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Ribbon concordances

A concordance between K0 and K1 is a smoothly embedded
annulus A ⊆ [0, 1]× S3 such that

∂A = −({0} ×K0) ∪ ({1} ×K1).

Definition

A ribbon concordance from K0 to K1 is a concordance which
has only index 0 and 1 critical points.

Ribbon concordance is not symmetric.

Gordon’s notation: K0 ≤ K1.
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Figure: A ribbon concordance.



Gordon’s work

Theorem (Gordon 1981)

If C is a ribbon concordance, then π1(K0)→ π1(C) is an
injection, and π1(K1)→ π1(C) is a surjection.

π1(K1) � π1(C): the complement of C is obtained by
attaching 2-handles and 3-handles.

π1(K0) ↪→ π1(C): uses much harder 3-manifold topology.
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Gordon’s work

Theorem (Gordon 1981)

If K0 ≤ K1, then d(K0) ≤ d(K1), where d(K) = deg ∆K(t).

If K0 ≤ K1, d(K0) = d(K1) and K1 transfinitely nilpotent,
then K0 = K1.

Transfinite nilpotence: the lower central series becomes
trivial at some ordinal.

Fibered knots are transfinitely nilpotent, since π1(K)′ is
free.
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Ribbon concordances and fiberedness

Theorem (Silver 1992, Kochloukova 2006)

If K0 ≤ K1 and K1 is fibered, then K0 is fibered.

(Stallings 1965) The commutator subgroup
π1(K)′ ⊆ π1(K) is free iff K is fibered.

(Neuwirth 1964) If G is a knot group and G′ is finitely
generated, then G′ is free.

(Rapaport’s conjecture 1975) If G is knot-like (G/G′ ∼= Z
and G has deficiency 1) then G′ finitely generated implies
G′ free.
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Ribbon concordances and fiberedness

Silvers argument, assuming Rapaport’s conjecture:

Suppose C is a ribbon concordance from K0 to K1. Write
G, G0 and G1 for the groups.

G is knot-like.

G0 ↪→ G and G1 � G, by Gordon. Clearly, G′0 ↪→ G′ and
G′1 � G′.

If G′1 is finitely generated, then G′ is. Assuming
Rapaport’s conjecture, G′ is free. Hence, so is G′0.

Hence K0 is fibered.

Kochloukova proved Rapaport’s conjecture in 2006.
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Knot Floer homology (Ozsváth and Szabó, Rasmussen)

If K ⊆ S3, there is a bigraded group

ĤFK (K) =
⊕
i,j∈Z

ĤFK i(K, j).

Categorifies the Alexander polynomial.

Detects the Seifert genus:

g3(K) = max{j : ĤFK (K, j) 6= {0}}.
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ĤFK (K) =
⊕
i,j∈Z
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Knot Floer homology

Another version, CFK∞(K), which encodes more
information.

CFK∞(K) is a graded, Z⊕ Z-filtered chain complex over
F2[U,U

−1].

H∗(CFK∞(K)) ∼= HF∞(S3) ∼= F2[U,U
−1].
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Knot Floer homology as a TQFT

Juhász’s decorated link cobordism category

Objects: 3-manifolds containing links with 2 types of
basepoints.

Morphisms: Oriented link cobordisms, decorated with a
dividing set.

(Y1,L1)

(W,F)

(Y2,L2)

Figure: A decorated link cobordism.
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Juhász’s TQFT for ĤFL

To a decorated link cobordism

(W,F) : (Y1,L1)→ (Y2,L2),

Juhász associates a map

FW,F : ĤFL(Y1,L1)→ ĤFL(Y2,L2).



Concordances

To a concordance, there is a natural choice of dividing set
(with minor ambiguity).

Figure: A decorated concordance.

Studied by Juhász and Marengon.

They proved the map preserves the Maslov and Alexander
gradings.
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A TQFT for the full knot Floer complex

Theorem (Z. 2017)

If (W,F) : (Y1,L1)→ (Y2,L2) is a decorated link cobordism and
s ∈ Spinc(W ), there is a functorial chain map

F∞W,F ,s : CFL∞(Y1,L1, s|Y1)→ CFL∞(Y2,L2, s|Y2).

For a decorated concordance C, we obtain a bigraded map

FC : CFK∞(K0)→ CFK∞(K1).

Alishahi and Eftekhary independently gave a similar
construction, in terms of a different cobordism category.
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Ribbon concordances and knot Floer homology

Theorem (Z.)

Suppose C is a ribbon concordance from K0 to K1.

Then
FC : ĤFK (K0)→ ĤFK (K1)

is an injection.

The map F∞C admits a left inverse, i.e. a filtered graded
map Π such that

Π ◦ F∞C ' idCFK∞(K0) .
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Proof

Let C : K1 → K0 denote the mirror of C.

We claim
FC ◦ FC = id

ĤFK (K0)
.

Each birth of C has a corresponding death in C. Each
saddle of C has a corresponding saddle in C.

The births and deaths determine 2-spheres in the
complement of [0, 1]×K0.

The saddles and their reverses determine tubes which
connect the 2-spheres to the trivial concordance [0, 1]×K0.

It suffices to show that tubing on 2-spheres does not
change the cobordism maps.
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ĤFK (K0)
.

Each birth of C has a corresponding death in C. Each
saddle of C has a corresponding saddle in C.

The births and deaths determine 2-spheres in the
complement of [0, 1]×K0.

The saddles and their reverses determine tubes which
connect the 2-spheres to the trivial concordance [0, 1]×K0.

It suffices to show that tubing on 2-spheres does not
change the cobordism maps.



Proof

Let C : K1 → K0 denote the mirror of C.

We claim
FC ◦ FC = id
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Proof

Factor through a neighborhood of the spheres.

A neighborhood of each 2-sphere N(S) is D2 × S2.

∂N(S) = S1 × S2.

C ∪ C intersects ∂N(S) in an unknot.

C ∪ C intersects N(S) in a disk D.

ĤFK (S1 × S2,U) has rank 1 in the important grading.

We can replace D with any disk D′ in N(S) such that
∂D′ = ∂D.

Replace D with D′ = S \D to obtain [0, 1]×K0.
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ĤFK (S1 × S2,U) has rank 1 in the important grading.

We can replace D with any disk D′ in N(S) such that
∂D′ = ∂D.

Replace D with D′ = S \D to obtain [0, 1]×K0.



Monotonicity of the Seifert genus

Corollary (Z.)

If there is a ribbon concordance from K0 to K1, then

g3(K0) ≤ g3(K1).



Band sums

Definition

A knot L is a band sum of (unlinked) knots K1, . . . ,Kn if it is
obtained by attaching n− 1 (potentially complicated) bands to
join K1, . . . ,Kn together.

Theorem (Gabai (1987) Scharlemann (1985))

If L is a band sum of K1 and K2, then

g3(L) ≥ g3(K1) + g3(K2).

Gabai’s proof used foliations, and Scharlemann’s was
combinatorial.

Neither proof extends for n > 2.
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Miyazaki’s manipulation

Theorem (Miyazaki 1998)

If L is a band sum of K1, . . . ,Kn, then

K1# · · ·#Kn ≤ L.

Idea: pass a band of L through another strand by
attaching a fission band.

Adds a meridian to the band.

Figure: Changing a crossing of a band with a strand.

This process terminates at K1# · · ·#Kn together with
some unlinked unknots, which can be capped off.
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If L is a band sum of K1, . . . ,Kn, then

K1# · · ·#Kn ≤ L.

Idea: pass a band of L through another strand by
attaching a fission band.

Adds a meridian to the band.

Figure: Changing a crossing of a band with a strand.

This process terminates at K1# · · ·#Kn together with
some unlinked unknots, which can be capped off.



Superadditivity of the Seifert genus

Corollary (Z.)

If L is a band sum of K1, . . . ,Kn then

g3(L) ≥ g3(K1) + · · ·+ g3(Kn).



Strongly homotopy-ribbon concordances

Definition

A strongly homotopy-ribbon concordance is one whose
complement can be built using only 1-handles and 2-handles.

{ribbon concordances} ⊆ {strongly homotopy-ribbon concordances}
⊆ {homotopy-ribbon concordances}
( {concordances}
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Strongly homotopy-ribbon concordances and knot Floer
homology

Theorem (Maggie Miller, Z.)

If C is a strongly homotopy-ribbon concordance from K0 to K1,
then

FC : ĤFK (K0)→ ĤFK (K1)

is an injection.

The proof uses a similar doubling trick, and also relies on
the fact that tubing in a 2-sphere does not change the
cobordism map.



Strongly homotopy-ribbon concordances and knot Floer
homology

Theorem (Maggie Miller, Z.)

If C is a strongly homotopy-ribbon concordance from K0 to K1,
then

FC : ĤFK (K0)→ ĤFK (K1)

is an injection.

The proof uses a similar doubling trick, and also relies on
the fact that tubing in a 2-sphere does not change the
cobordism map.



Khovanov homology and ribbon concordances

Theorem (Levine, Z.)

If C is a ribbon concordance, then the induced map on
Khovanov homology

Kh(C) : Kh(K0)→ Kh(K1)

is an injection.



Khovanov homology and ribbon concordances

The proof follows from the previous description of the doubled
concordance, as well as Bar-Natan’s “dotted cobordism maps”,
and the tube cutting and sphere relations.

= 0 = 1

= +

= 0

Figure: Bar-Natan’s local relations.
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Sarkar’s ribbon distance and Khovanov homology

Sarkar considered the torsion order in Lee’s deformation of
Khovanov homology, KhLee(K), which is a finitely generated
module over R[X] (where R is a field).

Definition

If M is a module over R[X], define OrdX(M) to be the
minimum n such that Xn · Tor(M) = {0}.

Theorem (Sarkar)

If K is a ribbon knot, and 2 6= 0 in R, then any ribbon disk for
K must have at least OrdX(KhLee(K)) bands.
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Sarkar’s ribbon distance and Khovanov homology

Unfortunately OrdX(KhLee(K)) is usually small.

Only one example is known with OrdX(Kh(K)) > 2
(Marengon-Manolescu 2018).

The proof uses a doubling trick, with a new twist.
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Knot Floer homology, torsion, and the bridge index

There is an analogous version of knot Floer homology
HFK−(K), which is a module over the polynomial ring F2[v].

Inspired by Sarkar’s work, we proved:

Theorem (Juhász, Miller, Z.)

If K is a ribbon knot, then any ribbon disk for K must have at
least Ordv(HFK−(K)) bands.
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Knot Floer homology, torsion, and the bridge index

Definition

If K ⊆ S3, then the bridge number br(K) is the smallest
number of local maxima in any diagram of K.

Corollary (Miller, Juhász, Z.)

If K ⊆ S3 then

Ordv(HFK−(K)) ≤ br(K)− 1.

There is a fusion disk of K#K with br(K)− 1 saddles.

Ordv(K#K) = Ordv(K), by the connected sum formula,
and duality.
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Knot Floer homology, torsion, and the bridge index

br(Tp,q) = min(p, q) if p, q coprime (Schubert 1954).

Ordv(HFK−(K)) = min(p, q)− 1, so the bound is sharp.
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Knot Floer homology, torsion, and the bridge index

Corollary (Juhász, Miller, Z.)

If J is concordant to Tp,q, then

br(J) ≥ br(Tp,q).

The proof uses the concordance invariant N(K)
constructed by Dai-Hom-Stoffregen-Truong.

N(K) ≤ Ordv(K), by work of DHST.

N(Tp,q) = min(p, q)− 1, by work of DHST.
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Knot Floer homology, torsion, and the bridge index

More generally:

Theorem (Juhász, Miller, Z.)

If there is a knot cobordism from K0 to K1 with M local
maxima, then

Ordv{HFK−(K0)} ≤ max{Ordv(HFK−(K1)),M}+ 2g(S).

Example: if there is a ribbon concordance from K0 to K1 with b
bands, then

Ordv(HFK−(K0)) ≤ Ordv(HFK−(K1))

≤ max{Ordv(HFK−(K0)), b}.

Compare the effect of taking the connected sum of K0 and
another knot K to increase Ordv
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Outline of the proof of the fusion number bound

Adding a tube to the unshaded subregion of a decorated surface
induces multiplication by v.

Figure: Adding a tube is multiplication by v.
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Outline of the proof of the fusion number bound

Consider a ribbon disk D for K, with b bands and b+ 1
maxima.

Write D◦ for the induced cobordism from K to U with b
bands and b maxima.

D
◦ ∪D◦ is a concordance from K to itself.

Tube the maxima of D◦ to the minima of D
◦

with b tubes.

Upon inspection, we arrive at a copy of K × [0, 1] with b
tubes added.

So
vb · FD

◦∪D◦ = vb · FK×[0,1].

Noting that FD
◦◦D◦ annihilates Torv(HFK−v (K)), the proof

is complete.
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Gordon’s conjecture

Conjecture (Gordon 1981)

If K0 ≤ K1 and K1 ≤ K0, then K0 = K1.

Theorem (Z., Levine-Z.)

If K0 ≤ K1 and K1 ≤ K0, then

ĤFK (K0) ∼= ĤFK (K1) and Kh(K0) ∼= Kh(K1),

as bigraded groups.
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Gordon’s conjecture

To look for counterexamples to Gordon’s conjecture, one
could look for knots which have isomorphic ĤFK and Kh.

The Kanenobu knots are such a family (see
Hedden-Watson).

There are additional families of generalized Kanenobu
knots (see Lobb).
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