Ribbon concordances and knot Floer homology

Ian Zemke

October 21, 2019

A concordance between K_0 and K_1 is a smoothly embedded annulus $A \subseteq [0,1] \times S^3$ such that

$$\partial A = -(\{0\} \times K_0) \cup (\{1\} \times K_1).$$

A concordance between K_0 and K_1 is a smoothly embedded annulus $A \subseteq [0,1] \times S^3$ such that

$$\partial A = -(\{0\} \times K_0) \cup (\{1\} \times K_1).$$

Definition

A ribbon concordance from K_0 to K_1 is a concordance which has only index 0 and 1 critical points.

A concordance between K_0 and K_1 is a smoothly embedded annulus $A \subseteq [0,1] \times S^3$ such that

$$\partial A = -(\{0\} \times K_0) \cup (\{1\} \times K_1).$$

Definition

A ribbon concordance from K_0 to K_1 is a concordance which has only index 0 and 1 critical points.

■ Ribbon concordance is not symmetric.

A concordance between K_0 and K_1 is a smoothly embedded annulus $A \subseteq [0,1] \times S^3$ such that

$$\partial A = -(\{0\} \times K_0) \cup (\{1\} \times K_1).$$

Definition

A ribbon concordance from K_0 to K_1 is a concordance which has only index 0 and 1 critical points.

- Ribbon concordance is not symmetric.
- Gordon's notation: $K_0 \leq K_1$.

A ribbon concordance

Figure: A ribbon concordance.

Theorem (Gordon 1981)

If C is a ribbon concordance, then $\pi_1(K_0) \to \pi_1(C)$ is an injection, and $\pi_1(K_1) \to \pi_1(C)$ is a surjection.

Theorem (Gordon 1981)

If C is a ribbon concordance, then $\pi_1(K_0) \to \pi_1(C)$ is an injection, and $\pi_1(K_1) \to \pi_1(C)$ is a surjection.

■ $\pi_1(K_1) \rightarrow \pi_1(C)$: the complement of C is obtained by attaching 2-handles and 3-handles.

Theorem (Gordon 1981)

If C is a ribbon concordance, then $\pi_1(K_0) \to \pi_1(C)$ is an injection, and $\pi_1(K_1) \to \pi_1(C)$ is a surjection.

- $\pi_1(K_1) \to \pi_1(C)$: the complement of C is obtained by attaching 2-handles and 3-handles.
- $\pi_1(K_0) \hookrightarrow \pi_1(C)$: uses much harder 3-manifold topology.

Theorem (Gordon 1981)

• If $K_0 \leq K_1$, then $d(K_0) \leq d(K_1)$, where $d(K) = \deg \Delta_K(t)$.

- If $K_0 \leq K_1$, then $d(K_0) \leq d(K_1)$, where $d(K) = \deg \Delta_K(t)$.
- If $K_0 \le K_1$, $d(K_0) = d(K_1)$ and K_1 transfinitely nilpotent, then $K_0 = K_1$.

- If $K_0 \leq K_1$, then $d(K_0) \leq d(K_1)$, where $d(K) = \deg \Delta_K(t)$.
- If $K_0 \le K_1$, $d(K_0) = d(K_1)$ and K_1 transfinitely nilpotent, then $K_0 = K_1$.
- Transfinite nilpotence: the lower central series becomes trivial at some ordinal.

- If $K_0 \leq K_1$, then $d(K_0) \leq d(K_1)$, where $d(K) = \deg \Delta_K(t)$.
- If $K_0 \le K_1$, $d(K_0) = d(K_1)$ and K_1 transfinitely nilpotent, then $K_0 = K_1$.
- Transfinite nilpotence: the lower central series becomes trivial at some ordinal.
- Fibered knots are transfinitely nilpotent, since $\pi_1(K)'$ is free.

Theorem (Silver 1992, Kochloukova 2006)

If $K_0 \leq K_1$ and K_1 is fibered, then K_0 is fibered.

Theorem (Silver 1992, Kochloukova 2006)

If $K_0 \leq K_1$ and K_1 is fibered, then K_0 is fibered.

• (Stallings 1965) The commutator subgroup $\pi_1(K)' \subseteq \pi_1(K)$ is free iff K is fibered.

Theorem (Silver 1992, Kochloukova 2006)

If $K_0 \leq K_1$ and K_1 is fibered, then K_0 is fibered.

- (Stallings 1965) The commutator subgroup $\pi_1(K)' \subseteq \pi_1(K)$ is free iff K is fibered.
- (Neuwirth 1964) If G is a knot group and G' is finitely generated, then G' is free.

Theorem (Silver 1992, Kochloukova 2006)

If $K_0 \leq K_1$ and K_1 is fibered, then K_0 is fibered.

- (Stallings 1965) The commutator subgroup $\pi_1(K)' \subseteq \pi_1(K)$ is free iff K is fibered.
- (Neuwirth 1964) If G is a knot group and G' is finitely generated, then G' is free.
- (Rapaport's conjecture 1975) If G is knot-like $(G/G' \cong \mathbb{Z}$ and G has deficiency 1) then G' finitely generated implies G' free.

Silvers argument, assuming Rapaport's conjecture:

■ Suppose C is a ribbon concordance from K_0 to K_1 . Write G, G_0 and G_1 for the groups.

- Suppose C is a ribbon concordance from K_0 to K_1 . Write G, G_0 and G_1 for the groups.
- $\blacksquare G$ is knot-like.

- Suppose C is a ribbon concordance from K_0 to K_1 . Write G, G_0 and G_1 for the groups.
- $\blacksquare G$ is knot-like.
- $G_0 \hookrightarrow G$ and $G_1 \twoheadrightarrow G$, by Gordon. Clearly, $G_0' \hookrightarrow G'$ and $G_1' \twoheadrightarrow G'$.

- Suppose C is a ribbon concordance from K_0 to K_1 . Write G, G_0 and G_1 for the groups.
- $\blacksquare G$ is knot-like.
- $G_0 \hookrightarrow G$ and $G_1 \twoheadrightarrow G$, by Gordon. Clearly, $G_0' \hookrightarrow G'$ and $G_1' \twoheadrightarrow G'$.
- If G'_1 is finitely generated, then G' is. Assuming Rapaport's conjecture, G' is free. Hence, so is G'_0 .

- Suppose C is a ribbon concordance from K_0 to K_1 . Write G, G_0 and G_1 for the groups.
- $\blacksquare G$ is knot-like.
- $G_0 \hookrightarrow G$ and $G_1 \twoheadrightarrow G$, by Gordon. Clearly, $G_0' \hookrightarrow G'$ and $G_1' \twoheadrightarrow G'$.
- If G'_1 is finitely generated, then G' is. Assuming Rapaport's conjecture, G' is free. Hence, so is G'_0 .
- Hence K_0 is fibered.

Silvers argument, assuming Rapaport's conjecture:

- Suppose C is a ribbon concordance from K_0 to K_1 . Write G, G_0 and G_1 for the groups.
- $\blacksquare G$ is knot-like.
- $G_0 \hookrightarrow G$ and $G_1 \twoheadrightarrow G$, by Gordon. Clearly, $G_0' \hookrightarrow G'$ and $G_1' \twoheadrightarrow G'$.
- If G'_1 is finitely generated, then G' is. Assuming Rapaport's conjecture, G' is free. Hence, so is G'_0 .
- Hence K_0 is fibered.

Kochloukova proved Rapaport's conjecture in 2006.

Knot Floer homology (Ozsváth and Szabó, Rasmussen)

If $K \subseteq S^3$, there is a bigraded group

$$\widehat{HFK}(K) = \bigoplus_{i,j \in \mathbb{Z}} \widehat{HFK}_i(K,j).$$

Knot Floer homology (Ozsváth and Szabó, Rasmussen)

If $K \subseteq S^3$, there is a bigraded group

$$\widehat{\mathit{HFK}}(K) = \bigoplus_{i,j \in \mathbb{Z}} \widehat{\mathit{HFK}}_i(K,j).$$

• Categorifies the Alexander polynomial.

Knot Floer homology (Ozsváth and Szabó, Rasmussen)

If $K \subseteq S^3$, there is a bigraded group

$$\widehat{HFK}(K) = \bigoplus_{i,j \in \mathbb{Z}} \widehat{HFK}_i(K,j).$$

- Categorifies the Alexander polynomial.
- Detects the Seifert genus:

$$g_3(K) = \max\{j : \widehat{HFK}(K, j) \neq \{0\}\}.$$

Knot Floer homology

■ Another version, $CFK^{\infty}(K)$, which encodes more information.

Knot Floer homology

- Another version, $CFK^{\infty}(K)$, which encodes more information.
- $CFK^{\infty}(K)$ is a graded, $\mathbb{Z} \oplus \mathbb{Z}$ -filtered chain complex over $\mathbb{F}_2[U, U^{-1}]$.

Knot Floer homology

- Another version, $CFK^{\infty}(K)$, which encodes more information.
- $CFK^{\infty}(K)$ is a graded, $\mathbb{Z} \oplus \mathbb{Z}$ -filtered chain complex over $\mathbb{F}_2[U, U^{-1}]$.
- $H_*(CFK^{\infty}(K)) \cong HF^{\infty}(S^3) \cong \mathbb{F}_2[U, U^{-1}].$

Juhász's decorated link cobordism category

Juhász's decorated link cobordism category

■ Objects: 3-manifolds containing links with 2 types of basepoints.

Juhász's decorated link cobordism category

- Objects: 3-manifolds containing links with 2 types of basepoints.
- Morphisms: Oriented link cobordisms, decorated with a dividing set.

Juhász's decorated link cobordism category

- Objects: 3-manifolds containing links with 2 types of basepoints.
- Morphisms: Oriented link cobordisms, decorated with a dividing set.

Figure: A decorated link cobordism.

Juhász's TQFT for \widehat{HFL}

To a decorated link cobordism

$$(W, \mathcal{F}) \colon (Y_1, \mathbb{L}_1) \to (Y_2, \mathbb{L}_2),$$

Juhász associates a map

$$F_{W,\mathcal{F}} \colon \widehat{\mathit{HFL}}(Y_1,\mathbb{L}_1) \to \widehat{\mathit{HFL}}(Y_2,\mathbb{L}_2).$$

■ To a concordance, there is a natural choice of dividing set (with minor ambiguity).

■ To a concordance, there is a natural choice of dividing set (with minor ambiguity).

Figure: A decorated concordance.

■ To a concordance, there is a natural choice of dividing set (with minor ambiguity).

Figure: A decorated concordance.

 \blacksquare Studied by Juhász and Marengon.

■ To a concordance, there is a natural choice of dividing set (with minor ambiguity).

Figure: A decorated concordance.

- Studied by Juhász and Marengon.
- They proved the map preserves the Maslov and Alexander gradings.

A TQFT for the full knot Floer complex

Theorem (Z. 2017)

If $(W, \mathcal{F}): (Y_1, \mathbb{L}_1) \to (Y_2, \mathbb{L}_2)$ is a decorated link cobordism and $\mathfrak{s} \in \operatorname{Spin}^c(W)$, there is a functorial chain map

$$F^{\infty}_{W,\mathcal{F},\mathfrak{s}}\colon \mathcal{CFL}^{\infty}(Y_{1},\mathbb{L}_{1},\mathfrak{s}|_{Y_{1}})\to \mathcal{CFL}^{\infty}(Y_{2},\mathbb{L}_{2},\mathfrak{s}|_{Y_{2}}).$$

A TQFT for the full knot Floer complex

Theorem (Z. 2017)

If $(W, \mathcal{F}): (Y_1, \mathbb{L}_1) \to (Y_2, \mathbb{L}_2)$ is a decorated link cobordism and $\mathfrak{s} \in \operatorname{Spin}^c(W)$, there is a functorial chain map

$$F_{W,\mathcal{F},\mathfrak{s}}^{\infty} \colon \mathcal{CFL}^{\infty}(Y_1,\mathbb{L}_1,\mathfrak{s}|_{Y_1}) \to \mathcal{CFL}^{\infty}(Y_2,\mathbb{L}_2,\mathfrak{s}|_{Y_2}).$$

 \blacksquare For a decorated concordance C, we obtain a bigraded map

$$F_C \colon \mathit{CFK}^\infty(K_0) \to \mathit{CFK}^\infty(K_1).$$

A TQFT for the full knot Floer complex

Theorem (Z. 2017)

If $(W, \mathcal{F}): (Y_1, \mathbb{L}_1) \to (Y_2, \mathbb{L}_2)$ is a decorated link cobordism and $\mathfrak{s} \in \operatorname{Spin}^c(W)$, there is a functorial chain map

$$F_{W,\mathcal{F},\mathfrak{s}}^{\infty} \colon \mathcal{CFL}^{\infty}(Y_1,\mathbb{L}_1,\mathfrak{s}|_{Y_1}) \to \mathcal{CFL}^{\infty}(Y_2,\mathbb{L}_2,\mathfrak{s}|_{Y_2}).$$

 \blacksquare For a decorated concordance C, we obtain a bigraded map

$$F_C \colon CFK^{\infty}(K_0) \to CFK^{\infty}(K_1).$$

Alishahi and Eftekhary independently gave a similar construction, in terms of a different cobordism category.

Ribbon concordances and knot Floer homology

Theorem (Z.)

Suppose C is a ribbon concordance from K_0 to K_1 .

Ribbon concordances and knot Floer homology

Theorem (Z.)

Suppose C is a ribbon concordance from K_0 to K_1 .

■ Then

$$F_C \colon \widehat{HFK}(K_0) \to \widehat{HFK}(K_1)$$

is an injection.

Ribbon concordances and knot Floer homology

Theorem (Z.)

Suppose C is a ribbon concordance from K_0 to K_1 .

■ Then

$$F_C \colon \widehat{HFK}(K_0) \to \widehat{HFK}(K_1)$$

is an injection.

■ The map F_C^{∞} admits a left inverse, i.e. a filtered graded map Π such that

$$\Pi \circ F_C^{\infty} \simeq \mathrm{id}_{CFK^{\infty}(K_0)}.$$

■ Let \overline{C} : $K_1 \to K_0$ denote the mirror of C.

- Let \overline{C} : $K_1 \to K_0$ denote the mirror of C.
- We claim

$$F_{\overline{C}} \circ F_C = \mathrm{id}_{\widehat{HFK}(K_0)}$$
.

- Let \overline{C} : $K_1 \to K_0$ denote the mirror of C.
- We claim

$$F_{\overline{C}} \circ F_C = \mathrm{id}_{\widehat{HFK}(K_0)}$$
.

■ Each birth of C has a corresponding death in \overline{C} . Each saddle of C has a corresponding saddle in \overline{C} .

- Let \overline{C} : $K_1 \to K_0$ denote the mirror of C.
- We claim

$$F_{\overline{C}} \circ F_C = \mathrm{id}_{\widehat{HFK}(K_0)}$$
.

- Each birth of C has a corresponding death in \overline{C} . Each saddle of C has a corresponding saddle in \overline{C} .
- The births and deaths determine 2-spheres in the complement of $[0,1] \times K_0$.

- Let \overline{C} : $K_1 \to K_0$ denote the mirror of C.
- We claim

$$F_{\overline{C}} \circ F_C = \mathrm{id}_{\widehat{HFK}(K_0)}$$
.

- Each birth of C has a corresponding death in \overline{C} . Each saddle of C has a corresponding saddle in \overline{C} .
- The births and deaths determine 2-spheres in the complement of $[0,1] \times K_0$.
- The saddles and their reverses determine tubes which connect the 2-spheres to the trivial concordance $[0,1] \times K_0$.

- Let \overline{C} : $K_1 \to K_0$ denote the mirror of C.
- We claim

$$F_{\overline{C}} \circ F_C = \mathrm{id}_{\widehat{HFK}(K_0)}$$
.

- Each birth of C has a corresponding death in \overline{C} . Each saddle of C has a corresponding saddle in \overline{C} .
- The births and deaths determine 2-spheres in the complement of $[0,1] \times K_0$.
- The saddles and their reverses determine tubes which connect the 2-spheres to the trivial concordance $[0,1] \times K_0$.
- It suffices to show that tubing on 2-spheres does not change the cobordism maps.

■ Factor through a neighborhood of the spheres.

- Factor through a neighborhood of the spheres.
- A neighborhood of each 2-sphere N(S) is $D^2 \times S^2$.

- Factor through a neighborhood of the spheres.
- A neighborhood of each 2-sphere N(S) is $D^2 \times S^2$.

- Factor through a neighborhood of the spheres.
- A neighborhood of each 2-sphere N(S) is $D^2 \times S^2$.
- $\overline{C} \cup C$ intersects $\partial N(S)$ in an unknot.

- Factor through a neighborhood of the spheres.
- A neighborhood of each 2-sphere N(S) is $D^2 \times S^2$.
- $\overline{C} \cup C$ intersects $\partial N(S)$ in an unknot.
- $\overline{C} \cup C$ intersects N(S) in a disk D.

- Factor through a neighborhood of the spheres.
- A neighborhood of each 2-sphere N(S) is $D^2 \times S^2$.
- $\overline{C} \cup C$ intersects $\partial N(S)$ in an unknot.
- $\overline{C} \cup C$ intersects N(S) in a disk D.
- $\widehat{HFK}(S^1 \times S^2, \mathbb{U})$ has rank 1 in the important grading.

- Factor through a neighborhood of the spheres.
- A neighborhood of each 2-sphere N(S) is $D^2 \times S^2$.
- $\overline{C} \cup C$ intersects $\partial N(S)$ in an unknot.
- $\overline{C} \cup C$ intersects N(S) in a disk D.
- $\widehat{HFK}(S^1 \times S^2, \mathbb{U})$ has rank 1 in the important grading.
- We can replace D with any disk D' in N(S) such that $\partial D' = \partial D$.

- Factor through a neighborhood of the spheres.
- A neighborhood of each 2-sphere N(S) is $D^2 \times S^2$.
- $\overline{C} \cup C$ intersects $\partial N(S)$ in an unknot.
- $\overline{C} \cup C$ intersects N(S) in a disk D.
- $\widehat{HFK}(S^1 \times S^2, \mathbb{U})$ has rank 1 in the important grading.
- We can replace D with any disk D' in N(S) such that $\partial D' = \partial D$.
- Replace D with $D' = S \setminus D$ to obtain $[0,1] \times K_0$.

Monotonicity of the Seifert genus

Corollary (Z.)

If there is a ribbon concordance from K_0 to K_1 , then

$$g_3(K_0) \le g_3(K_1).$$

Definition

A knot L is a band sum of (unlinked) knots K_1, \ldots, K_n if it is obtained by attaching n-1 (potentially complicated) bands to join K_1, \ldots, K_n together.

Definition

A knot L is a band sum of (unlinked) knots K_1, \ldots, K_n if it is obtained by attaching n-1 (potentially complicated) bands to join K_1, \ldots, K_n together.

Theorem (Gabai (1987) Scharlemann (1985))

If L is a band sum of K_1 and K_2 , then

$$g_3(L) \ge g_3(K_1) + g_3(K_2).$$

Definition

A knot L is a band sum of (unlinked) knots K_1, \ldots, K_n if it is obtained by attaching n-1 (potentially complicated) bands to join K_1, \ldots, K_n together.

Theorem (Gabai (1987) Scharlemann (1985))

If L is a band sum of K_1 and K_2 , then

$$g_3(L) \ge g_3(K_1) + g_3(K_2).$$

 Gabai's proof used foliations, and Scharlemann's was combinatorial.

Definition

A knot L is a band sum of (unlinked) knots K_1, \ldots, K_n if it is obtained by attaching n-1 (potentially complicated) bands to join K_1, \ldots, K_n together.

Theorem (Gabai (1987) Scharlemann (1985))

If L is a band sum of K_1 and K_2 , then

$$g_3(L) \ge g_3(K_1) + g_3(K_2).$$

- Gabai's proof used foliations, and Scharlemann's was combinatorial.
- Neither proof extends for n > 2.

Miyazaki's manipulation

Theorem (Miyazaki 1998)

If L is a band sum of K_1, \ldots, K_n , then

$$K_1 \# \cdots \# K_n \leq L$$
.

Miyazaki's manipulation

Theorem (Miyazaki 1998)

If L is a band sum of K_1, \ldots, K_n , then

$$K_1 \# \cdots \# K_n \leq L$$
.

 \blacksquare Idea: pass a band of L through another strand by attaching a fission band.

Miyazaki's manipulation

Theorem (Miyazaki 1998)

If L is a band sum of K_1, \ldots, K_n , then

$$K_1 \# \cdots \# K_n \leq L$$
.

- \blacksquare Idea: pass a band of L through another strand by attaching a fission band.
- Adds a meridian to the band.

Miyazaki's manipulation

Theorem (Miyazaki 1998)

If L is a band sum of K_1, \ldots, K_n , then

$$K_1 \# \cdots \# K_n \leq L$$
.

- Idea: pass a band of L through another strand by attaching a fission band.
- Adds a meridian to the band.

Figure: Changing a crossing of a band with a strand.

Miyazaki's manipulation

Theorem (Miyazaki 1998)

If L is a band sum of K_1, \ldots, K_n , then

$$K_1 \# \cdots \# K_n \leq L$$
.

- Idea: pass a band of L through another strand by attaching a fission band.
- Adds a meridian to the band.

Figure: Changing a crossing of a band with a strand.

■ This process terminates at $K_1 \# \cdots \# K_n$ together with some unlinked unknots, which can be capped off.

Superadditivity of the Seifert genus

Corollary (Z.)

If L is a band sum of K_1, \ldots, K_n then

$$g_3(L) \ge g_3(K_1) + \dots + g_3(K_n).$$

Strongly homotopy-ribbon concordances

Definition

A strongly homotopy-ribbon concordance is one whose complement can be built using only 1-handles and 2-handles.

Strongly homotopy-ribbon concordances

Definition

A strongly homotopy-ribbon concordance is one whose complement can be built using only 1-handles and 2-handles.

```
 \begin{aligned} \{ \text{ribbon concordances} \} \subseteq \{ \text{strongly homotopy-ribbon concordances} \} \\ \subseteq \{ \text{homotopy-ribbon concordances} \} \\ \subsetneq \{ \text{concordances} \} \end{aligned}
```

Strongly homotopy-ribbon concordances and knot Floer homology

Theorem (Maggie Miller, Z.)

If C is a strongly homotopy-ribbon concordance from K_0 to K_1 , then

$$F_C \colon \widehat{HFK}(K_0) \to \widehat{HFK}(K_1)$$

is an injection.

Strongly homotopy-ribbon concordances and knot Floer homology

Theorem (Maggie Miller, Z.)

If C is a strongly homotopy-ribbon concordance from K_0 to K_1 , then

$$F_C \colon \widehat{HFK}(K_0) \to \widehat{HFK}(K_1)$$

is an injection.

■ The proof uses a similar doubling trick, and also relies on the fact that tubing in a 2-sphere does not change the cobordism map.

Khovanov homology and ribbon concordances

Theorem (Levine, Z.)

If C is a ribbon concordance, then the induced map on $Khovanov\ homology$

$$Kh(C) \colon Kh(K_0) \to Kh(K_1)$$

is an injection.

Khovanov homology and ribbon concordances

The proof follows from the previous description of the doubled concordance, as well as Bar-Natan's "dotted cobordism maps", and the tube cutting and sphere relations.

Khovanov homology and ribbon concordances

The proof follows from the previous description of the doubled concordance, as well as Bar-Natan's "dotted cobordism maps", and the tube cutting and sphere relations.

Figure: Bar-Natan's local relations.

Sarkar considered the torsion order in Lee's deformation of Khovanov homology, $Kh_{Lee}(K)$, which is a finitely generated module over R[X] (where R is a field).

Sarkar considered the torsion order in Lee's deformation of Khovanov homology, $Kh_{Lee}(K)$, which is a finitely generated module over R[X] (where R is a field).

Definition

If M is a module over R[X], define $Ord_X(M)$ to be the minimum n such that $X^n \cdot Tor(M) = \{0\}$.

Sarkar considered the torsion order in Lee's deformation of Khovanov homology, $Kh_{Lee}(K)$, which is a finitely generated module over R[X] (where R is a field).

Definition

If M is a module over R[X], define $Ord_X(M)$ to be the minimum n such that $X^n \cdot Tor(M) = \{0\}$.

Theorem (Sarkar)

If K is a ribbon knot, and $2 \neq 0$ in R, then any ribbon disk for K must have at least $\operatorname{Ord}_X(Kh_{Lee}(K))$ bands.

■ Unfortunately $Ord_X(Kh_{Lee}(K))$ is usually small.

- Unfortunately $Ord_X(Kh_{Lee}(K))$ is usually small.
- Only one example is known with $Ord_X(Kh(K)) > 2$ (Marengon-Manolescu 2018).

- Unfortunately $Ord_X(Kh_{Lee}(K))$ is usually small.
- Only one example is known with $\operatorname{Ord}_X(Kh(K)) > 2$ (Marengon-Manolescu 2018).
- The proof uses a doubling trick, with a new twist.

There is an analogous version of knot Floer homology $HFK^{-}(K)$, which is a module over the polynomial ring $\mathbb{F}_{2}[v]$.

There is an analogous version of knot Floer homology $HFK^-(K)$, which is a module over the polynomial ring $\mathbb{F}_2[v]$. Inspired by Sarkar's work, we proved:

Theorem (Juhász, Miller, Z.)

If K is a ribbon knot, then any ribbon disk for K must have at least $\operatorname{Ord}_v(HFK^-(K))$ bands.

Definition

If $K \subseteq S^3$, then the bridge number $\operatorname{br}(K)$ is the smallest number of local maxima in any diagram of K.

Definition

If $K \subseteq S^3$, then the bridge number $\operatorname{br}(K)$ is the smallest number of local maxima in any diagram of K.

Corollary (Miller, Juhász, Z.)

If
$$K \subseteq S^3$$
 then

$$\operatorname{Ord}_v(HFK^-(K)) \le \operatorname{br}(K) - 1.$$

Definition

If $K \subseteq S^3$, then the bridge number $\operatorname{br}(K)$ is the smallest number of local maxima in any diagram of K.

Corollary (Miller, Juhász, Z.)

If $K \subseteq S^3$ then

$$\operatorname{Ord}_v(HFK^-(K)) \le \operatorname{br}(K) - 1.$$

■ There is a fusion disk of $K\#\overline{K}$ with br(K) - 1 saddles.

Definition

If $K \subseteq S^3$, then the bridge number $\operatorname{br}(K)$ is the smallest number of local maxima in any diagram of K.

Corollary (Miller, Juhász, Z.)

If $K \subseteq S^3$ then

$$\operatorname{Ord}_v(HFK^-(K)) \le \operatorname{br}(K) - 1.$$

- There is a fusion disk of $K\#\overline{K}$ with br(K) 1 saddles.
- $\operatorname{Ord}_v(K \# \overline{K}) = \operatorname{Ord}_v(K)$, by the connected sum formula, and duality.

■ $\operatorname{br}(T_{p,q}) = \min(p,q)$ if p,q coprime (Schubert 1954).

- $\operatorname{br}(T_{p,q}) = \min(p,q)$ if p,q coprime (Schubert 1954).
- $\operatorname{Ord}_v(HFK^-(K)) = \min(p,q) 1$, so the bound is sharp.

Corollary (Juhász, Miller, Z.)

If J is concordant to $T_{p,q}$, then

$$\operatorname{br}(J) \ge \operatorname{br}(T_{p,q}).$$

Corollary (Juhász, Miller, Z.)

If J is concordant to $T_{p,q}$, then

$$\operatorname{br}(J) \ge \operatorname{br}(T_{p,q}).$$

■ The proof uses the concordance invariant N(K) constructed by Dai-Hom-Stoffregen-Truong.

Corollary (Juhász, Miller, Z.)

If J is concordant to $T_{p,q}$, then

$$\operatorname{br}(J) \ge \operatorname{br}(T_{p,q}).$$

- The proof uses the concordance invariant N(K) constructed by Dai-Hom-Stoffregen-Truong.
- $N(K) \leq \operatorname{Ord}_{v}(K)$, by work of DHST.

Corollary (Juhász, Miller, Z.)

If J is concordant to $T_{p,q}$, then

$$\operatorname{br}(J) \ge \operatorname{br}(T_{p,q}).$$

- The proof uses the concordance invariant N(K) constructed by Dai-Hom-Stoffregen-Truong.
- $N(K) \leq \operatorname{Ord}_v(K)$, by work of DHST.
- $N(T_{p,q}) = \min(p,q) 1$, by work of DHST.

More generally:

Theorem (Juhász, Miller, Z.)

If there is a knot cobordism from K_0 to K_1 with M local maxima, then

$$\operatorname{Ord}_v\{HFK^-(K_0)\} \le \max\{\operatorname{Ord}_v(HFK^-(K_1)), M\} + 2g(S).$$

More generally:

Theorem (Juhász, Miller, Z.)

If there is a knot cobordism from K_0 to K_1 with M local maxima, then

$$\operatorname{Ord}_v\{HFK^-(K_0)\} \le \max\{\operatorname{Ord}_v(HFK^-(K_1)), M\} + 2g(S).$$

Example: if there is a ribbon concordance from K_0 to K_1 with b bands, then

$$\operatorname{Ord}_{v}(HFK^{-}(K_{0})) \leq \operatorname{Ord}_{v}(HFK^{-}(K_{1}))$$

$$\leq \max\{\operatorname{Ord}_{v}(HFK^{-}(K_{0})), b\}.$$

More generally:

Theorem (Juhász, Miller, Z.)

If there is a knot cobordism from K_0 to K_1 with M local maxima, then

$$\operatorname{Ord}_{v}\{HFK^{-}(K_{0})\} \leq \max\{\operatorname{Ord}_{v}(HFK^{-}(K_{1})), M\} + 2g(S).$$

Example: if there is a ribbon concordance from K_0 to K_1 with b bands, then

$$\operatorname{Ord}_{v}(HFK^{-}(K_{0})) \leq \operatorname{Ord}_{v}(HFK^{-}(K_{1}))$$

$$\leq \max\{\operatorname{Ord}_{v}(HFK^{-}(K_{0})), b\}.$$

Compare the effect of taking the connected sum of K_0 and another knot K to increase Ord_v

Adding a tube to the unshaded subregion of a decorated surface induces multiplication by v.

Adding a tube to the unshaded subregion of a decorated surface induces multiplication by v.

Figure: Adding a tube is multiplication by v.

Consider a ribbon disk D for K, with b bands and b+1 maxima.

- Consider a ribbon disk D for K, with b bands and b+1 maxima.
- Write D° for the induced cobordism from K to U with b bands and b maxima.

- Consider a ribbon disk D for K, with b bands and b+1 maxima.
- Write D° for the induced cobordism from K to U with b bands and b maxima.
- $\blacksquare \overline{D}^{\circ} \cup D^{\circ}$ is a concordance from K to itself.

- Consider a ribbon disk D for K, with b bands and b+1 maxima.
- Write D° for the induced cobordism from K to U with b bands and b maxima.
- $\blacksquare \overline{D}^{\circ} \cup D^{\circ}$ is a concordance from K to itself.
- Tube the maxima of D° to the minima of \overline{D}° with b tubes.

- Consider a ribbon disk D for K, with b bands and b+1 maxima.
- Write D° for the induced cobordism from K to U with b bands and b maxima.
- $\blacksquare \overline{D}^{\circ} \cup D^{\circ}$ is a concordance from K to itself.
- Tube the maxima of D° to the minima of \overline{D}° with b tubes.
- Upon inspection, we arrive at a copy of $K \times [0,1]$ with b tubes added.

- Consider a ribbon disk D for K, with b bands and b+1 maxima.
- Write D° for the induced cobordism from K to U with b bands and b maxima.
- $\blacksquare \overline{D}^{\circ} \cup D^{\circ}$ is a concordance from K to itself.
- Tube the maxima of D° to the minima of \overline{D}° with b tubes.
- Upon inspection, we arrive at a copy of $K \times [0,1]$ with b tubes added.
- So

$$v^b \cdot F_{\overline{D}^{\circ} \cup D^{\circ}} = v^b \cdot F_{K \times [0,1]}.$$

- Consider a ribbon disk D for K, with b bands and b+1 maxima.
- Write D° for the induced cobordism from K to U with b bands and b maxima.
- $\blacksquare \overline{D}^{\circ} \cup D^{\circ}$ is a concordance from K to itself.
- Tube the maxima of D° to the minima of \overline{D}° with b tubes.
- Upon inspection, we arrive at a copy of $K \times [0, 1]$ with b tubes added.
- So

$$v^b \cdot F_{\overline{D}^\circ \cup D^\circ} = v^b \cdot F_{K \times [0,1]}.$$

■ Noting that $F_{\overline{D}^{\circ} \circ D^{\circ}}$ annihilates $Tor_v(HFK_v^-(K))$, the proof is complete.

Conjecture (Gordon 1981)

If $K_0 \le K_1$ and $K_1 \le K_0$, then $K_0 = K_1$.

Conjecture (Gordon 1981)

If $K_0 \le K_1$ and $K_1 \le K_0$, then $K_0 = K_1$.

Theorem (Z., Levine-Z.)

If
$$K_0 \leq K_1$$
 and $K_1 \leq K_0$, then

$$\widehat{\mathit{HFK}}(K_0)\cong\widehat{\mathit{HFK}}(K_1)$$
 and $\mathit{Kh}(K_0)\cong\mathit{Kh}(K_1),$

as bigraded groups.

■ To look for counterexamples to Gordon's conjecture, one could look for knots which have isomorphic \widehat{HFK} and Kh.

- To look for counterexamples to Gordon's conjecture, one could look for knots which have isomorphic \widehat{HFK} and Kh.
- The Kanenobu knots are such a family (see Hedden-Watson).

- To look for counterexamples to Gordon's conjecture, one could look for knots which have isomorphic \widehat{HFK} and Kh.
- The Kanenobu knots are such a family (see Hedden-Watson).
- There are additional families of generalized Kanenobu knots (see Lobb).