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Ribbon concordances

A concordance between Ky and K is a smoothly embedded
annulus A C [0,1] x S3 such that

9A = —({0} x Ko) U ({1} x K1),

Definition

A ribbon concordance from Ky to K7 is a concordance which
has only index 0 and 1 critical points.

m Ribbon concordance is not symmetric.
m Gordon’s notation: Ky < Kj.



A ribbon concordance

saddles

Figure: A ribbon concordance.
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Theorem (Gordon 1981)

If C is a ribbon concordance, then w1 (Ko) — m1(C) is an
injection, and 1 (K1) — m(C) is a surjection.

m 7 (K;) — m1(C): the complement of C' is obtained by
attaching 2-handles and 3-handles.

m 71 (Ko) — m(C): uses much harder 3-manifold topology.
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Gordon’s work

Theorem (Gordon 1981)

m [f Ko < Ky, then d(Ky) < d(K1), where d(K) = deg Ag(t).
m [f Ko < K1, d(Kp) = d(K1) and K transfinitely nilpotent,
then Ko Kl

m Transfinite nilpotence: the lower central series becomes
trivial at some ordinal.

m Fibered knots are transfinitely nilpotent, since 71 (K)' is
free.
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Ribbon concordances and fiberedness

Theorem (Silver 1992, Kochloukova 2006)

If Ky < Ky and Ky is fibered, then Kq is fibered.

m (Stallings 1965) The commutator subgroup
m(K) C m(K) is free iff K is fibered.

m (Neuwirth 1964) If G is a knot group and G’ is finitely
generated, then G’ is free.

m (Rapaport’s conjecture 1975) If G is knot-like (G/G' = 7
and G has deficiency 1) then G’ finitely generated implies
G’ free.
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Ribbon concordances and fiberedness

Silvers argument, assuming Rapaport’s conjecture:

m Suppose C' is a ribbon concordance from Ky to K. Write
G, Gp and G for the groups.

m G is knot-like.

m Gy — G and G; — G, by Gordon. Clearly, G, — G’ and
G| - G

m If G} is finitely generated, then G’ is. Assuming
Rapaport’s conjecture, G’ is free. Hence, so is GY).

m Hence K is fibered.

Kochloukova proved Rapaport’s conjecture in 2006.
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Knot Floer homology (Ozsvath and Szabd, Rasmussen)

If K C S3, there is a bigraded group
HFK (K) = @ HFE (K, j).

1,jEZL

m Categorifies the Alexander polynomial.

m Detects the Seifert genus:

g93(K) = max{j : HFK (K, j) # {0}}.
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Knot Floer homology

m Another version, CFK*°(K), which encodes more
information.

m CFK*™(K) is a graded, Z & Z-filtered chain complex over
FQ[Ua Uﬁl]'
m H.(CFK™(K)) = HF>(S3) = F,[U, U]
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Knot Floer homology as a TQFT

Juhdsz’s decorated link cobordism category

m Objects: 3-manifolds containing links with 2 types of
basepoints.

m Morphisms: Oriented link cobordisms, decorated with a
dividing set.

Figure: A decorated link cobordism.



Juhasz’s TQFT for HFL

To a decorated link cobordism
(W7 F) (Y17L1> — (}/27]]42)7
Juhdsz associates a map

FWJ:2 ﬁF\L(Yl,Ll) — EF\L(}/Q,LQ)
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m To a concordance, there is a natural choice of dividing set
(with minor ambiguity).

Figure: A decorated concordance.

m Studied by Juhasz and Marengon.

m They proved the map preserves the Maslov and Alexander
gradings.



A TQFT for the full knot Floer complex

Theorem (Z. 2017)

If (W, F): (Y1,L1) — (Ya,L2) is a decorated link cobordism and
s € Spin®(W), there is a functorial chain map

Fﬁfo,f,ﬁr C]:ZOO(H,]Ll,ﬁhfl) — CFEOO(}/Q,]LQ,ﬁ‘Yz).



A TQFT for the full knot Floer complex

Theorem (Z. 2017)

If (W, F): (Y1,L1) — (Ya,L2) is a decorated link cobordism and
s € Spin®(W), there is a functorial chain map

Fﬁ/O,F,E: C]:ZOO(H,]Ll,ﬁhfl) — CFEOO(}/Q,]LQ,ﬁ‘Yz).

m For a decorated concordance C, we obtain a bigraded map

Fo: CFK™(Ky) — CFK™(K1).



A TQFT for the full knot Floer complex

Theorem (Z. 2017)

If (W, F): (Y1,L1) — (Ya,L2) is a decorated link cobordism and
s € Spin®(W), there is a functorial chain map

Fﬁ/O,F,E: C]:ZOO(H,]Ll,ﬁhfl) — CFEOO(}/Q,]LQ,ﬁ‘Yz).

m For a decorated concordance C, we obtain a bigraded map
Fo: CFK*(Ky) — CFK*™(K4).

m Alishahi and Eftekhary independently gave a similar
construction, in terms of a different cobordism category.
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Theorem (Z.)
Suppose C' is a ribbon concordance from Kgy to K;.
m Then - .
Fo: HFK (Ky) — HFK (K1)
1S an ingjection.
m The map FZ° admits a left inverse, i.e. a filtered graded
map II such that

ITo FE’O ~ idCFKOO(Ko) 0
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Let C: K; — K denote the mirror of C.

We claim

F@O Fo = id@([(g) .

Each birth of C has a corresponding death in C. Each
saddle of C has a corresponding saddle in C.

The births and deaths determine 2-spheres in the
complement of [0, 1] x Kj.

The saddles and their reverses determine tubes which
connect the 2-spheres to the trivial concordance [0, 1] x K.

It suffices to show that tubing on 2-spheres does not
change the cobordism maps.
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Factor through a neighborhood of the spheres.

A neighborhood of each 2-sphere N(S) is D? x S2.
ON(S) = St x §2.

C U C intersects ON(S) in an unknot.

C U C intersects N(S) in a disk D.

HOFK (S x §%,U) has rank 1 in the important grading.

m We can replace D with any disk D’ in N(S) such that
oD' = dD.

m Replace D with D’ = S\ D to obtain [0, 1] x K.



Monotonicity of the Seifert genus

Corollary (Z.)

If there is a ribbon concordance from Kg to K1, then

93(Ko) < g3(K1).
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Band sums

Definition

A knot L is a band sum of (unlinked) knots K, ..., K, if it is
obtained by attaching n — 1 (potentially complicated) bands to
join Ky, ..., K, together.

Theorem (Gabai (1987) Scharlemann (1985))

If L is a band sum of K1 and Ko, then

g3(L) > g3(K1) + g3(Ka).

m Gabai’s proof used foliations, and Scharlemann’s was
combinatorial.

m Neither proof extends for n > 2.
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Miyazaki’s manipulation

Theorem (Miyazaki 1998)
If L is a band sum of K1, ..., K,, then

K% #K, < L.

m Idea: pass a band of L through another strand by
attaching a fission band.

m Adds a meridian to the band.

/ n
== =

Figure: Changing a crossing of a band with a strand.

m This process terminates at K1# - - - #K,, together with
some unlinked unknots, which can be capped off.



Superadditivity of the Seifert genus

Corollary (Z.)
If L is a band sum of K1, ..., K, then

g3(L) > g3(K1) + - - + g3(Ky).
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Definition

A strongly homotopy-ribbon concordance is one whose
complement can be built using only 1-handles and 2-handles.

{ribbon concordances} C {strongly homotopy-ribbon concordances}
C {homotopy-ribbon concordances}

C {concordances}



Strongly homotopy-ribbon concordances and knot Floer
homology

Theorem (Maggie Miller, Z.)

If C is a strongly homotopy-ribbon concordance from Ky to K1,
then

Fe: HFK (Ky) — HFK (K1)

18 an injection.



Strongly homotopy-ribbon concordances and knot Floer
homology

Theorem (Maggie Miller, Z.)

If C is a strongly homotopy-ribbon concordance from Ky to K1,
then

Fe: HFK (Ky) — HFK (K1)
18 an injection.
m The proof uses a similar doubling trick, and also relies on

the fact that tubing in a 2-sphere does not change the
cobordism map.



Khovanov homology and ribbon concordances

Theorem (Levine, Z.)

If C is a ribbon concordance, then the induced map on
Khovanov homology

Kh(C): Kh(Ko) — Kh(K1)

18 an injection.
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The proof follows from the previous description of the doubled
concordance, as well as Bar-Natan’s “dotted cobordism maps”,
and the tube cutting and sphere relations.



Khovanov homology and ribbon concordances

The proof follows from the previous description of the doubled
concordance, as well as Bar-Natan’s “dotted cobordism maps”,
and the tube cutting and sphere relations.

L T)-06-0J

Figure: Bar-Natan’s local relations.
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Sarkar’s ribbon distance and Khovanov homology

Sarkar considered the torsion order in Lee’s deformation of
Khovanov homology, Khr.(K), which is a finitely generated
module over R[X] (where R is a field).

Definition
If M is a module over R[X], define Ordx (M) to be the
minimum n such that X™ - Tor(M) = {0}.

Theorem (Sarkar)

If K is a ribbon knot, and 2 # 0 in R, then any ribbon disk for
K must have at least Ordx (Khree(K)) bands.
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Sarkar’s ribbon distance and Khovanov homology

m Unfortunately Ordx (Khree(K)) is usually small.

m Only one example is known with Ordx (Kh(K)) > 2
(Marengon-Manolescu 2018).

m The proof uses a doubling trick, with a new twist.
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Knot Floer homology, torsion, and the bridge index

There is an analogous version of knot Floer homology
HFK™(K), which is a module over the polynomial ring Fa[v].
Inspired by Sarkar’s work, we proved:

Theorem (Juhdasz, Miller, Z.)

If K is a ribbon knot, then any ribbon disk for K must have at
least Ord,(HFK~(K)) bands.
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Knot Floer homology, torsion, and the bridge index

Definition

If K C S3, then the bridge number br(K) is the smallest
number of local mazima in any diagram of K.

Corollary (Miller, Juhész, Z.)

If K C S® then

Ord,(HFK ™~ (K)) < br(K) — 1.

m There is a fusion disk of K#K with br(K) — 1 saddles.

m Ord,(K#K) = Ord,(K), by the connected sum formula,
and duality.
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m br(7,,) = min(p, q) if p, ¢ coprime (Schubert 1954).
m Ord,(HFK™(K)) = min(p, ¢) — 1, so the bound is sharp.
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Knot Floer homology, torsion, and the bridge index

Corollary (Juhdasz, Miller, Z.)
If J is concordant to T), 4, then

br(J) > br(Tp4).

= )

m The proof uses the concordance invariant N (K)
constructed by Dai-Hom-Stoffregen-Truong.

m N(K) < Ord,(K), by work of DHST.
m N(Tp,4) = min(p, q) — 1, by work of DHST.
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Knot Floer homology, torsion, and the bridge index

More generally:

Theorem (Juhész, Miller, Z.)

If there is a knot cobordism from Ky to Ky with M local
maxima, then

Ord,{HFK~ (K¢)} < max{Ord,(HFK~(K1)), M} + 2¢(S).
Example: if there is a ribbon concordance from Ky to K7 with b
bands, then

Ord,(HFK™ (Ky)) < Ord,(HFK ™~ (K1))
< max{Ord,(HFK ™~ (Ky)), b}.

Compare the effect of taking the connected sum of Ky and
another knot K to increase Ord,
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Adding a tube to the unshaded subregion of a decorated surface
induces multiplication by v.

(/S (/S

Figure: Adding a tube is multiplication by v.
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Outline of the proof of the fusion number bound

Consider a ribbon disk D for K, with b bands and b+ 1

maxima.

m Write D° for the induced cobordism from K to U with b
bands and b maxima.

m D° U D° is a concordance from K to itself.
m Tube the maxima of D° to the minima of D° with b tubes.

m Upon inspection, we arrive at a copy of K x [0, 1] with b
tubes added.

m So

b _ b
v Fpeype =07 Fiexo)-

= Noting that F5e . annihilates Tor,(HFK, (K)), the proof

is complete.

oD°
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Conjecture (Gordon 1981)
If Ko S K1 and K1 S K(), then KO = Kl.

Theorem (Z., Levine-Z.)

IfKo S Kl and Kl S K(), then

HFK (Ko) = HFK (K1) and Kh(Ky) = Kh(K),

as bigraded groups.
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Gordon’s conjecture

= To look for counterexamples to Gordon’s conjecture, one
could look for knots which have isomorphic HFK and Kh.

m The Kanenobu knots are such a family (see
Hedden-Watson).

m There are additional families of generalized Kanenobu
knots (see Lobb).
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