the
inelastic case. This last case will be discussed in Sec. IV.

\

Geometry of a self-consistent solution. Note that

FIG. 1.
[vi[=lv,l.

III. THE CASE OF ELASTIC BILLIARD BALL

Following to the idea of Echeverria, Klinkhammer,
and Thorne [1] one can write the set of equations that
govern self-consistent, coplanar solutions for an ideal
elastic ball:
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We denote by v, the younger ball’s velocity before the
collision, by v | its velocity as it leaves the collision, by v,
the older ball’s velocity before the collision, and by v} its
velocity as it leaves the collision, |vi|=|v,|. The
definitions of all other variables are clear from Fig. 1 (see
also Figs. 2 and 3). The set (1) of equations follows from
energy and momentum conservation, the geometry of the
balls relative to each other and relative to their trajec-
tories at the moment of the collision, and the chronology
of the motion, namely, from the demand that the older
ball return to the event of the collision at the same mo-
ment as the younger one left it.

The set (2) describes various geometrical parameters
and the wormhole traversal rules. We shall consider v,,
b, and 3 as unknowns. They are functions of the parame-
ters vy, ®, and ¢ of the ball’s initial trajectory (and other
parameters of the model which are fixed).

Following Echeverria and Klinkhammer [7], we intro-
duce new variables A,, A, and A, (instead of b, v, and v,
correspondingly):
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FIG. 2. Geometry of the impact of class I.

b= sin(¢ —0) (1—2 A4 cosp)+ R (2%, —1) FIG. 3. Geometry of the impact of class I1.
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v, = cos® (1—2A4 cos¢)+ ER—(?—M , (3) We shall need to know the solutions to (1)—(3) up
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(8)

where
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IV. INELASTIC BILLIARD BALL

Using the standard approach to description of the col-
lision of inelastic billiard balls (see [6]), and the same
ideas as in Sec. III for the derivation of a complete set of
equations that govern self-consistent solutions, one can
obtain the system
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72=p}4+0v3—2v,v,cos8 ,
v3,=v?+v2—2v,v, cosa , (10)
0,0 cos(@,— @) =v? +v3 cos(a—p3)

—v,v,(cosa+cosp) ,
ldl _ 2R _ |3
sins  sina  sin(y +1(B[) ’
s=0y—i,
20 . (1n
. v;sina
sini = ,
U20

d0=v,—(c+b').

The definitions of the additional variables are clear from
Fig. 4.
Sets (9)—(11) are the analogy of set (1). We have to

FIG. 4. Some details of the geometry of the self-consistent
solution for inelastic impact.

solve these together with (2) and (3). We assume f <<1
and, to be definite, f =0 (A4). We do not make any spe-
cial assumptions about the parameter a, but it should be
not very small, a >> 4. For class I collisions we search
for the solutions to sets (9)—(11), (2), and (3) in the form

2 A cos
ho=h, 14245\,
> tan’¢ —tan’@ x
A
— 2405t \11o01+2), (12)
sin“¢g tan“¢ —tan“®
8R A A, sing
B= (1+y)1+7Y),
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where x, y, and z are known from (7a), and X, Y, and Z
are unknowns.
The solutions are Y =0 up through order O( 4), and
24f
sing(tan’$ —tan’®)
An analogous procedure for class II collisions gives the
solutions

X=Z=—

(13)

2Af
sing(tan’¢ —tan’@)
We would like to emphasize that in this approximation

the self-consistent solution does not depend on the pa-
rameter a.

X=Z= (14)

V. CONCLUSIONS

The fact that the solution does not depend (to the order
studied) on the parameter a, characterizing the recovery
of a ball after the collision, has a rather simple explana-
tion. Indeed, inelasticity dominates friction in the case of
a head-on collision and vice versa in the case of a glanc-
ing collision. In our consideration, the ball is undergoing
a glancing collision rather than a head-on collision. Un-
der this condition friction is essential but inelasticity
gives the effect of the next order because the deformation
of the balls is negligible.

We have demonstrated that self-consistent solutions of
class I and class II for the inelastic billiard ball problem
exist as well as for the elastic one.

In a proper time the ball was subjected to two col-
lisions: the first one when it was ‘“‘younger” and the
second one after the passage through the time machine.
In the class I and class II solutions the trajectory between
these two collisions is slightly displaced (typically of the
order of the ball’s radius R) with respect to the self-
inconsistent solutions (when we naively continue the ini-
tial trajectory beyond the first collision).
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There is another type of self-consistent solution—
when the trajectory of the motion of a ball between two
collisions is quite different from the self-inconsistent one.
In this type of self-consistent solution the ball can
traverse the time machine many times between two col-
lisions.! We have not discussed this type of solution in the
paper. We suspect, but have not proved, that there are
analogous self-consistent solutions for the inelastic bil-
liard ball. Also, we have not discussed here the Jinne-
type self-consistent solutions. This type of solution, tak-
ing into account inelasticity, was proposed and discussed
by Lossev and Novikov [8].

In the model of the wormhole with vanishingly short
length of the throat which we consider in this paper, the

In the time of the external observer it is one collision between
younger and older versions of the ball.

motion along larger circles at the edges of the mouths is
also the geodesical motion. It gives the possibility to add
some points to the “wormhole traversal rules” taking
into account the trajectories for which some parts before
and after the traverse of the time machine are large cir-
cles on the edges of the wormhole. This new type of the
self-consistent solution leads to important conclusions
and is discussed in a separate paper (see [9]).
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