

300 TSW

PRO-WAVE® AC/DC CC INVERTER ARC WELDER

Service Manual

Version: AA Issue Date: August 10, 2005 Operating Features: Manual No.: 0-4752

WE APPRECIATE YOUR BUSINESS!

Congratulations on your new Thermal Arc product. We are proud to have you as our customer and will strive to provide you with the best service and reliability in the industry. This product is backed by our extensive warranty and world-wide service network. To locate your nearest distributor or service agency call 1-800-752-7621, or visit us on the web at **www.Thermalarc.com**.

This Operating Manual has been designed to instruct you on the correct use and operation of your Thermal Arc product. Your satisfaction with this product and its safe operation is our ultimate concern. Therefore please take the time to read the entire manual, especially the Safety Precautions. They will help you to avoid potential hazards that may exist when working with this product.

YOU ARE IN GOOD COMPANY!

The Brand of Choice for Contractors and Fabricators Worldwide.

Thermal Arc is a Global Brand of Arc Welding Products for Thermadyne Industries Inc. We manufacture and supply to major welding industry sectors worldwide including; Manufacturing, Construction, Mining, Automotive, Aerospace, Engineering, Rural and DIY/Hobbyist.

We distinguish ourselves from our competition through marketleading, dependable products that have stood the test of time. We pride ourselves on technical innovation, competitive prices, excellent delivery, superior customer service and technical support, together with excellence in sales and marketing expertise.

Above all, we are committed to develop technologically advanced products to achieve a safer working environment within the welding industry.

Read and understand this entire Manual and your employer's safety practices before installing, operating, or servicing the equipment.

While the information contained in this Manual represents the Manufacturer's best judgement, the Manufacturer assumes no liability for its use.

Pro-Wave Inverter Welding Power Supply Instruction Manual Number 430429-511 for: Pro-Wave 300TSW Spec Number 10-3074

Published by: Thermal Dynamics Corporation 82 Benning Street West Lebanon, New Hampshire, USA 03784 (603) 298-5711

www.thermalarc.com

Copyright 2001 by Thermal Dynamics Corporation

All rights reserved.

Reproduction of this work, in whole or in part, without written permission of the publisher is prohibited.

The publisher does not assume and hereby disclaims any liability to any party for any loss or damage caused by any error or omission in this Manual, whether such error results from negligence, accident, or any other cause.

Publication Date: August 10, 2005

Record the following information for Warranty purposes:

Where Purchased:	
Purchase Date:	
Equipment Serial #:	

TABLE OF CONTENTS

SAFI	TY INSTRUCTIONS AND WARNINGS	1-1
	1.01 Arc Welding Hazards	1-1
	1.02 PRINCIPAL SAFETY STANDARDS	1-5
	1.03 PRECAUTIONS DE SECURITE EN SOUDAGE A L'ARC	1-6
	1.04 Dangers relatifs au soudage à l'arc	1-6
	1.05 PRINCIPALES NORMES DE SECURITE	1-10
	1.06 LIMITED WARRANTY	1-11
SECTION 2	2: IODUCTION	2-1
	2.01 Scope of Manual	
	2.02 General Service Philosophy	
	2.03 Service Responsibilities	
	2.04 Symbol Chart	
	2.05 Description	2-3
	2.06 Functional Block Diagrams	
	2.07 Transporting Methods	2-4
	2.08 High Frequency Introduction	2-5
	2.09 High Frequency Interference	2-5
	2.10 Specifications	
	2.11 Electrical Parameters For 300TSW	2-7
	2.12 Duty Cycle	
SECTION : INST	3: ALLATION	3-1
SECTION : INST	3: ALLATION	3-1 3-1
SECTION INST	3: ALLATION 3.01 Environment 3.02 Location	3-1 3-1 3-1
SECTION INST	3: ALLATION 3.01 Environment 3.02 Location 3.03 Electrical Input Connections	3-1 3-1 3-1 3-1
SECTION INST	3: ALLATION 3.01 Environment 3.02 Location 3.03 Electrical Input Connections 3.04 Electrical Input Requirements	3-1 3-1 3-1 3-1 3-1
SECTION INST	3: ALLATION 3.01 Environment 3.02 Location 3.03 Electrical Input Connections 3.04 Electrical Input Requirements 3.05 Input Power	3-1 3-1 3-1 3-1 3-1 3-1 3-3
SECTION INST SECTION	3: ALLATION 3.01 Environment 3.02 Location 3.03 Electrical Input Connections 3.04 Electrical Input Requirements 3.05 Input Power 4: BATOB CONTROLS	3-1 3-1 3-1 3-1 3-1 3-1 3-3 4-1
SECTION INST SECTION OPE	3: ALLATION 3.01 Environment 3.02 Location 3.03 Electrical Input Connections 3.04 Electrical Input Requirements 3.05 Input Power 4: RATOR CONTROLS	3-1 3-1 3-1 3-1 3-1 3-3 3-3
SECTION INST SECTION OPE	3: ALLATION 3.01 Environment 3.02 Location 3.03 Electrical Input Connections 3.04 Electrical Input Requirements 3.05 Input Power 3.05 Input Power 4: RATOR CONTROLS 4.01 Pro-Wave 300TSW Controls 4.02 World Process selection for Pro-Wave 200TSW	3-1 3-1 3-1 3-1 3-1 3-1 3-3 4-1
SECTION INST SECTION OPE	3: ALLATION 3.01 Environment 3.02 Location 3.03 Electrical Input Connections 3.04 Electrical Input Requirements 3.05 Input Power 4: RATOR CONTROLS 4.01 Pro-Wave 300TSW Controls 4.02 Weld Process selection for Pro-Wave 300TSW	3-1 3-1 3-1 3-1 3-1 3-3 3-3 4-1 4-1 4-3
SECTION INST SECTION OPE	3: ALLATION 3.01 Environment 3.02 Location 3.03 Electrical Input Connections 3.04 Electrical Input Requirements 3.05 Input Power 3.05 Input Power 4: RATOR CONTROLS 4.01 Pro-Wave 300TSW Controls 4.02 Weld Process selection for Pro-Wave 300TSW 4.03 Weld Parameter Descriptions for Pro-Wave 300TSW	3-1 3-1 3-1 3-1 3-1 3-3 3-3 4-1 4-1 4-3 4-4
SECTION INST SECTION OPE	3: ALLATION 3.01 Environment 3.02 Location 3.03 Electrical Input Connections 3.04 Electrical Input Requirements 3.05 Input Power 4: RATOR CONTROLS 4.01 Pro-Wave 300TSW Controls 4.02 Weld Process selection for Pro-Wave 300TSW 4.03 Weld Parameter Descriptions for Pro-Wave 300TSW 4.04 Weld Parameters for Pro-Wave 300TSW 4.05 Power Source Features	3-1 3-1 3-1 3-1 3-1 3-3 3-3 4-1 4-1 4-3 4-4 4-4
SECTION INST SECTION OPE	3: ALLATION 3.01 Environment 3.02 Location 3.03 Electrical Input Connections 3.04 Electrical Input Requirements 3.05 Input Power 3.05 Input Power 4: RATOR CONTROLS 4.01 Pro-Wave 300TSW Controls 4.02 Weld Process selection for Pro-Wave 300TSW 4.03 Weld Parameter Descriptions for Pro-Wave 300TSW 4.04 Weld Parameters for Pro-Wave 300TSW 4.05 Power Source Features 4.06 SET-LIP FOR SMAW (STICK) AND GTAW (TIG)	3-1 3-1 3-1 3-1 3-3 3-3 4-1 4-1 4-3 4-4 4-6 4-7
SECTION INST SECTION OPE	3: ALLATION 3.01 Environment 3.02 Location 3.03 Electrical Input Connections 3.04 Electrical Input Requirements 3.05 Input Power 4: RATOR CONTROLS 4.01 Pro-Wave 300TSW Controls 4.02 Weld Process selection for Pro-Wave 300TSW 4.03 Weld Parameter Descriptions for Pro-Wave 300TSW 4.04 Weld Parameters for Pro-Wave 300TSW 4.05 Power Source Features 4.06 SET-UP FOR SMAW (STICK) AND GTAW (TIG) 4.07 Sequence of Operation	3-1 3-1 3-1 3-1 3-1 3-3 4-1 4-1 4-3 4-4 4-4 4-6 4-7 4-9 4-10
SECTION INST	3: ALLATION 3.01 Environment	3-1 3-1 3-1 3-1 3-3 3-3 4-1 4-1 4-3 4-4 4-6 4-6 4-7 4-9 4-10 4-11
SECTION INST	3: ALLATION 3.01 Environment 3.02 Location 3.03 Electrical Input Connections 3.04 Electrical Input Requirements 3.05 Input Power 4: RATOR CONTROLS 4.01 Pro-Wave 300TSW Controls 4.02 Weld Process selection for Pro-Wave 300TSW 4.03 Weld Parameter Descriptions for Pro-Wave 300TSW 4.04 Weld Parameters for Pro-Wave 300TSW 4.05 Power Source Features 4.06 SET-UP FOR SMAW (STICK) AND GTAW (TIG) 4.07 Sequence of Operation A. Stick Welding B. AC or DC HE TIG Welding	3-1 3-1 3-1 3-1 3-1 3-3 4-1 4-1 4-3 4-4 4-6 4-7 4-9 4-10 4-10 4-11 4-11
SECTION INST	3: ALLATION 3.01 Environment 3.02 Location 3.03 Electrical Input Connections 3.04 Electrical Input Requirements 3.05 Input Power 4: RATOR CONTROLS 4.01 Pro-Wave 300TSW Controls 4.02 Weld Process selection for Pro-Wave 300TSW 4.03 Weld Parameter Descriptions for Pro-Wave 300TSW 4.04 Weld Parameters for Pro-Wave 300TSW 4.05 Power Source Features 4.06 SET-UP FOR SMAW (STICK) AND GTAW (TIG) 4.07 Sequence of Operation A. Stick Welding B. AC or DC HF TIG Welding. C. Save-Load Operation	3-1 3-1 3-1 3-1 3-1 3-3 4-1 4-1 4-3 4-4 4-6 4-7 4-9 4-9 4-10 4-11 4-11 4-11 4-11
SECTION INST	3: ALLATION 3.01 Environment 3.02 Location 3.03 Electrical Input Connections 3.04 Electrical Input Requirements 3.05 Input Power 4: RATOR CONTROLS 4.01 Pro-Wave 300TSW Controls 4.02 Weld Process selection for Pro-Wave 300TSW 4.03 Weld Parameter Descriptions for Pro-Wave 300TSW 4.04 Weld Parameters for Pro-Wave 300TSW 4.05 Power Source Features 4.06 SET-UP FOR SMAW (STICK) AND GTAW (TIG) 4.07 Sequence of Operation A. Stick Welding B. AC or DC HF TIG Welding. C. Save-Load Operation D. Slope Mode Sequence	3-1 3-1 3-1 3-1 3-1 3-1 3-3 4-1 4-1 4-3 4-4 4-6 4-7 4-9 4-10 4-10 4-11 4-11 4-11 4-11 4-12

TABLE OF CONTENTS

F. Pulse Controls	4-13
4.08 Voltage Reduction Device (VRD)	4-14
A. VRD Lights Operation	4-14
B. VRD Specification	4-14
C. VRD Maintenance	4-15
D. Switching VRD ON/OFF	4-15
4.09 Welding Parameter Setting (Factory Setting)	4-16
SECTION 5: MAINTENANCE	5-1
5.01 Routine Inspection, Testing & Maintenance	5-1
SECTION 6:	
BASIC TROUBLESHOOTING	6-2
6.01 TIG Welding Problems	6-2
6.02 Stick Welding Problems	6-4
6.03 Power Source Problems	6-6
6.04 Error Code Details	6-8
SECTION 7:	74
ADVANGED TROUBLESHOUTING	/-1
7.01 Test Equipment and Tools	7-1
7.02 Removing the Enclosure	7-1
7.03 Visually Inspect	7-3
7.04 Advanced Power Source Malfunctions	/-4
SECTION 8: PCB DESCRIPTIONS	8-1
8 01 Main PCB (WK-4961)	8-1
8.02 Control Source PCB PCB2 (WK-4983)	8-2
8.03 Power Supply Voltage Reference Points on Control PCB2 (WK-4983)	8-5
8.04 Detection PCB PCB3 (WK-4819)	8-5
8.05 IGBT Driver PCB PCB4(WK-4984)	8-7
8.06 Control PCB PCB5 (Wk-4919)	8-8
8.07 Power Supply Reference Points on PCB5 (WK-4919)	8-9
8.08 Front Controls PCB PCB6 (WK-4971)	8-10
8.09 Filter 430V PCB PCB9 (WK-4917)	8-11
8.10 Start PCB PCB10 (WK-4970)	8-12
8.11 Secondary IGBT Gate Driver PCB PCB11 (WK-4963)	8-13
8.12 Filter PCB PCB14 (WK-5022)	8-14
8.13 3001SW Control PCB 5 (WK -4919) Switch Settings	8-15
8.14 IEST Procedure for Input Kectifier D1	71-8
0.10 Test Procedure for IGBT Q1, Q2,	/ا-ŏ
0.10 TEST FIDUEUUTE TOT TODES 43, 44	0-19 ו-ר ס
8 18 High Frequency Points Gan Adjustment	ו ∠-ט גר_8
o. To tright requeries 1 onite dap Aujustitient.	0 20

8.	19 Replacing Pre Charge circuit components on PCB1 (WK-4961)	8-24
8.	20 Replacing Cooling Fan/Gas Solenoid Driver circuit components	0 05
o	011 PGD2 (WK-4903)	0-20
0.	on PCB11 (WK-4963)	8-26
SECTION 9:		
PARTS LIS	ST	9-1
9.	01 Equipment Identification	9-1
9.	02 How To Use This Parts List	9-1
9.	03 300 TSW Parts List	9-2
APPENDIX 1: G	ENERAL INFORMATION	A-1
APPENDIX 2: P	RO-WAVE 300 TSW PARTS ARRANGEMENT	A-2
APPENDIX 3: PI	RO-WAVE 300 TSW INTERCONNECTION DIAGRAM	A-4

SECTION 1: SAFETY INSTRUCTIONS AND WARNINGS

PROTECT YOURSELF AND OTHERS FROM POSSIBLE SERIOUS INJURY OR DEATH. KEEP CHILDREN AWAY. PACEMAKER WEARERS KEEP AWAY UNTIL CONSULTING YOUR DOCTOR. DO NOT LOSE THESE INSTRUCTIONS. READ OPERATING/INSTRUCTION MANUAL BEFORE INSTALLING, OPERATING OR SERVICING THIS EQUIPMENT.

Welding products and welding processes can cause serious injury or death, or damage to other equipment or property, if the operator does not strictly observe all safety rules and take precautionary actions.

Safe practices have developed from past experience in the use of welding and cutting. These practices must be learned through study and training before using this equipment. Anyone not having extensive training in welding and cutting practices should not attempt to weld. Certain of the practices apply to equipment connected to power lines; other practices apply to engine driven equipment.

Safe practices are outlined in the American National Standard Z49.1 entitled: <u>SAFETY IN WELDING AND CUTTING</u>. This publication and other guides to what you should learn before operating this equipment are listed at the end of these safety precautions. **HAVE ALL INSTALLATION, OPERATION, MAINTENANCE, AND REPAIR WORK PERFORMED ONLY BY QUALIFIED PEOPLE.**

1.01 Arc Welding Hazards

ELECTRIC SHOCK can kill.

Touching live electrical parts can cause fatal shocks or severe burns. The electrode and work circuit is electrically live whenever the output is on. The input power circuit and machine internal circuits are also live when power is on. In semiautomatic or automatic wire welding, the wire, wire reel, drive roll housing, and all metal parts touching the welding wire are electrically live. Incorrectly installed or improperly grounded equipment is a hazard.

- 1. Do not touch live electrical parts.
- 2. Wear dry, hole-free insulating gloves and body protection.

- 3. Insulate yourself from work and ground using dry insulating mats or covers.
- 4. Disconnect input power or stop engine before installing or servicing this equipment. Lock input power disconnect switch open, or remove line fuses so power cannot be turned on accidentally.
- 5. Properly install and ground this equipment according to its Owner's Manual and national, state, and local codes.
- 6. Turn off all equipment when not in use. Disconnect power to equipment if it will be left unattended or out of service.
- 7. Use fully insulated electrode holders. Never dip holder in water to cool it or lay it down on the ground or the work surface. Do not touch holders connected to two welding machines at the same time or touch other people with the holder or electrode.
- 8. Do not use worn, damaged, undersized, or poorly spliced cables.
- 9. Do not wrap cables around your body.
- 10. Ground the workpiece to a good electrical (earth) ground.

- 11. Do not touch electrode while in contact with the work (ground) circuit.
- 12. Use only well-maintained equipment. Repair or replace damaged parts at once.
- 13. In confined spaces or damp locations, do not use a welder with AC output unless it is equipped with a voltage reducer. Use equipment with DC output.
- 14. Wear a safety harness to prevent falling if working above floor level.
- 15. Keep all panels and covers securely in place.

ARC RAYS can burn eyes and skin; NOISE can damage hearing.

Arc rays from the welding process produce intense heat and strong ultraviolet rays that can burn eyes and skin. Noise from some processes can damage hearing.

- 1. Wear a welding helmet fitted with a proper shade of filter (see ANSI Z49.1 listed in Safety Standards) to protect your face and eyes when welding or watching.
- 2. Wear approved safety glasses. Side shields recommended.
- 3. Use protective screens or barriers to protect others from flash and glare; warn others not to watch the arc.

- 4. Wear protective clothing made from durable, flameresistant material (wool and leather) and foot protection.
- 5. Use approved ear plugs or ear muffs if noise level is high.

FUMES AND GASES can be hazardous to your health.

Welding produces fumes and gases. Breathing these fumes and gases can be hazardous to your health.

- 1. Keep your head out of the fumes. Do not breath the fumes.
- 2. If inside, ventilate the area and/or use exhaust at the arc to remove welding fumes and gases.
- 3. If ventilation is poor, use an approved air-supplied respirator.
- 4. Read the Material Safety Data Sheets (MSDSs) and the manufacturer's instruction for metals, consumables, coatings, and cleaners.
- 5. Work in a confined space only if it is well ventilated, or while wearing an air-supplied respirator. Shielding gases used for welding can displace air causing injury or death. Be sure the breathing air is safe.

Eye protection filter shade selector for welding or cutting					
(goggles or helmet), from AWS A6.2-73.					
Welding or cutting	Electrode Size	Filter	Welding or cutting	Electrode Size	Filter
Torch soldering		2	Gas metal-arc		
Torch brazing		3 or 4	Non-ferrous base metal	All	11
Oxygen Cutting			Ferrous base metal	All	12
Light	Under 1 in., 25 mm	3 or 4	Gas tungsten arc welding	All	12
Heavy	1 to 6 in., 25-150 mm	4 or 5	(TIG)	All	12
Medium	Over 6 in., 150 mm	5 or 6	Atomic hydrogen welding	All	12
Gas welding			Carbon arc welding	All	12
Light	Under 1/8 in., 3 mm	4 or 5	Plasma arc welding		
Heavy	1/8 to 1/2 in., 3-12 mm	5 or 6	Carbon arc air gouging		
Medium	Over 1/2 in., 12 mm	6 or 8	Light		12
Shielded metal-arc	Under 5/32 in., 4 mm	10	Heavy		14
	5/32 to 1/4 in.,	12	Plasma arc cutting		
	Over 1/4 in., 6.4 mm	14	Light	Under 300 Amp	9
			Heavy	300 to 400 Amp	12
			Medium	Over 400 Amp	14

- 6. Do not weld in locations near degreasing, cleaning, or spraying operations. The heat and rays of the arc can react with vapors to form highly toxic and irritating gases.
- 7. Do not weld on coated metals, such as galvanized, lead, or cadmium plated steel, unless the coating is removed from the weld area, the area is well ventilated, and if necessary, while wearing an air-supplied respirator. The coatings and any metals containing these elements can give off toxic fumes if welded.

WELDING can cause fire or explosion.

Sparks and spatter fly off from the welding arc. The flying sparks and hot metal, weld spatter, hot workpiece, and hot equipment can cause fires and burns. Accidental contact of electrode or welding wire to metal objects can cause sparks, overheating, or fire.

- 1. Protect yourself and others from flying sparks and hot metal.
- 2. Do not weld where flying sparks can strike flammable material.
- 3. Remove all flammables within 35 ft (10.7 m) of the welding arc. If this is not possible, tightly cover them with approved covers.
- 4. Be alert that welding sparks and hot materials from welding can easily go through small cracks and openings to adjacent areas.
- 5. Watch for fire, and keep a fire extinguisher nearby.
- 6. Be aware that welding on a ceiling, floor, bulkhead, or partition can cause fire on the hidden side.
- 7. Do not weld on closed containers such as tanks or drums.
- 8. Connect work cable to the work as close to the welding area as practical to prevent welding current from traveling long, possibly unknown paths and causing electric shock and fire hazards.
- 9. Do not use welder to thaw frozen pipes.
- 10. Remove stick electrode from holder or cut off welding wire at contact tip when not in use.

FLYING SPARKS AND HOT METAL can cause injury.

Chipping and grinding cause flying metal. As welds cool, they can throw off slag.

- 1. Wear approved face shield or safety goggles. Side shields recommended.
- 2. Wear proper body protection to protect skin.

CYLINDERS can explode if damaged.

Shielding gas cylinders contain gas under high pressure. If damaged, a cylinder can explode. Since gas cylinders are normally part of the welding process, be sure to treat them carefully.

- 1. Protect compressed gas cylinders from excessive heat, mechanical shocks, and arcs.
- 2. Install and secure cylinders in an upright position by chaining them to a stationary support or equipment cylinder rack to prevent falling or tipping.
- 3. Keep cylinders away from any welding or other electrical circuits.
- 4. Never allow a welding electrode to touch any cylinder.
- 5. Use only correct shielding gas cylinders, regulators, hoses, and fittings designed for the specific application; maintain them and associated parts in good condition.
- 6. Turn face away from valve outlet when opening cylinder valve.
- 7. Keep protective cap in place over valve except when cylinder is in use or connected for use.
- 8. Read and follow instructions on compressed gas cylinders, associated equipment, and CGA publication P-1 listed in Safety Standards.

Engines produce harmful exhaust gases.

- 1. Use equipment outside in open, well-ventilated areas.
- 2. If used in a closed area, vent engine exhaust outside and away from any building air intakes.

ENGINE FUEL can cause fire or explosion. Engine fuel is highly flammable.

- 1. Stop engine before checking or adding fuel.
- 2. Do not add fuel while smoking or if unit is near any sparks or open flames.
- 3. Allow engine to cool before fueling. If possible, check and add fuel to cold engine before beginning job.
- 4. Do not overfill tank allow room for fuel to expand.
- 5. Do not spill fuel. If fuel is spilled, clean up before starting engine.

MOVING PARTS can cause injury.

Moving parts, such as fans, rotors, and belts can cut fingers and hands and catch loose clothing.

- 1. Keep all doors, panels, covers, and guards closed and securely in place.
- 2. Stop engine before installing or connecting unit.
- 3. Have only qualified people remove guards or covers for maintenance and troubleshooting as necessary.

- 4. To prevent accidental starting during servicing, disconnect negative (-) battery cable from battery.
- 5. Keep hands, hair, loose clothing, and tools away from moving parts.
- 6. Reinstall panels or guards and close doors when servicing is finished and before starting engine.

SPARKS can cause BATTERY GASES TO EXPLODE; BATTERY ACID can burn eyes and skin.

Batteries contain acid and generate explosive gases.

- 1. Always wear a face shield when working on a battery.
- 2. Stop engine before disconnecting or connecting battery cables.
- 3. Do not allow tools to cause sparks when working on a battery.
- 4. Do not use welder to charge batteries or jump start vehicles.
- 5. Observe correct polarity (+ and –) on batteries.

STEAM AND PRESSURIZED HOT COOLANT can burn face, eyes, and skin.

The coolant in the radiator can be very hot and under pressure.

- 1. Do not remove radiator cap when engine is hot. Allow engine to cool.
- 2. Wear gloves and put a rag over cap area when removing cap.
- 3. Allow pressure to escape before completely removing cap.

This product, when used for welding or cutting, produces fumes or gases which contain chemicals know to the State of California to cause birth defects and, in some cases, cancer. (California Health & Safety code Sec. 25249.5 et seq.)

NOTE

Considerations About Welding And The Effects of Low Frequency Electric and Magnetic Fields

The following is a guotation from the General Conclusions Section of the U.S. Congress, Office of Technology Biological Effects of Power Assessment. Frequency Electric & Magnetic Fields - Background Paper, OTA-BP-E-63 (Washington, DC: U.S. Government Printing Office, May 1989): "...there is now a very large volume of scientific findings based on experiments at the cellular level and from studies with animals and people which clearly establish that low frequency magnetic fields and interact with, and produce changes in, biological systems. While most of this work is of very high quality, the results are complex. Current scientific understanding does not vet allow us to interpret the evidence in a single coherent framework. Even more frustrating, it does not yet allow us to draw definite conclusions about questions of possible risk or to offer clear science-based advice on strategies to minimize or avoid potential risks."

To reduce magnetic fields in the workplace, use the following procedures.

- 1. Keep cables close together by twisting or taping them.
- 2. Arrange cables to one side and away from the operator.
- 3. Do not coil or drape cable around the body.
- 4. Keep welding power source and cables as far away from body as practical.

ABOUT PACEMAKERS:

The above procedures are among those also normally recommended for pacemaker wearers. Consult your doctor for complete information.

1.02 PRINCIPAL SAFETY STANDARDS

<u>Safety in Welding and Cutting</u>, ANSI Standard Z49.1, from American Welding Society, 550 N.W. LeJeune Rd., Miami, FL 33126.

<u>Safety and Health Standards</u>, OSHA 29 CFR 1910, from Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.

Recommended Safe Practices for the Preparation for Welding and Cutting of Containers That Have Held Hazardous Substances, American Welding Society Standard AWS F4.1, from American Welding Society, 550 N.W. LeJeune Rd., Miami, FL 33126.

<u>National Electrical Code</u>, NFPA Standard 70, from National Fire Protection Association, Batterymarch Park, Quincy, MA 02269.

<u>Safe Handling of Compressed Gases in Cylinders</u>, CGA Pamphlet P-1, from Compressed Gas Association, 1235 Jefferson Davis Highway, Suite 501, Arlington, VA 22202.

<u>Code for Safety in Welding and Cutting</u>, CSA Standard W117.2, from Canadian Standards Association, Standards Sales, 178 Rexdale Boulevard, Rexdale, Ontario, Canada M9W 1R3.

Safe Practices for Occupation and Educational Eye and Face Protection, ANSI Standard Z87.1, from American National Standards Institute, 1430 Broadway, New York, NY 10018.

<u>Cutting and Welding Processes</u>, NFPA Standard 51B, from National Fire Protection Association, Batterymarch Park, Quincy, MA 02269.

1.03 PRECAUTIONS DE SECURITE EN SOUDAGE A L'ARC

MISE EN GARDE

LE SOUDAGE A L'ARC EST DANGEREUX

PROTEGEZ-VOUS, AINSI QUE LES AUTRES, CONTRE LES BLESSURES GRAVES POSSIBLES OU LA MORT. NE LAISSEZ PAS LES ENFANTS S'APPROCHER, NI LES PORTEURS DE STIMULATEUR CARDIAQUE (A MOINS QU'ILS N'AIENT CONSULTE UN MEDECIN). CONSERVEZ CES INSTRUCTIONS. LISEZ LE MANUEL D'OPERATION OU LES INSTRUC-TIONS AVANT D'INSTALLER, UTILISER OU ENTRETENIR CET EQUIPEMENT.

Les produits et procédés de soudage peuvent sauser des blessures graves ou la mort, de même que des dommages au reste du matériel et à la propriété, si l'utilisateur n'adhère pas strictement à toutes les règles de sécurité et ne prend pas les précautions nécessaires.

En soudage et coupage, des pratiques sécuritaires se sont développées suite à l'expérience passée. Ces pratiques doivent être apprises par étude ou entraînement avant d'utiliser l'equipement. Toute personne n'ayant pas suivi un entraînement intensif en soudage et coupage ne devrait pas tenter de souder. Certaines pratiques concernent les équipements raccordés aux lignes d'alimentation alors que d'autres s'adressent aux groupes électrogènes.

La norme Z49.1 de l'American National Standard, intitulée "SAFETY IN WELDING AND CUTTING" présente les pratiques sécuritaires à suivre. Ce document ainsi que d'autres guides que vous devriez connaître avant d'utiliser cet équipement sont présentés à la fin de ces instructions de sécurité.

SEULES DES PERSONNES QUALIFIEES DOIVENT FAIRE DES TRAVAUX D'INSTALLATION, DE REPARATION, D'ENTRETIEN ET D'ESSAI.

1.04 Dangers relatifs au soudage à l'arc

L'ELECTROCUTION PEUT ETRE MORTELLE.

Une décharge électrique peut tuer ou brûler gravement. L'électrode et le circuit de soudage sont sous tension dès la mise en circuit. Le circuit d'alimentation et les circuits internes de l'équipement sont aussi sous tension dès la mise en marche. En soudage automatique ou semi-automatique avec fil, ce dernier, le rouleau ou la bobine de fil, le logement des galets d'entrainement et toutes les pièces métalliques en contact avec le fil de soudage sont sous tension. Un équipement inadéquatement installé ou inadéquatement mis à la terre est dangereux.

- 1. Ne touchez pas à des pièces sous tension.
- 2. Portez des gants et des vêtements isolants, secs et non troués.
- 3 Isolez-vous de la pièce à souder et de la mise à la terre au moyen de tapis isolants ou autres.
- Déconnectez la prise d'alimentation de l'équipement ou arrêtez le moteur avant de l'installer ou d'en faire l'entretien. Bloquez le commutateur en circuit ouvert ou enlevez les fusibles de l'alimentation afin d'éviter une mise en marche accidentelle.
- 5. Veuillez à installer cet équipement et à le mettre à la terre selon le manuel d'utilisation et les codes nationaux, provinciaux et locaux applicables.
- 6. Arrêtez tout équipement après usage. Coupez l'alimentation de l'équipement s'il est hors d'usage ou inutilisé.
- 7. N'utilisez que des porte-électrodes bien isolés. Ne jamais plonger les porte-électrodes dans l'eau pour les refroidir. Ne jamais les laisser traîner par terre ou sur les pièces à souder. Ne touchez pas aux porteélectrodes raccordés à deux sources de courant en même temps. Ne jamais toucher quelqu'un d'autre avec l'électrode ou le porte-électrode.
- 8. N'utilisez pas de câbles électriques usés, endommagés, mal épissés ou de section trop petite.
- 9. N'enroulez pas de câbles électriques autour de votre corps.

- 10. N'utilisez qu'une bonne prise de masse pour la mise à la terre de la pièce à souder.
- 11. Ne touchez pas à l'électrode lorsqu'en contact avec le circuit de soudage (terre).
- 12. N'utilisez que des équipements en bon état. Réparez ou remplacez aussitôt les pièces endommagées.
- 13. Dans des espaces confinés ou mouillés, n'utilisez pas de source de courant alternatif, à moins qu'il soit muni d'un réducteur de tension. Utilisez plutôt une source de courant continu.
- 14. Portez un harnais de sécurité si vous travaillez en hauteur.
- 15. Fermez solidement tous les panneaux et les capots.

LE RAYONNEMENT DE L'ARC PEUT BRÛLER LES YEUX ET LA PEAU; LE BRUIT PEUT ENDOMMAGER L'OUIE.

L'arc de soudage produit une chaleur et des rayons ultraviolets intenses, susceptibles de brûler les yeux et la peau. Le bruit causé par certains procédés peut endommager l'ouïe.

- Portez une casque de soudeur avec filtre oculaire de nuance appropriée (consultez la norme ANSI Z49 indiquée ci-après) pour vous protéger le visage et les yeux lorsque vous soudez ou que vous observez l'exécution d'une soudure.
- 2. Portez des lunettes de sécurité approuvées. Des écrans latéraux sont recommandés.
- 3. Entourez l'aire de soudage de rideaux ou de cloisons pour protéger les autres des coups d'arc ou de l'éblouissement; avertissez les observateurs de ne pas regarder l'arc.
- 4. Portez des vêtements en matériaux ignifuges et durables (laine et cuir) et des chaussures de sécurité.
- 5. Portez un casque antibruit ou des bouchons d'oreille approuvés lorsque le niveau de bruit est élevé.

LES VAPEURS ET LES FUMEES SONT DANGEREUSES POUR LA SANTE.

Le soudage dégage des vapeurs et des fumées dangereuses à respirer.

	SELECTION DES NUA DES YEUX EN	ANCES DE FIL I COUPAGE E	TRES OCULAIRS POUR LA PRO TSOUDAGE (selon AWS á 8.2-7	OTECTION 73)	
Opération de coupage ou soudage	Dimension d'électrode ou Epiasseur de métal ou Intensité de courant	Nuance de filtre oculaire	Opération de coupage ou soudage	Dimension d'électrode ou Epiasseur de métal ou Intensité de courant	Nuance de filtre oculaire
Brassage tendre au chalumeau	toutes conditions	2	Soudage á l'arc sous gaz avec fil plein (GMAW)		
Brassage fort au chalumeau	toutes conditions	3 ou 4	métaux non-ferreux	toutes conditions	11
Oxycoupage			métaux ferreux	toutes conditions	12
mince	moins de 1 po. (25 mm)	2 ou 3	Soudage á l'arc sous gaz avec électrode de tungstène (GTAW)	toutes conditions	12
moyen	de 1 á 6 po. (25 á 150 mm)	4 ou 5	Soudage á l'hydrogène atomique (AHW)	toutes conditions	12
épais	plus de 6 po. (150 mm)	5 ou 6	Soudage á l'arc avec électrode de carbone (CAW)	toutes conditions	12
Soudage aux gaz			Soudage á l'arc Plasma (PAW)	toutes dimensions	12
mince	moins de 1/8 po. (3 mm)	4 ou 5	Gougeage Air-Arc avec électrode de carbone		
moyen	de 1/8 á 1/2 po. (3 á 12 mm)	5 ou 6	mince		12
épais	plus de 1/2 po. (12 mm)	6 ou 8	épais		14
Soudage á l'arc avec électrode enrobees (SMAW)	moins de 5/32 po. (4 mm)	10	Coupage á l'arc Plasma (PAC)		
	5/32 á 1/4 po. (4 á 6.4 mm)	12	mince	moins de 300 amperès	9
	plus de 1/4 po. (6.4 mm)	14	moyen	de 300 á 400 amperès	12
			épais	plus de 400 amperès	14

- 1. Eloignez la tête des fumées pour éviter de les respirer.
- 2. A l'intérieur, assurez-vous que l'aire de soudage est bien ventilée ou que les fumées et les vapeurs sont aspirées à l'arc.
- 3. Si la ventilation est inadequate, portez un respirateur à adduction d'air approuvé.
- 4. Lisez les fiches signalétiques et les consignes du fabricant relatives aux métaux, aux produits consummables, aux revêtements et aux produits nettoyants.
- Ne travaillez dans un espace confiné que s'il est bien ventilé; sinon, portez un respirateur à adduction d'air. Les gaz protecteurs de soudage peuvent déplacer l'oxygène de l'air et ainsi causer des malaises ou la mort. Assurez-vous que l'air est propre à la respiration.
- 6. Ne soudez pas à proximité d'opérations de dégraissage, de nettoyage ou de pulvérisation. La chaleur et les rayons de l'arc peuvent réagir avec des vapeurs et former des gaz hautement toxiques et irritants.
- 7. Ne soudez des tôles galvanisées ou plaquées au plomb ou au cadmium que si les zones à souder ont été grattées à fond, que si l'espace est bien ventilé; si nécessaire portez un respirateur à adduction d'air. Car ces revêtements et tout métal qui contient ces éléments peuvent dégager des fumées toxiques au moment du soudage.

LE SOUDAGE PEUT CAUSER UN INCENDIE OU UNE EXPLOSION

L'arc produit des étincellies et des projections. Les particules volantes, le métal chaud, les projections de soudure et l'équipement surchauffé peuvent causer un incendie et des brûlures. Le contact accidentel de l'électrode ou du fil-électrode avec un objet métallique peut provoquer des étincelles, un échauffement ou un incendie.

- 1. Protégez-vous, ainsi que les autres, contre les étincelles et du métal chaud.
- 2. Ne soudez pas dans un endroit où des particules volantes ou des projections peuvent atteindre des matériaux inflammables.
- 3. Enlevez toutes matières inflammables dans un rayon de 10, 7 mètres autour de l'arc, ou couvrez-les soigneusement avec des bâches approuvées.
- 4. Méfiez-vous des projections brulantes de soudage susceptibles de pénétrer dans des aires adjacentes par de petites ouvertures ou fissures.
- 5. Méfiez-vous des incendies et gardez un extincteur à portée de la main.
- 6. N'oubliez pas qu'une soudure réalisée sur un plafond, un plancher, une cloison ou une paroi peut enflammer l'autre côté.
- 7. Ne soudez pas un récipient fermé, tel un réservoir ou un baril.
- 8. Connectez le câble de soudage le plus près possible de la zone de soudage pour empêcher le courant de suivre un long parcours inconnu, et prévenir ainsi les risques d'électrocution et d'incendie.
- 9. Ne dégelez pas les tuyaux avec un source de courant.
- 10. Otez l'électrode du porte-électrode ou coupez le fil au tube-contact lorsqu'inutilisé après le soudage.
- 11. Portez des vêtements protecteurs non huileux, tels des gants en cuir, une chemise épaisse, un pantalon revers, des bottines de sécurité et un casque.

LES ETINCELLES ET LES PROJECTIONS BRULANTES PEUVENT CAUSER DES BLESSURES.

Le piquage et le meulage produisent des particules métalliques volantes. En refroidissant, la soudure peut projeter du éclats de laitier.

- 1. Portez un écran facial ou des lunettes protectrices approuvées. Des écrans latéraux sont recommandés.
- 2. Portez des vêtements appropriés pour protéger la peau.

LES BOUTEILLES ENDOMMAGEES PEUVENT EXPLOSER

Les bouteilles contiennent des gaz protecteurs sous haute pression. Des bouteilles endommagées peuvent exploser. Comme les bouteilles font normalement partie du procédé de soudage, traitez-les avec soin.

- 1. Protégez les bouteilles de gaz comprimé contre les sources de chaleur intense, les chocs et les arcs de soudage.
- Enchainez verticalement les bouteilles à un support ou à un cadre fixe pour les empêcher de tomber ou d'être renversées.
- 3. Eloignez les bouteilles de tout circuit électrique ou de tout soudage.
- 4. Empêchez tout contact entre une bouteille et une électrode de soudage.
- N'utilisez que des bouteilles de gaz protecteur, des détendeurs, des boyauxs et des raccords conçus pour chaque application spécifique; ces équipements et les pièces connexes doivent être maintenus en bon état.
- 6. Ne placez pas le visage face à l'ouverture du robinet de la bouteille lors de son ouverture.
- 7. Laissez en place le chapeau de bouteille sauf si en utilisation ou lorsque raccordé pour utilisation.
- 8. Lisez et respectez les consignes relatives aux bouteilles de gaz comprimé et aux équipements connexes, ainsi que la publication P-1 de la CGA, identifiée dans la liste de documents ci-dessous.

LES MOTEURS PEUVENT ETRE DANGEREUX LES GAZ D'ECHAPPEMENT DES MOTEURS PEUVENT ETRE MORTELS.

Les moteurs produisent des gaz d'échappement nocifs.

- 1. Utilisez l'équipement à l'extérieur dans des aires ouvertes et bien ventilées.
- 2. Si vous utilisez ces équipements dans un endroit confiné, les fumées d'échappement doivent être envoyées à l'extérieur, loin des prises d'air du bâtiment.

LE CARBURANT PEUR CAUSER UN INCENDIE OU UNE EXPLOSION.

Le carburant est hautement inflammable.

- 1. Arrêtez le moteur avant de vérifier le niveau e carburant ou de faire le plein.
- 2. Ne faites pas le plein en fumant ou proche d'une source d'étincelles ou d'une flamme nue.
- 3. Si c'est possible, laissez le moteur refroidir avant de faire le plein de carburant ou d'en vérifier le niveau au début du soudage.
- 4. Ne faites pas le plein de carburant à ras bord: prévoyez de l'espace pour son expansion.
- 5. Faites attention de ne pas renverser de carburant. Nettoyez tout carburant renversé avant de faire démarrer le moteur.

DES PIECES EN MOUVEMENT PEUVENT CAUSER DES BLESSURES.

Des pièces en mouvement, tels des ventilateurs, des rotors et des courroies peuvent couper doigts et mains, ou accrocher des vêtements amples.

- 1. Assurez-vous que les portes, les panneaux, les capots et les protecteurs soient bien fermés.
- 2. Avant d'installer ou de connecter un système, arrêtez le moteur.
- 3. Seules des personnes qualifiées doivent démonter des protecteurs ou des capots pour faire l'entretien ou le dépannage nécessaire.

- 4. Pour empêcher un démarrage accidentel pendant l'entretien, débranchez le câble d'accumulateur à la borne négative.
- 5. N'approchez pas les mains ou les cheveux de pièces en mouvement; elles peuvent aussi accrocher des vêtements amples et des outils.
- 6. Réinstallez les capots ou les protecteurs et fermez les portes après des travaux d'entretien et avant de faire démarrer le moteur.

DES ETINCELLES PEUVENT FAIRE EXPLOSER UN ACCUMULATEUR; L'ELECTROLYTE D'UN ACCUMU-LATEUR PEUT BRULER LA PEAU ET LES YEUX.

Les accumulateurs contiennent de l'électrolyte acide et dégagent des vapeurs explosives.

- 1. Portez toujours un écran facial en travaillant sur un accumu-lateur.
- 2. Arrêtez le moteur avant de connecter ou de déconnecter des câbles d'accumulateur.
- 3. N'utilisez que des outils anti-étincelles pour travailler sur un accumulateur.
- 4. N'utilisez pas une source de courant de soudage pour charger un accumulateur ou survolter momentanément un véhicule.
- 5. Utilisez la polarité correcte (+ et –) de l'accumulateur.

LA VAPEUR ET LE LIQUIDE DE REFROIDISSEMENT BRULANT SOUS PRESSION PEUVENT BRULER LA PEAU ET LES YEUX.

Le liquide de refroidissement d'un radiateur peut être brûlant et sous pression.

- 1. N'ôtez pas le bouchon de radiateur tant que le moteur n'est pas refroidi.
- 2. Mettez des gants et posez un torchon sur le bouchon pour l'ôter.
- 3. Laissez la pression s'échapper avant d'ôter complètement le bouchon.

1.05 PRINCIPALES NORMES DE SECURITE

<u>Safety in Welding and Cutting</u>, norme ANSI Z49.1, American Welding Society, 550 N.W. LeJeune Rd., Miami, FL 33128.

Safety and Health Standards, OSHA 29 CFR 1910, Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.

Recommended Safe Practices for the Preparation for Welding and Cutting of Containers That Have Held Hazardous Substances, norme AWS F4.1, American Welding Society, 550 N.W. LeJeune Rd., Miami, FL 33128.

National Electrical Code, norme 70 NFPA, National Fire Protection Association, Batterymarch Park, Quincy, MA 02269.

Safe Handling of Compressed Gases in Cylinders, document P-1, Compressed Gas Association, 1235 Jefferson Davis Highway, Suite 501, Arlington, VA 22202.

<u>Code for Safety in Welding and Cutting</u>, norme CSA W117.2 Association canadienne de normalisation, Standards Sales, 276 Rexdale Boulevard, Rexdale, Ontario, Canada M9W 1R3.

Safe Practices for Occupation and Educational Eye and Face Protection, norme ANSI Z87.1, American National Standards Institute, 1430 Broadway, New York, NY 10018.

<u>Cutting and Welding Processes</u>, norme 51B NFPA, National Fire Protection Association, Batterymarch Park, Quincy, MA 02269.

1.06 LIMITED WARRANTY

LIMITED WARRANTY: Thermal Arc®, Inc., A Thermadyne Company, hereafter, "Thermal Arc" warrants to customers of itsauthorized distributors hereafter "Purchaser" that its products will be free of defects in workmanship or material. Should anyfailure to conform to this warranty appear within the time period applicable to the Thermal Arc products as stated below, Thermal Arc shall, upon notification thereof and substantiation that the product has been stored, installed, operated, and maintained in accordance with Thermal Arc's specifications, instructions, recommendations and recognized standard industry practice, and not subject to misuse, repair, neglect, alteration, or accident, correct such defects by suitable repair or replacement, at Thermal Arc's sole option, of any components or parts of the product determined by Thermal Arc to be defective.

THERMAL ARC MAKES NO OTHER WARRANTY, EXPRESS OR IMPLIED. THIS WARRANTY IS EXCLUSIVE AND IN LIEU OF ALL OTHERS, INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.

LIMITATION OF LIABILITY: THERMAL ARC SHALL NOT UNDER ANY CIRCUMSTANCES BE LIABLE FOR SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, SUCH AS, BUT NOT LIMITED TO, LOST PROFITS AND BUSINESS INTERRUPTION. The remedies of the Purchaser set forth herein are exclusive and the liability of Thermal Arc with respect to any contract, or anything done in connection therewith such as the performance or breach thereof, or from the manufacture, sale, delivery, resale, or use of any goods covered by or furnished by Thermal Arc whether arising out of contract, negligence, strict tort, or under any warranty, or otherwise, shall not, except as expressly provided herein, exceed the price of the goods upon which such liability is based. No employee, agent, or representative of Thermal Arc is authorized to change this warranty in any way or grant any other warranty.

PURCHASER'S RIGHTS UNDER THIS WARRANTY ARE VOID IF REPLACEMENT PARTS OR ACCESSORIES ARE USED WHICH IN THERMAL ARC'S SOLE JUDGEMENT MAY IMPAIR THE SAFETY OR PERFORMANCE OF ANY THERMAL ARC PRODUCT. PURCHASER'S RIGHTS UNDER THIS WARRANTY ARE VOID IF THE PRODUCT IS SOLD TO PURCHASER BY NON-AUTHORIZED PERSONS.

The warranty is effective for the time stated below beginning on the date that the authorized distributor delivers the products to the Purchaser. Notwithstanding the foregoing, in no event shall the warranty period extend more than the time stated plus one year from the date Thermal Arc delivered the product to the authorized distributor.

POWER SUPPLIES	ALL OTHER	LABOR
	POWER SUPPLIES	
MAIN POWER MAGNETICS (STATIC & ROTATING)	3 YEARS	3 YEAR
ORIGINAL MAIN POWER RECTIFIER	3 YEARS	3 YEAR
CONTROL PC BOARD	3 YEARS	3 YEAR
ALL OTHER CIRCUITS AND COMPONENTS INCLUDING BUT		
NOT LIMITED TO: CONTACTORS, RELAYS, SOLENOIDS, PUMPS,	1 YEAR	1 YEAR
POWER SWITCHING SEMI-CONDUCTORS.		
ENGINES: ENGINES ARE NOT WARRANTED BY THERMAL ARC,		
ALTHOUGH MOST ARE WARRANTED BY THE ENGINE		
MANUFACTURER. SEE THE ENGINE MANUFACTURE'S	1 YEAR	1 YEAR
WARRANTY FOR DETAILS.		
CONSOLES, CONTROL EQUIPMENT, HEAT EXCHANGES		
ACCESSORY EQUIPMENT		

NOTE: Dragster 85® excluded from this policy. Refer to Dragster 85 warranty in Dragster 85 Owner's Manual.

Warranty repairs or replacement claims under this limited warranty must be submitted to Thermal Arc by an authorized Thermal Arc repair facility within thirty (30) days of purchaser's notice of any Warranty Claim. No transportation costs of any kind will be paid under this warranty. Transportation charges to send products to an authorized warranty repair facility shall be the responsibility of the Purchaser. All returned goods shall be at the Purchaser's risk and expense. This warranty supersedes all previous Thermal Arc warranties. Thermal Arc® is a Registered Trademark of Thermadyne Industries Inc.

September 27, 2004

SECTION 2: INTRODUCTION

2.01 Scope of Manual

This manual provides service instructions for theThermal Arc® 300TSW Inverter Arc Welder. Information in this edition is particularly applicable to the troubleshooting and repair of the equipment. For information on operating procedures, please refer to the 300TSW Inverter Arc Welder Operating Manual (430429-511).

NOTE

Service of this equipment is restricted to properly trained service technicians familiar with this equipment; unqualified personnel are strictly cautioned against attempting repairs or adjustments not covered in this manual, at the risk of voiding the warranty.

Read both this manual and the Operating Manual thoroughly. A complete understanding of the capabilities and functions of the equipment will assure obtaining the performance for which it was designed.

There are extremely dangerous voltage and power levels present inside this unit. Do not attempt to diagnose or repair unless you have had training in high power electronics measurement and troubleshooting.

2.02 General Service Philosophy

Several key points are essential to properly support the application and operation of this equipment.

A. Application

Confirm that the equipment is capable of handling the application desired. Specifications supplied and described in Subsection 3 of this manual.

B. Modifications

No physical or electrical modifications other than selection of standard options and accessories are to be made to this equipment.

C. Customer/Operator Responsibilities

It is the customer/operator's responsibility to maintain the equipment and peripheral accessories provided by Thermal Dynamics in good operating order in accordance with the procedures outlined in the Operating Manual, and to protect the equipment from accidental or malicious damage.

D. Repair Restrictions

The electronics consists of printed circuit board assemblies which must be carefully handled, and must be replaced as units. No replacement of printed circuit solder-mounted components is allowed except as noted in this manual.

If the Printed Circuit Board is to be returned, the replaced Printed Circuit Board Assemblies must be properly packaged in protective material and returned intact per normal procedures.

2.03 Service Responsibilities

The Service Technician should be familiar with the equipment and its capabilities and should be prepared to recommend arrangements of components which will provide the most efficient layout, utilizing the equipment to its best possible advantage.

Maintenance work should be accomplished in a timely manner. If problems are encountered, or the equipment does not function as specified, contact:

Thermadyne, Inc.

Thermal Arc Technical Service Department

82 Benning Street

West Lebanon, New Hampshire, USA 03784

(603) 298-5711

http://www.thermadyne.com/tai

2.04 Symbol Chart

Note that only some of these symbols will appear on your model.

	On
\bigcirc	Off
4	Dangerous Voltage
\langle	Increase/Decrease
0	Circuit Breaker
2	AC Auxiliary Power
曲	Fuse
Α	Amperage
V	Voltage
Hz	Hertz (cycles/sec)
f	Frequency
	Negative
+	Positive
	Direct Current (DC)
\bigcirc	Protective Earth (Ground)
\square	Line
$D \to$	Line Connection
Ð	Auxiliary Power
115V 15A	Receptacle Rating- Auxiliary Power

$1\sim$	Single Phase
$_{3\sim}$	Three Phase
<u>³~⊠@∎</u> ≖	Three Phase Static Frequency Converter- Transformer-Rectifier
	Remote
X	Duty Cycle
%	Percentage
\bigcirc	Panel/Local
<u>.</u> ,	Shielded Metal Arc Welding (SMAW)
4	Gas Metal Arc Welding (GMAW)
<u> </u>	Gas Tungsten Arc Welding (GTAW)
	Air Carbon Arc Cutting (CAC-A)
Р	Constant Current
E	Constant Voltage Or Constant Potential
<u> </u>	High Temperature
Ļ	Fault Indication
\mathcal{P}	Arc Force
<u> </u>	Touch Start (GTAW)
	Variable Inductance
	Voltage Input

00	Wire Feed Function	
olo	Wire Feed Towards Workpiece With Output Voltage Off.	
ţ,	Welding Gun	
L.	Purging Of Gas	
	Continuous Weld Mode	
	Spot Weld Mode	
t	Spot Time	
tt	Preflow Time	
Tt2	Postflow Time	
Press to initiate wirefeed and welding, release to stop.		
A Step Trigger Operation Press and hold for preflow, release to start arc. Press to stop arc, and hold for preflow.		
. <u>.</u> ≁.t	Burnback Time	
÷Ϋ	Disturbance In Ground System	
IPM	Inches Per Minute	
MPM	Meters Per Minute	

Art # A-04130

2.05 Description

The Thermal Arc[™] Model 300TSW is a single/three-phase AC/DC arc welding power sources with Constant Current (CC) output characteristics. This unit is equipped with a Digital Volt/Amperage Meter, gas control valve, built in Sloper and Pulser, lift arc starter, and high-frequency arc starter for use with Gas Tungsten Arc Welding (GTAW), Gas Tungsten Arc Welding-Pulsed (GTAW-P) Gas Tungsten Arc Welding-Sloped (GTAW-S), and Shielded Metal Arc Welding (SMAW) processes. The source is totally enclosed in an impact resistant, flame resistant and non-conductive plastic case.

Note

Volt-Ampere curves show the maximum Voltage and Amperage output capabilities of the welding power source. Curves of other settings will fall between the curves shown.

2.06 Functional Block Diagrams

Figure 2-2: Functional Block Diagram

2.07 Transporting Methods

These units are equipped with a handle for carrying purposes.

ELECTRIC SHOCK can kill. DO NOT TOUCH live electrical parts. Disconnect input power conductors from de-energized supply line before moving the welding power source.

FALLING EQUIPMENT can cause serious personal injury and equipment damage.

Lift unit with handle on top of case.

Use handcart or similar device of adequate capacity.

If using a fork lift vehicle, place and secure unit on a proper skid before transporting.

2.08 High Frequency Introduction

The importance of correct installation of high frequency welding equipment cannot be overemphasized. Interference due to high frequency initiated or stabilized arc is almost invariably traced to improper installation. The following information is intended as a guide for personnel nstalling high frequency welding machines.

The high frequency section of this machine has an output similar to a radio transmitter. The machine should NOT be used in the vicinity of blasting operations due to the danger of premature firing.

It is also possible that operation close to computer installations may cause computer malfunction.

2.09 High Frequency Interference

Interference may be transmitted by a high frequency initiated or stabilized arc-welding

machine in the following ways:

1. Direct Radiation

Radiation from the machine can occur if the case is metal and is not properly grounded. It can occur through apertures such as open access panels. The shielding of the high frequency unit in the Power Source will prevent direct radiation if the equipment is properly grounded.

2. Transmission via the Supply Lead

Without adequate shielding and filtering, high frequency energy may be fed to the wiring within the installation (mains) by direct coupling. The energy is then transmitted by both radiation and conduction. Adequate shielding and filtering is provided in the Power Source.

3. Radiation from Welding Leads

Radiated interference from welding leads, although pronounced in the vicinity of the leads, diminishes rapidly with distance. Keeping leads as short as possible will minimize this type of interference. Looping and suspending of leads should be avoided where possible.

4. Re-radiation from Unearthed Metallic Objects

A major factor contributing to interference is reradiation from unearthed metallic objects close to the welding leads. Effective grounding of such objects will prevent re-radiation in most cases.

2.10 Specifications

Description (See NOTE)	300TSW
Power Source Part Number	700723
Plant Part Number	N/A
Cooling	Fan Cooled with Intelligent Operation
Welder Type & Welding process	Heavy Duty Inverter; AC/DC GTAW
	(TIG) & MMAW (Stick)
Welding Power Source mass	27kg
Dimensions	H420mm x W210mm x D450mm
Designed to European Standard	IEC 60974-1
Number of Phases	Three Phase
Nominal Supply Voltage	415V ±10%
Nominal Supply Frequency	50/60Hz
Mains Fuse& Circuitto suit factory fitted Lead that will	
achieve the following rated weld current/weld process:	*22A/Phase
GTAW Current & Duty Cycle	300A @ 25%
MMAW Current & Duty Cycle	300A @ 25%
Maximum TIG Current & Duty Cycle	300A @ 25%
Maximum MMAW Current & Duty Cycle	300A @ 25%
GTAW Welding Current @ 100% Duty Cycle	160A
MMAW Welding Current @ 100% Duty Cycle	160A
Effective Input Current for Max Welding Current @	11A/Phase
Maximum Input Current for Max Welding Current	22A/Phase
Maximum Input Current for Short Circuit	22A/Phase
Single Phase Generator Requirement	**16kVA
Flexible Supply Cable Size Factory Fitted	25A Heavy Duty
Thermal Protection	Thermal Sensors
TIG Welding Current Range	10 – 300A (AC)
	5 – 300A (DC)
Stick Welding Current Range	10 – 300A (AC)
	5 – 300A (DC)
Nominal Upen Circuit Voltage (UCV)	62V

2.11 Electrical Parameters For 300TSW

Check Open Circuit condition, at 415V and maximum out	put, to be within the following limits:
Set Weld Mode to Stick	
Output Voltage	62 ± 2V
Input Current	2 ± 1 A
Enable VRD Set Weld Mode to Stick and, check VRD open	ration parameters
VRD green ON light is illuminated	Green VRD light is ON
Output Voltage	18V +10% -15%
When 200 Ohms is connected between	
welding terminals the inverter remains OFF	Green VRD light is ON
With the weld current set to 50A,	
momentarily short circuited	Red VRD light is ON
Inverter turn off time	0.2-0.3 seconds
Set Weld Mode to Lift TIG; check at 415V and 5A output,	to be within the following limits by
shorting pin A & B in the 14 pin socket:	
Output terminal short circuited, Output Current	26 ± 4 A
Set Weld Mode to DC LIFT TIG in STD mode; check Maxi	mum output condition, at 415V and
maximum output, to be within the following limits:	
Output Current	300 ± 10 A
Output Voltage	22V
Input Current	15 ± 4 A
Set Weld Mode to AC Stick, check Maximum output cond	lition, at 415V and maximum output,
to be within the following limits:	
Output Current	300 ± 10 A
Output Voltage	32V
Input Current	22 ± 4 A
Cooling Fan Operation:	

When the Power Source is first switched on there is approximately an 8 second delay before the Cooling Fan begins to operate. After approx 30 seconds the Cooling Fan will reduce to half speed.

2.12 Duty Cycle

The duty cycle of a welding power source is the percentage of a ten (10) minute period that it can be operated at a given output without causing overheating and damage to the unit. If the welding amperes decrease, the duty cycle increases. If the welding amperes are increased beyond the rated output, the duty cycle will decrease.

Exceeding the duty cycle ratings will cause the thermal overload protection circuit to become energized and shut down the output until the unit has cooled to normal operating temperature.

CAUTION

Continually exceeding the duty cycle ratings can cause damage to the welding power source and will void the manufactures warranty.

NOTE

Due to variations that can occur in manufactured products, claimed performance, voltages, ratings, all capacities, measurements, dimensions and weights quoted are approximate only. Achievable capacities and ratings in use and operation will depend upon correct installation, use, applications, maintenance and service.

SECTION 3: INSTALLATION

3.01 Environment

The Pro-Wave 300TSW is designed for use in hazardous environments.

Examples of environments with increased hazardous environments are -

a. In locations in which freedom of movement is restricted, so that the operator is forced to perform the work in a cramped (kneeling, sitting or lying) position with physical contact with conductive parts;

b. In locations which are fully or partially limited by conductive elements, and in which there is a high risk of unavoidable or accidental contact by the operator, or

c. In wet or damp hot locations where humidity or perspiration considerably reduces the skin resistance of the human body and the insulation properties of accessories.

Environments with hazardous environments do not include places where electrically conductive parts in the near vicinity of the operator, which can cause increased hazard, have been insulated.

3.02 Location

Be sure to locate the welder according to the following guidelines:

- · In areas, free from moisture and dust.
- · Ambient temperature between 0 degrees C to 40 degrees C.
- \cdot In areas, free from oil, steam and corrosive gases.
- \cdot In areas, not subjected to abnormal vibration or shock.
- · In areas, not exposed to direct sunlight or rain.
- *Place at a distance of 12" (304.79mm) or* more from walls or similar that could restrict natural airflow for cooling.

Thermal Arc advises that this equipment be electrically connected by a qualified electrician.

3.03 Electrical Input Connections

ELECTRIC SHOCK can kill; SIGNIFICANT DC VOLTAGE is present after removal of nput power.

DO NOT TOUCH live electrical parts.

SHUT DOWN welding power source, disconnect input power employing lockout/tagging procedures. Lockout/ tagging procedures consist of padlocking line disconnect switch in openposition, removing fuses from fuse box, or shutting off and red-tagging circuit breaker or other disconnecting device.

3.04 Electrical Input Requirements

Operate the welding power source from a single or threephase 50/60 Hz, AC power supply. The input voltage must match one of the electrical input voltages shown on the input data label on the unit nameplate. Contact the local electric utility for information about the type of electrical service available, how proper connections should be made, and inspection required.

The line disconnect switch provides a safe and convenient means to completely remove all electrical power from the welding power supply whenever necessary to inspect or service the unit.

NOTE

These units are equipped with a threeconductor with earth power cable that is connected at the welding power source end for single or three-phase electrical input power.

Do not connect an input (WHITE, BLACK or RED) conductor to the ground terminal.

Do not connect the ground (GREEN) conductor to an input line terminal.

Refer to figure 3 and:

- 1. Connect end of ground (GREEN) conductor to a suitable ground. Use a grounding method that complies with all applicable electrical codes.
- 2. Connect ends of line 1 (BLACK) and line 2 (WHITE) and line 3 (RED) input conductors to a deenergized ine disconnect switch.
- 3. Use Table 1 and Table 2 as a guide to select line fuses for the disconnect switch.

NOTE:

For Single-Phase operation, connect the GREEN, BLACK and WHITE input conductors. Insolate the RED Conductor, it is not used for Single-phase operation.

Input Voltage	Fuse Size
208 VAC	100 Amps
230 VAC	90 Amps
460 VAC	25 Amps

Table 3-1: Electrical Input Connections

NOTE:

Fuse size is based on not more than 200 percent of the rated input amperage of the welding power source (Based on Article 630, National Electrical Code).

Figure 3-1 Electrical Input Connections

3.05 Input Power

Each unit incorporates an INRUSH circuit and input voltage sensing circuit. When the MAIN SWITCH is turned on, the inrush circuit provides a pre-charging of the input capacitors. SCR's in the Power Control Assembly (PCA) will turn on after the input capacitors have charged to full operating voltage (after approximately 5 seconds).

NOTE

Note the available input power. Damage to the PCA could occur if 575VAC or higher is applied.

The Following Primary Current Recommendations are required to obtain the maximum welding current and duty cycle from this welding equipment.

	Primary Supply	Minimum Primary		Current & Duty Cycle		
Model	Lead Size	Current Circuit Size			5 5	
		(Vin/Amps)		TIG	STICK	
PRO-WAVE 300TSW	8/4 AWG minimum (Factory Fitted)	3 Phase	208/31		-	
			230/28	300A @ 25%	-	
			460/14		-	
			208/47	-	3001 @ 25%	
			230/43	-	500A @ 25 /0	
	8/3 AWG minimum	1 Phase	208/67	3004 @ 25%	-	
			230/60	000A @ 20 /0	-	
			I FIIASE	208/96	-	
				230/87	-	300A @ 25%

Table 3-2: Primary Current Circuit sizes to achieve maximum current

SECTION 4: OPERATOR CONTROLS

4.01 Pro-Wave 300TSW Controls

Figure 4-1: Pro-Wave 300TSW Power Source

- **1. Control Knob**: This control sets the selected weld parameter, rotating it clockwise increases the parameter and is indicated on the digital meter. Pushing the knob in previews the actual welding voltage while welding.
- 2. Remote Control Socket: The 14 pin Remote Control Socket is used to connect remote current control devices to the welding Power Source. To make connections, align keyway, insert plug, and rotate threaded collar fully clockwise.

Figure 4-2: Front view of 14 Socket Receptacle

Socket Pin	Function
А	Torch Switch Input (24V) to energize weld current. (connect pins A & B to turn on
	welding current)
В	Torch Switch Input (0V) to energize weld current (connect pins A & B to turn on
	welding current)
С	5k ohm (maximum) connection to 5k ohm remote control
D	Zero ohm (minimum) connection to 5k ohm remote control
Е	Wiper arm connection to 5k ohm remote control potentiometer
G	Mains Earth
F,H,I,J,K,L	Not Used
М	OK to move current detect signal for robotics applications
Ν	OK to move current detect signal for robotics applications

Table 4-1: 14 Socket Receptacle Socket Pin Index

- **3. Positive Terminal**: Welding current flows from the Power Source via heavy duty Dinse type terminal. It is essential, however, that the male plug is inserted and turned securely to achieve a sound electrical connection.
- **4. Negative Terminal**: Welding current flows from the Power Source via heavy duty Dinse type terminal. It is essential, however, that the male plug is inserted and turned securely to achieve a sound electrical connection.

CAUTION

Loose welding terminal connections can cause overheating and result in the male plug being fused in the bayonet terminal and/or melting of the housing (case).

- **5. Gas Outlet:** The Gas Outlet is a 5/8 18 UNF female gas fitting.
- 6. ON/OFF Switch: This switch connects the Primary supply voltage to the inverter when in the ON position. This enables the Power Supply.

When the welder is connected to the Primary supply voltage, the internal electrical components maybe at 500V potential with respect to earth.

- 7. Input Cable: The input cable connects the Primary supply voltage to the equipment.
- 8. Gas Inlet: The Gas Inlet is a 5/8 18 UNF female gas fitting.

4.02 Weld Process selection for Pro-Wave 300TSW

	We	ld Mode)	
Weld Process		HF	LIFT	
Selection	STICK	TIG	TIG	Description
STD	Yes	Yes	Yes	2T operation in TIG Modes using remote devices to control contactor & current
SLOPE	No	Yes	Yes	4T operation in TIG Modes with crater fill using a remote contactor device to control sequence.
REPEAT	No	Yes	Yes	4T operation in TIG Modes with repeat operation and crater fill using a remote contactor device.
SPOT	No	Yes	No	2T operation spot welding in HF TIG using a remote contactor device.
∏∏ PULSE ON/OFF	No	Yes	Yes	Pulse operation in TIG Modes
AC/DC	Yes	Yes	Yes	Selects AC or DC weld current

Table 4-2: Weld selection versus weld mode for Pro-Wave 300TSW

4.03 Weld Parameter Descriptions for Pro-Wave 300TSW

Art # A-05529 Figure 4-3: Pro-Wave 300TSW Front Panel

Parameter	Description			
K	This parameter operates in TIG modes only and is used to get gas to the			
4/ti	weld zone prior to striking the arc, once the torch trigger switch has been			
14	pressed. This control is used to dramatically reduce weld porosity at the			
PRE-FLOW	start of a weld.			
	This parameter operates in all weld modes except Lift TIG mode and is			
	used to heat up the weld zone in TIG modes or improve the start			
	characteristics for stick electrodes. e.g. low hydrogen electrodes. It sets			
	the peak start current on top of the <i>BASE (WELD)</i> current. e.g. <i>HOT</i>			
	START current = 130 amps when BASE (WELD) = 100 amps & HOT			
HOT START	START = 30 amps			
INITIAL CUR.	This parameter operates in <i>SLOPE</i> or <i>REPEAT</i> (4T) TIG modes only and is used to set the start current for TIG. The Start Current remains on until the torch trigger switch is released after it has been depressed.			
UP SLOPE	This parameter operates in TIG modes only and is used to set the time for the weld current to ramp up, after the torch trigger switch has been pressed then released, from INITIAL CUR to PEAK or BASE current.			
PEAK CUR.	This parameter sets the PEAK weld current when in PULSE mode			
	This parameter sets the TIG WELD current in <i>STD</i> , <i>SLOPE</i> , <i>REPEAT</i> and			
	SPOT modes when PULSE is off. This parameter also sets the STICK weld			
WELD	current.			
	Table 4-3: Weld Paramerter Descriptions			

Parameter	Description				
BASE	This parameter sets the Background current when in Pulse TIG mode.				
(Background					
Current)					
SPUT TIME	This parameter sets the duration of the SPOT TIME in HF TIG mode only				
PULSE WIDTH	This parameter sets the percentage on time of the <i>PULSE FREQUENCY</i> for PEAK weld current when the <i>PULSE</i> is on.				
PULSE FREQ.	This parameter sets the <i>PULSE FREQUENCY</i> when the <i>PULSE</i> is on.				
AC FREQUENCY	This parameter operates in AC mode only and is used to set the frequency for				
	the AC weld current.				
WAVE BALANCE	This parameter is used for aluminum AC TIG mode and is used to set the				
	penetration to cleaning action for the AC weld current. Generally WAVE				
	BALANCE is set to 50% for AC STICK welding. The WAVE BALANCE control				
	changes the ratio of penetration to cleaning action of the AC TIG welding arc.				
	Maximum weld penetration is achieved when the WAVE BALANCE control is set				
	to 10%. Maximum cleaning of heavily oxidised aluminium or magnesium				
	alloys is achieved when the <i>WAVE BALANCE</i> control is set to 65%.				
	WAVE BALANCE=50% WAVE BALANCE=10% WAVE BALANCE=65%				
	$ \begin{bmatrix} 337 \\ (+) \end{bmatrix} = \begin{bmatrix} 107 \\ (+) \end{bmatrix} $				
	Balanced with 50% penetration Maxim um Penetration and Maximum Cleaning and and 50% cleaning reduced cleaning reduced dependent ation				
DOWN SLOPE	This parameter operates in TIG modes only and is used to set the time for the				
	weig current to ramp down, after the torch trigger switch has been pressed, to				
	completion of a weld				
CRATER CUR	This parameter operates in SI OPE or REPEAT (ΛT) TIG modes only and is				
UNATEN UUN.	used to set the finish current for TIG. The CRATER Current remains on until the				
	torch trigger switch is released after it has been depressed.				
POST-FLOW	This parameter operates in TIG modes only and is used to adjust the post gas				
κ	flow time once the arc has extinguished. This control is used to dramatically				
<i>y</i> 12	reduce oxidation of the tungsten electrode.				
	The SAVE/LOAD buttons are used to save and retrieve a total number of 5				
SAVE LOAD	programs into the 300TSW memory.				

4.04 Weld Parameters for Pro-Wave 300TSW

				We	eld Mod	e
Weld	Parameter	Factory	Incremental		HF	LIFT
Parameter	Range	Setting	Unit	STICK	TIG	TIG
PRE-FLOW	0.0 to 1.0 sec	0.1 sec	0.1 sec	No	Yes	Yes
HOT START	0 to 70A	20A	1A	Yes	Yes	No
INITIAL CUR.	5 to 300A	30A	1A	No	Yes	Yes
UP SLOPE	0 to 15 sec	1 sec	0.1 sec	No	Yes	Yes
PEAK CUR.	5 to 300A	120A	1A	No	Yes	Yes
WELD CUR						
(TIG)	5 to 300A	80A	1A	No	Yes	Yes
WELD CUR (STICK)	5 to 300A	80A	1A	Yes	No	No
SPOT TIME	0.5 to 5.0 sec	2 sec	0.1 sec	No	Yes	Yes
PULSE WIDTH	15 to 80%	50%	1%	No	Yes	Yes
PULSE FREQ.	0.5 to 500Hz	100.0Hz	See	No	Yes	Yes
			Table 6			
AC FREQUENCY	15 to 150Hz	50Hz	1Hz	Yes	Yes	Yes
WAVE BALANCE	10 to 65%	50%	1%	Yes	Yes	Yes
DOWN SLOPE	0 to 25 sec	3 sec	0.1 sec	No	Yes	Yes
CRATER CUR.	5 to 300A	30A	1A	No	Yes	Yes
POST-FLOW	0.0 to 60 sec	10 sec	0.1 sec	No	Yes	Yes

Table 4-4: Weld Parameters for Pro-Wave 300TSW

<i>PULSE FREQ.</i> Range	Incremental Unit
0.5 to 20Hz	0.1Hz
20 to 100Hz	1Hz
100 to 500Hz	5Hz

Table 4-5: PULSE FREQ. Range and Incremental Units
4.05 Power Source Features

Feature	Description					
New Digital Control	 Almost all welding parameters are adjustable. 					
Touch Panel Switches	 Touch switches eliminate mechanical damage. 					
Front Control Cover	 Protects front panel controls. 					
Digital Meter	 Displays selected weld parameter value. Displays weld current when welding. Displays weld current for 20 seconds after weld has been completed. A selected weld parameter value can be adjusted at any time even while welding. 					
Intelligent Fan Control	 The intelligent cooling system is designed to reduce dust and foreign material build-up, whilst providing optimum cooling. Fan speed reduces approximately 30 seconds after machine is turned on. Fan speed increases when internal components reaches operating temperature. 					
<i>ON/OFF</i> switch	 Primary voltage Supply ON/OFF switch located on rear panel. 					
Voltage Reduction Device (VRD)	 Reduces the OCV when the power supply is not in use. Eliminates the need for add on voltage reducers and has no effect on arc starting. VRD fully complies to IEC 60974-1 When Stick mode is selected the green VRD light is ON when not welding and red when welding. When in TIG modes VRD is off 					
Control Knob	 For the selected weld parameter, rotating the knob clockwise increases the parameter. Rotating the knob counterclockwise decreases the parameter. A selected weld parameter value can be adjusted at any time even while welding. Pushing the knob in displays actual arc voltage. 					
Self Diagnosis Using Error Codes	 An error code is displayed on the <i>Digital Meter</i> when a problem occurs with Primary supply voltage or internal component problems. Refer to troubleshooting guide. 					

Table 4-6: Power Source Features

Feature	Description
Save/Load function	 A total number of 5 programs can be saved into the 300TSW memory.
	 SAVE the Current Weld Parameters into Memory Press the SAVE button
	 Select a memory location by rotating the control knob, 1 to 5 is displayed on the meter.
	 After selecting the desired memory location (ie 1 to 5), press the right scroll button and the machine will give a beep to confirm the weld parameters from the control panel are saved.
	 <i>LOAD</i> (retrieve) a Program to Control Panel Press the <i>LOAD</i> button.
	 Select a memory location by rotating the control knob, 1 to 5 is displayed on the meter.
	 After selecting the desired memory location (ie 1 to 5), press the right scroll button and the machine will give a beep to confirm the weld parameters are loaded onto the control panel.

4.06 SET-UP FOR SMAW (STICK) AND GTAW (TIG)

Conventional operating procedures apply when using the Welding Power Source, i.e. connect work lead directly to work piece and electrode lead is used to hold electrode. Wide safety margins provided by the coil design ensure that the Welding Power Source will withstand short-term overload without adverse effects. The welding current range values should be used as a guide only. Current delivered to the arc is dependent on the welding arc voltage, and as welding arc voltage varies between different classes of electrodes, welding current at any one setting would vary according to the type of electrode in use. The operator should use the welding current range values as a guide, then finally adjust the current setting to suit the application.

Before connecting the work clamp to the work and inserting the electrode in the electrode holder make sure the Primary power supply is switched off.

CAUTION

Remove any packaging material prior to use. Do not block the air vents at the front or rear or sides of the Welding Power Source.

CAUTION

DO NOT change the Weld Mode or Weld Process Mode until after POST-FLOW time has finished.

Figure 4-4: 300TSW AC/DC Set-up

4.07 Sequence of Operation

Scroll Buttons are used to select the parameters to be set. The LED's show which function is being adjusted on the weld sequence graph. Refer to Symbols Table located in the front of the manual for Symbol descriptions.

Figure 4-5: 300TSW Front Panel

- 1. Pulse function Pressing this button enables the TIG current pulse functions.
- 2. Remote Current function Pressing this buttons enables remote current functions.
- 3. TIG Mode Functions Pressing this button scrolls through the output TIG function modes (Standard, Slope, Slope w/repeat, Spot).
- 4. Digital LED display Welding amperage and parameter values are displayed in this window. Internal warnings such as over temperature, low or high input voltage applied are signaled to the operator by a warning sound and error message on the screen.
- 5. Save/Load Buttons by using the Save & Load buttons the operator can easily save up to 5 welding parameter programs.
- 6. Control knob allows the operator to adjust the output amperage within the entire range of the power source and sets each parameter value.
- 7. Process Button This button selects between STICK, HF TIG and Lift TIG mode.
- 8. Scroll Buttons used to select the parameters to be set. The LED's show which function is being adjusted on the Sequence Graph.
- 9. AC/DC Button Selects between AC or DC welding output.

A. Stick Welding

- \cdot Connect work lead to negative terminal
- \cdot Connect electrode lead to positive terminal
- \cdot Switch machine on
- Set *AC* or *DC* weld current. If *AC* is selected then set *AC FREQ* to 60Hz & *WAVE BALANCE* to 50%.
- \cdot Connect remote control device if required

Use the Scroll Buttons to move to the parameter to be set. The LED will show which function is being adjusted on the weld sequence graph. Use the control knob to adjust each parameter.

- · Set HOT START
- · Set WELD current

Commence welding

B. AC or DC HF TIG Welding

Connect work lead to positive terminal

- \cdot Connect TIG torch to negative terminal
- · Switch machine on
- Set AC or DC weld current. If AC is selected then set AC FREQ & WAVE BALANCE
- Connect a remote control device. A remote control device is required for use during LIFT TIG and HF TIG operation. See section 4.01, section 2 "*Remote Control Socket*", for complete details of the remote device.

Use the Scroll Buttons to move to the parameter to be set. The LED will show which function is being adjusted on the weld sequence graph. Use the control knob to adjust each parameter.

- · Set PRE-FLOW time
- · Set HOT START current
- · Set POST-FLOW time
- · Set WELD current
- · Set POST-FLOW time

Slope Mode Parameters if required

- · Set INTIAL CUR current
- · Set UP SLOPE time
- · Set (WELD) PEAK CUR current
- · Set BASE current
- · Set DOWN SLOPE time
- · Set CRATER CUR current

Pulse Mode parameters if required

· Set PULSE WIDTH % for PEAK CURRENT

- · Set PEAK CURRENT
- · Set PULSE FREQ

Commence welding

C. Save-Load Operation

A total number of 5 programs can be saved into the 300TSW memory

SAVE the Current Weld Parameters into Memory

- · Press the SAVE button
- Select a memory location by rotating the control knob, 1 to 5 is displayed on the meter
- After selecting the desired memory location (ie 1 to 5), press the right scroll button and the machine will give a beep to confirm the weld parameters from the control panel are saved.

LOAD (retrieve) a Program to Control Panel

· Press the LOAD button

 Select a memory location by rotating the control knob, 1 to 5 is displayed on the meter After selecting the desired memory location (ie 1 to 5), press the right scroll button and the machine give a beep to confirm the weld parameters are loaded onto the control panel

D. Slope Mode Sequence

Figure 4-6: Slope Mode Sequence

NOTE

Slope function operates with a Remote ON/OFF device only.

- 1) To start Slope sequence Close remote switch contacts. Once the welding arc is established the Power Source will maintain initial current setting as long as the remote switch contacts areclosed.
 - a) In the HF TIG mode, after Preflow time High Frequency is present at the torch. When the torch is positioned close to the work the welding current will transfer to the work and establish the arc at the initial current setting.
 - b) In the Lift TIG mode, after preflow time Lift Start current is present at the torch. When the electrode is touched to the work and lifted off, the welding arc is established at the initial current setting.
- 2) Open Remote Switch current increases to weld current. Once welding arc has reached weld current the power source will maintain weld current as long as the remote switch contacts areopen.
- 3) Close Remote Switch Welding current decreases to final current setting. Once final weldingcurrent is reached the power source will maintain final current setting as long as the remote switch contacts are closed.
- 4) Open Remote Switch Welding arc stops and post flow begins.

E. Slope Mode with repeat sequence

The repeat function is operated during the down slope cycle of the Slope Sequence and is active through the down slope period by opening the Remote Switch contacts the current will increase back to weld current. Within the Down Slope period the repeat function can be operated as many times as desired. To continue slope cycle and end slope sequence close remote switch contacts and allow weld current to reach final current setting. Once final current setting is reached opening the Remote Switch again will turn off the welding arc and post flow begins.

F. Pulse Controls

Figure 4-7: Pulse Controls

The Pulse controls are used primarily to control heat input. Pulse offers a number of advantages as follows:

- 1) Control puddle size and fluidity (especially out of position).
- 2) Increase penetration
- 3) Travel speed control
- 4) Better consistent quality
- 5) Distortion on lighter or thinner materials.

Pulse-current provides a system in which the welding current continuously changes between two levels. During the periods of Peak current, heating and fusion takes place, and during the background (base) current periods, cooling and solidification take place. Pulse Width is the time in one cycle the current stays at the peak current setting. Pulse Frequency measured in Hertz is the number of cycles per second the current travels between peak and background current settings. It is as if the foot rheostat were moved up and down to increase and decrease the welding current on a regular basis. The faster you moved the foot rheostat up and down the faster the frequency.

4.08 Voltage Reduction Device (VRD)

WELDING IN HAZARDOUS ENVIRONMENTS

Before welding in hazardous environments the VOLTAGE REDUCTION DEVICE (VRD) MUST BE TURNED ON. For example confined spaces, wet areas and hot humid conditions are classed as hazardous environments.

Thermal Arc recommends that an AccreditedThermal Arc Service Provider TURNS ON the VOLTAGE REDUCTION DEVICE (VRD) as they have the knowledge and equipment to preform this operation

Workplace safety legislation imposes substantial duties on employers to provide a safe workplace and equipment for its employees. If an employer fails to do so criminal prosecution of the company and its senior officers and employees may result with substantial penalties including fines and in certain cases jail sentences. It is therefore essential employers acquire safe equipment and ensure its employees are properly trained in its use.

A. VRD Lights Operation

- VRD fully complies to IEC 90674-1
- With VRD TURNED ON and Stick mode selected, the green VRD light is ON when not welding
- With VRD TURNED ON and Stick mode selected, the red VRD light is ON when welding
- With VRD TURNED OFF and Stick mode selected, the red VRD light is ON when not welding and welding

B. VRD Specification

With the VRD TURNED ON, this equipment meets the following specifications

Description	Notes	
VRD Open	15.3 to	Open circuit voltage
Circuit Voltage	19.8V	between welding
		terminals
VRD	148 to 193	The required
Resistance	ohms	resistance between
		welding terminals to
		turn ON the welding
		power
VRD Turn OFF	0.2 to 0.3	The time taken to turn
Time	seconds	OFF the welding
		power once the
		welding current has
		stopped

Table 4-8: VRD Specifications

C. VRD Maintenance

Refer to section 9 Routine Inspection, Testing & Maintenance.

D. Switching VRD ON/OFF

- 1. Remove the controls clear cover
- · Lift up the cover so it rests on the top of the unit.
- Place a small flat bladed screw driver between the cover hinge and the front panel.
- · Gently lift the cover hinge out of the front cover mounting hole
- · Remove the controls clear cover

Art # A-05561 Figure 4-9: Controls Clear Cover

- 2. Remove the controls mounting screws
- · Remove the four controls mounting screws.

Art # A-05562 Figure 4-10: Control Panel Mounting Screws

- 3. Access the VRD Control
- · Gently pry back the front panel controls to access the VRD ON/OFF switch.

Art # A-05563

Figure 4-11: VRD Control

CAUTION

DO NOT pull back the front panel with excessive force as this will unplug the control PCB. Pulgging the control PCB back into the front panel controls can only be achieved by removing the side covers.

- 4. Turning the VRD ON/OFF
 - To turn VRD ON; rotate the trim potentiometer on the display PCB fully clockwise. When VRD is turned ON check that it operates as per VRD specification.
 - To turn VRD OFF; rotate the trim potentiometer on the display PCB fully counter-clockwise.

Art # A-05564

Figure 4-12: Turning the VRD ON/OFF

The VRD ON/OFF trim potentiometer MUST ONLY be positioned fully clockwise OR fully counter-clockwise as the VRD function will be unknown for every other position.

4.09 Welding Parameter Setting (Factory Setting)

CAUTION

When replacing PCB5 (WK-4919) the Welding Parameter Factory Setting must be set.

Figure 4-13: Front panel

- 1. Turn on the power source
- 2. After more than 8 sec, set weld mode to (DC) STICK mode If from the beginning, the display was in (DC) STICK mode, then push HF TIG and LIFT TIG button until it rotates back (1cycle) to the (DC) STICK mode display.
- 3. Set BASE current to 27A.
- 4. Push encoder button again until the LED welding parameter rotates to the BASE current setting.
- 5. Set BASE current to 46A.
- 6. To record the time changes press and hold the encoder button for more than 5 seconds or until the buzzer sounds three beeps.
- 7. Turn off the power source

SECTION 5: MAINTENANCE

5.01 Routine Inspection, Testing & Maintenance

There are extremely dangerous voltages and power levels present inside this product. Do not attempt to open or repair unless you are an Accredited Thermal Arc Service Provider. Disconnect the Welding Power Source from the Mains Supply Voltage before disassembling.

An inspection of the power source, an insulation resistance test and an earthing resistance test

shall be carried out in accordance with clause 4.1 of **AS** 1647.2

a) For transportable equipment, at least once every 3 months; and

b) For fixed equipment, at least once every 12 months The owners of the equipment shall keep a suitable record of the periodic tests.

NOTE

A transportable power source is any equipment that is not permanently connected and fixed in the position in which it is operated.

In addition to the above tests and specifically in relation to the VRD fitted to this machine, the following periodic tests should also be conducted by an accredited Thermal Arc service provider. If this equipment is used in a hazardous location or environments with a high risk of electrocution then the above tests should be carried out prior to entering this location.

Welding equipment should be regularly checked by a qualified electrical tradesperson to ensure that:

- The main earth wire of the electrical installation is intact.
- Power point for the Welding Power Source is effectively earthed and of adequate current rating.
- Plugs and cord extension sockets are correctly wired.
- Flexible cord is of the multi-core tough rubber or plastic sheathed type of adequate rating, correctly connected and in good condition.
- · Welding terminals are shrouded to prevent inadvertent contact or short circuit.
- The frame of the Welding Power Source is effectively earthed.
- · Welding leads and electrode holder are in good condition.
- The Welding Power Source is clean internally, especially from metal filing, slag, and loose material. If any parts are damaged for any reason, replacement is recommended.
- The Cooling Fan should be replaced at approximately 12 months. This would depend upon the environment used and the hours of use.

SECTION 6: BASIC TROUBLESHOOTING

There are extremely dangerous voltages and power levels present inside this product. Do not attempt to open or repair unless you are an Accredited Thermal Arc Service Provider and you have had training in power measurements and troubleshooting techniques.

If major complex subassemblies are faulty, then the Welding Power Source must be returned to an Accredited Thermal Arc Service Provider for repair.

The basic level of troubleshooting is that which can be performed without special equipment or knowledge.

6.01 TIG Welding Problems

	Description	Possible Cause	Remedy
1	Excessive beard build-up or poor penetration or poor fusion at edges of weld.	Welding current is too low.	Increase weld current and/or faulty joint preparation.
2	Weld bead too wide and flat or undercut at edges of weld or excessive burn through.	Welding current is too high.	Decrease weld current.
3	Weld bead too small or insufficient penetration or ripples in bead are widely spaced apart.	Travel speed too fast.	Reduce travel speed.
4	Weld bead too wide or excessive bead build up or excessive penetra- tion in butt joint.	Travel speed too slow.	Increase travel speed.
5	Uneven leg length in fillet joint.	Wrong placement of filler rod.	Re-position filler rod.

	Description	Possible Cause		Remedy	
6	Electrode melts when arc is struck.	 A. Electrode is connected to the '+' terminal. B. <i>Wave Balance</i> is greater than 50%. 	А. В.	Connect the electrode to the '-' terminal. Reduced Wave Balance to below 50% or increase the electrode size.	
7.	Dirty weld pool.	 A. Electrode contaminated through contact with work piece or filler rod material. B. Gas contaminated by air. 	А. В.	Clean the electrode by grinding off the contaminates. Check gas lines for cuts and loose fitting or change gas cylinder.	
8.	Electrode melts or oxidizes when an arc is struck.	 A. No gas flowing to welding region. B. Torch is clogged with dust. C. Gas hose is cut. D. Gas passage contains impurities. E. Gas regulator turned off. F. Torch valve is turned off. G. The electrode is too small for the welding current. H. <i>Wave Balance</i> is set above 50%. 	A. B. C. D. F. G. H.	Check the gas lines for kinks or breaks and gas cylinder contents. Clean torch. Replace gas hose. Disconnect gas hose from torch then raise gas pressure and blow out impurities. Turn on. Turn on. Increase electrode diameter or reduce the welding current. Reduced Wave Balance to below 50% or increase the electrode size.	
9.	Poor weld finish	Inadequate shielding gas.		Increase gas flow or check gas line for gas flow problems.	
10.	Arc flutters during TIG welding.	 A. Tungsten electrode is too large for the welding current. B. Absence of oxides in the weld pool. 	А. В.	Select the right size electrode. Refer to Basic TIG Welding Guide for ways to reduce arc flutter. Refer to Basic TIG Welding Guide for ways to reduce arc flutter.	
11.	Welding arc can not be established.	 A Work Clamp is not connected to the work piece or the work/torch leads are not connected to the right terminals. B. Torch lead is disconnected. 	А. В.	Connect the work clamp to the work piece or connect the work/torch leads to the right welding terminals. Connect it to the '-' terminal.	

	Description		Possible Cause		Remedy
	Welding arc can not be established. (cont)	C.	Gas flow incorrectly set, cylinder empty or the torch valve is off.	C.	Select the right flow rate, change cylinders or turn torch valve on.
12.	Arc start is not smooth.	A.	Tungsten electrode is too large for the welding current.	A.	Select the right sized electrode. Refer to the Basic TIG Welding Guide.
		B.	The wrong electrode is being used for the welding job.	B.	Select the right electrode type. Refer to Basic TIG Welding Guide.
		C.	Gas flow rate is too high.	C.	Select the correct rate for the welding job. Refer to Basic TIG Welding Guide.
		D.	Incorrect shielding gas is being used.	D.	Select the right shielding gas. Refer to Basic TIG Welding Guide.
		E.	Poor work camp connection to work piece.	E.	Improve connection to work piece.

6.02 Stick Welding Problems

	Description		Possible Cause		Remedy
1.	Gas pockets or	Α.	Electrodes are damp.	Α.	Dry electrodes before use.
	voids in weld metal	В.	Welding current is too high.	B.	Reduce welding current.
	(Porosity).	C.	Surface impurities such as	C.	Clean joint before welding.
			oil, grease, paint, etc.		
2	Crack occurring in	A.	Rigidity of joint.	Α.	Redesign to relieve weld joint of
	weld metal soon				severe stresses or use crack
	after solidification				resistance electrodes.
	commences.	Β.	Insufficient throat thickness.	Β.	Travel Slightly slower to allow
					greater build up in throat.
		C.	Cooling rate is too high.	C.	Preheat plate and cool slowly.
3	A gap is left by	A.	Welding current is too high.	Α.	Increase welding current
	failure of the weld	Β.	Electrode too large for joint.	B.	Use smaller diameter electrode.
	metal to fill the root	C.	Insufficient gap.	C.	Allow wider gap.
	of the weld.	D.	Incorrect sequence.	D.	Use correct build-up sequence.

Figure 6-1: Example of insufficient gap or incorrect sequence.

Art # A-05567

	Description	Description Possible Cause			Remedy
2	 Portions of the weld bead do not fuse to 	A. B	Small electrodes used on heavy cold plate. Welding current is too low	A. B	Use larger electrodes and preheat the plate.
		C.	Wrong electrode angle.	C.	Adjust angle so the welding arc is directed more into the base metal.
		D. E.	Travel speed of electrode is too high. Scale of dirt on joint surface.	D. E.	Reduce travel speed of electrode. Clean surface before welding.

Figure 6-2: Example of lack of fusion.

	Description		Possible Cause		Remedy
5.	Non-metallic particles are trapped	Α.	Non-metallic particles may be trapped in undercut from	Α.	If bad undercut is present, clean slag out and cover with a run
	in the weld metal (Slag inclusion).	B.	Joint preparation too restricted.	В.	Allow for adequate penetration and room for cleaning out the slag.
		C.	Irregular deposits allow slag to be trapped.	C.	If very bad, chip or grind out irregularities.
		D.	Lack of penetration with slag trapped beneath weld bead.	D.	Use smaller electrode with sufficient current to give adequate penetration. Use suitable tools to remove all slag from corners.
		E.	Rust or mill scale is preventing full fusion.	E.	Clean joint before welding.
		F.	Wrong electrode for position in which welding is done.	F.	Use electrodes designed for position in which welding is done, otherwise proper control of slag is difficult.

Art # A-05569

6.03 Power Source Problems

	Description		Possible Cause		Remedy
1.	The arc can not be established.	А. В. С.	The Primary supply voltage has not been switched ON. The Welding Power Source switch is switched OFF. Loose connections internally.	А. В. С.	Switch ON Primary supply voltage. Switch ON the Welding Power Source Have an Accredited Thermal Arc Service Agent inspect then repair the welder.
2.	Maximum output welding current can not be achieved with nominal Mains supply voltage.		Defective control circuit.		Have an Accredited Thermal Arc Service Agent inspect then repair the welder.
3	Welding current reduces when welding.		Poor work lead connection to the work piece.		Ensure that the work lead has a positive electrical connection to the work piece.
4.	No gas flow when the torch trigger switch is depressed.	А. В. С. D.	Gas hose is cut. Gas passage contains impurities. Gas regulator turned off. Torch trigger switch lead is disconnected or switch/cable is faulty.	A. B. C. D.	Replace gas hose. Disconnect gas hose from the rear of Power Source then raise gas pressure and blow out impurities. Turn gas regulator on. Reconnect lead or repair faulty switch/cable.

	Description		Possible Cause		Remedy
5.	Gas flow won't shut	А.	Weld Mode (<i>STD, SLOPE,</i>	A.	Strike an arc to complete the
	off		REPEAT or SPOT) was		weld cycle. OR Switch machine
			changed before <i>POST-FLOW</i>		off then on to reset solenoid
			gas time had finished.		valve sequence.
		B.	Gas valve is faulty.	B.	Have an Accredited Thermal Arc
					Service Agent inspect then repair the welder.
		C.	Gas valve jammed open.	C.	Have an Accredited Thermal Arc
					Service Agent replace gas valve.
		D.	POST-FLOW control is set to	D.	Reduce <i>POST-FLOW</i> time.
			60 sec.		
6.	The TIG electrode		The Weld Process Mode		Do not change Weld Process
	has been		(STICK, HF TIG, LIFT TIG)		Mode before the <i>POST-FLOW</i>
	contaminated due to		was changed before POST-		gas time had finished.
	the gas flow		<i>FLOW</i> gas time had		
	shutting off before		finished.		
	the programmed				
	<i>POST-FLOW</i> Time				
	has elapsed.				

6.04 Error Code Details

Description	Possible Cause	Remedy	Remarks	
E01 error code displayed Temperature sensor TH1 (protects IGBTs) is greater than 80°C for about 1	A. The Welding Power Source's duty cycle has been exceeded.	 A. Let Power Source cool down then keep within its duty cycle. 	Weld current ceases. Buzzer sounds constantly. Fan operates at max	
second.	B. Cooling fan ceases to operate.C. Air flow is restricted by	B. Refer to section Cooling Fan is not rotating.C. Unblock vents then let Power Source cool down.	speed. E01 resets when TH1 decreases to 70°C for about 30 seconds.	
	vents being blocked. D. PCB Power Supply - ve 12VDC is not present.	 D. Check –ve 12VDC is present on connector CN16 between pins 3 and 4(gnd) on PCB2 (WK-4983) if not replace PCB2 (WK-4983). 		
E02 error code displayed Temperature sensor TH2 (protects secondary diodes) is greater than 80°C for about 1 second.	 A. The Welding Power Source's duty cycle has been exceeded. B. Fan ceases to operate. C. Air flow is restricted by 	 A. Let Power Source cool down then keep within its duty cycle. B. Refer to section Cooling Fan is not rotating. C. Unblock vents then let Dower Source cool down 	Weld current ceases. Buzzer sounds constantly. Fan operates at max speed. E02 resets when TH1 decreases to 70°C for about 30	
	vents being blocked. D. PCB Power Supply - ve 12VDC is not present.	 D. Check –ve 12VDC is present on connector CN16 between pins 3 and 4(gnd) on PCB2 (WK-4983) if not replace PCB2 (WK-4983). 	36601103.	

Description		Possible Cause		Remedy	Remarks
E03 error code displayed	A.	Primary current	A.	Reduce length of welding	Weld current ceases.
Primary (input) current too		is too high		arc.	Buzzer sounds
high.		because welding			constantly. Switch
		arc is too long.			machine off then on
	B.	Mains supply	В.	Have an Accredited	to reset E03 error.
		voltage is more		Thermal Arc Service Agent	
		than 10% below		or a qualified electrician	
		nominal voltage.		check for low Mains	
				voltage.	
	C.	Accumulation of	C.	Refer to visual inspection	
		dust.		section in the advanced	
				troubleshooting guide	
	D.	Secondary	D.	Check Secondary Diodes	
		Diodes D2, D3,			
		D4, D5, D6 short			
	_	circuited			
	E.	Faulty Primary	E.	Check Primary IGBT	
	_	IGBT Q1, Q2	_	Q1,Q2	
	⊦.	Faulty Secondary	⊦.	Check Secondary IGB1	
		IGBT Q3, Q4		Q3, Q4	
	G.	Current	G.	Replace Current	
		Transformer CT1		transformer CI1 if	
				damaged. Uneck that	
				wining and plug	
				connectors at CTT allu	
				(MK 4082) are firmly	
				(WK-4903) are mining	
				CT1 current signal on	
				connector CN13 Pins 3	
				and $4(GND)$ at PCB2 (WK-	
				4983) refer to connector	
				CN13	
	н	Faulty HF unit	н	Remove the quick-	
		radity in ant.		disconnect terminals from	
				the HF unit terminals AC1	
				and AC2. Check between	
				HF unit terminals AC1 and	
				AC2 if they short circuited	
				replace the HF unit.	

Description		Possible Cause		Remedy	Remarks
E04 error code displayed	A.	TIG torch cable	A.	Reduce the length of the	Weld current ceases.
Output voltage exceeds the		and/or work lead		TIG torch cable to less	Buzzer sounds
secondary voltage		are too long or		than 30m and/or work	constantly. Switch
specification.		leads are coiled.		lead or un-coil leads.	machine off then on
					to reset E04 error.
	Β.	Mains supply	В.	Check Mains voltage.	
		voltage is more			
		than 10% below			
		nominal voltage.			
	C.	Detective	C.	Turn Power Source Off.	
		Secondary IGBI		Disconnect connector	
		PCB5 (WK-4919)			
				011 PUBIT (WK-4903). Turn Power Source to On	
				I ulli FUWEI Suurce tu on.	
				cleared replace PCR11/WK	
				/062)	
	n	Defective Control	П	Replace control PCB5 (WK-	
		PCB5 (WK-	2.	4919). When replacing	
		4919).		refer to PCB section.	
		1012).			
E11 error code displayed		Primary supply		Have an Accredited	Weld current ceases.
Over Primary supply (input)		voltage is greater		Thermal Arc Service Agent	Buzzer sounds
voltage at primary		than the nominal		or a qualified electrician	constantly. Error
capacitors is exceeded for		voltage plus 10%		check the Primary	code E11
one second.				voltage.	automatically will
					reset when the
				11 A . 11. 1	voltage reduces.
E12 error code displayed		Mains supply		Have an Accredited	Weld current ceases.
Under mains supply (input)		voltage is down		Thermal Arc Service Agent	Buzzer sounds
voltage primary capacitors		to a dangerously		or a qualified electrician	constantly. Error
is reduced for one second.		Iow level.		check the Mains voltage	
					automatically will
					reset when the
					voltage increases.

Description	Possible Cause	Remedy	Remarks
E14 error code displayed Under mains supply (input) voltage warning primary capacitors is reduced for one second.	 A. DC Voltage is less than 423 VDC between terminals TB1 and TB6. 	A. Check that mains voltage is greater than 300 VAC.	Weld current available. Buzzer sounds intermittently. Error code E14 automatically will reset when the voltage increases.
	B. Pre charge circuit at PCB1	 B. Check connections and Pre-charged relay RY2 is functioning correctly at PCB1 (WK-4961). If not replace PCB1 (WK-4961). Or refer to section Replacing Pre charge circuit components. 	
E81 error code displayed Wrong Primary supply (input) voltage connected.	 A. The wrong mains supply (input) voltage is connected. B. Poor Input cable electrical connections 	 A. Check that 3 phases are present and that input voltage is between 374-457VAC. B. Check input cable connections. 	No weld current is available. Buzzer sounds constantly. Switch machine off.
	 C. Electrical connections between PCB9 (WK-4917) and PCB2 (WK- 4983). D. PCB plug connections from PCB2 (WK- 4983) to PCB3 (WK-4819). E. Faulty PCB3 (WK- 4819) 	 C. Check wiring and connections at connector CN1 on PCB9 (WK-4917) and connector CN1 on PCB2 (WK-4983) are connected firmly. D. Check connections from PCB2 (WK-4983) to PCB3 (WK-4819) are connected firmly. E. If error code E81 still appears after checking 	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	the above then replace PCB3 (WK-4819).	

Description	Possible Cause	Remedy	Remarks
E82 error code displayed Link switch plug not connected.	 A. Link switch plug not connected. B. Accumulation of dust. C. Faulty PCB3 (WM 4819) 	 A. Check link switch plug connection at connector CN4 on PCB3 (WK-4819). B. Refer to visual inspection section. C. If error code E82 still appears after checking the above then replace 	No weld current is available. Buzzer sounds constantly. Switch machine off.
		PCR3 (WK-4819)	
E83 error code displayed CPU checks mains supply (input) voltage when the on/off switch on rear panel of machine is turned ON.	A. The Primary supply (input) voltage fluctuates and is not stable.	A. Check input power supply cable electrical connections.	No weld current is available. Buzzer sounds constantly. Switch machine off then on to reset E83 error.
	B. Connector plug connections from PCB2 (WK- 4983) to PCB9 (WK-4917).	 B. Check wiring and connections at connector CN1 on PCB9 (WK-4917) and connector CN1 on PCB2 (WK-4983) are connected firmly. 	
	 C. PCB plug connections from PCB2 (WK- 4983) to PCB3 (WK-4819). D. Defective PCB3 (WK-4819) 	 C. Check connections from PCB2 (WK-4983) to PCB3 (WK-4819) are connected firmly. D. If error code E83 still appears after checking the above then replace PCB3 (WK-4819). 	

Description		Possible Cause		Remedy	Remarks
E85 error code displayed	Α.	The Primary	А.	Measure between	No weld current is
Primary Capacitors are not		capacitors pre-		terminals TB1 and TB6	available. Buzzer
charging correctly		charge circuit is		(-ve) at PCB1 (WK-4961).	sounds constantly.
		not functioning		The DC voltage value	Switch machine off.
		correctly.		should be 528-645VDC.	
	Β.	PCB plug	В.	Check wiring and	
		connections		Rectifier D1 to connector	
		from Input		CN2 on PCB1 (WK-4961)	
		Rectifier D1 to PCB1.		are connected firmly.	
	C.	Input Rectifier D1	C.	Check the Input Rectifier	
	П	Pre charge	П	DI Check connections and	
	D.	circuit at PCB1	D.	Pre-charge resistor R44	
				at PCB1 (WK-4961) and	
				Pre-charge relay RY1	
				is functioning correctly at	
				PCB1 (WK-4961). If not	
				replace PCB1 (WK-4961).	
				Or refer to Section	
				Replacing Pre charge	
				circuit	
			_	components.	
	E.	Defective Detect	E.	Replace Detect PCB3 (WK-	
		PCB3 (WK-4819)		4819).	
E93 error code displayed	Α.	Memory chip	Α.	Replace PCB5 (WK-4919).	Weld current ceases.
Memory chip (EEPROM) on		(EEPROM) error		When replacing refer to	Buzzer sounds
control PCB can not		on PCB5 (WK-		section on factory	constantly. Switch
read/write weld parameters.		4919)		settings.	machine off.
	B.	Accumulation of	В.	Refer to visual inspection	
		dust.		section.	

Description		Possible Cause		Remedy	Remarks
E94 error code displayed Temperature sensor TH1 for IGBTs or sensor TH2 for secondary diodes D2,D3,D4,D5,D6.	А.	Poor electrical connection between TH1 and/or Th2 and PCB Defective Thermistor TH1 and/or TH2	А. В.	Check wiring and connections from TH1 and TH2 to connector CN8 on PCB5 (WK-4919) are connected firmly. To check Thermistors THI and TH2 remove the plug from the CN8 connector. Measure between pins 1 and 2 in the plug for TH1, or pins 3 and 4 in the plug for TH2 they should measure in the 10k ohm to 24k ohm range (dependant on ambient temperature) the reading decreasing as the temperature of the power source increases. A shorted reading indicates a bad sensor and should be replaced.	Weld current ceases. Buzzer sounds constantly. Switch machine off.
	C.	Defective Control PCB5 (WK-4919)	C.	Replace PCB5 (WK-4919).	

iption	russinie Gause	nemeuy	nemarks
rror code displayed	A. Mains supply	A. check mains input supply	Weld current ceases.
s supply (input)	(input) voltage is	voltage.	Buzzer sounds
e has been turned off	f not present		constantly. Must
ontrol circuit has			switch machine off
r from the primary			then on to reset E99
itors.			error.
	B. Mains supply	B. Turn main switch on the	
	(input) voltage	power source to the on	
	has been turned	position.	
	off		
	C. Connector plug	C. Check wiring and	
	connections	connections at connector	
	from PCB2	CN1 on PCB9 (WK-4917)	
	(WK-4983) to	and connector CN1	
	PCB9 (WK-	on PCB2 (WK-4983) are	
	4917).	connected firmly.	
	D. Connector plug	D. Check the plug	
	connections	connectors between PCB2	
	from PCB2 (WK-	(WK-4983) and PCB3 (WK	
	4983) to PCB3	4819) are firmly	
	(WK-4819).	connectea.	
	E. Connector plug	F. Check the plug	
	connections	connectors CN17 on	
	from PCB2 (MK-	$PCR2 (M/K_{1}083)$ and $CN2$	
	1983) to PCR5	on PCR5 ($M/K_{-}/010$) and M/Z	
	(\MK_4010)	firmly connected	
r from the primary	 B. Mains supply (input) voltage has been turned off C. Connector plug connections from PCB2 (WK-4983) to PCB9 (WK- 4917). D. Connector plug connections from PCB2 (WK- 4983) to PCB3 (WK-4819). E. Connector plug connections from PCB2 (WK- 4983) to PCB5 (WK-4919). 	 B. Turn main switch on the power source to the on position. C. Check wiring and connections at connector CN1 on PCB9 (WK-4917) and connector CN1 on PCB2 (WK-4983) are connected firmly. D. Check the plug connectors between PCB2 (WK-4983) and PCB3 (WK-4983) and PCB3 (WK-4819) are firmly connected. E. Check the plug connectors CN17 on PCB2 (WK-4983) and CN2 on PCB5 (WK-4919) are firmly connected. 	then on to reset E9 error.

SECTION 7: ADVANCED TROUBLESHOOTING

If the problem cannot be solved by the basic (external) trouble shooting guide, the Power Source enclosure will have to be removed. The advanced level of troubleshooting allows the technician with a few common tools to remove the plastic enclosure and analyse some failures.

Refer to section 7.01 for the necessary equipment and tools.

Never open the Power Source enclosure unless the mains supply voltage to the Power Source is disconnected from the power point.

CAUTION

When removing the locking type connectors and board supporters, disengage the locking mechanism first and then disconnect them.

7.01 Test Equipment and Tools

- a. Digital Multi-meter with diode test function and insulated shaft test probes.
- b. Phillips, and slotted head screwdriver.
- c. Long nose pliers, diagonal cutter and circlip pliers.
- d. Nut driver and Open end spanner, 5.5mm, 7mm, 8mm, 10mm, 12mm, 17mm.

7.02 Removing the Enclosure

1. Confirm that the switch of power supply and the switch on switchboard (distribution panel) are all OFF.

The capacitors inside the power supply will slowly discharged after you turn off the switch of the power source or the switch at power point (distribution panel). Wait at least 5 minutes for the discharge to complete.

2. Remove all screws and nuts on the side covers.

3) Loosen the screws on the front panel and the rear panel by turning them approximately two turns CCW.

NOTE

DO NOT remove the screws completely.

Figure 7-2: Removing front and rear panels

4) Pull the front panel slightly forward and pull the rear panel slightly backward.

The interlocking hooks of the side case covers can now be disengaged from the front and rear panels.

5) Remove the side covers.

6) Remove protection cover sheet by removing the plastic tabs.

Figure 7-5: Protective cover removal.

Re-assembly of the above is a reversal of the removal procedure.

Leave the mains **supply** voltage disconnected from the Power Source during the visual inspection.

Figure 7-4: Side cover removal.

7.03 Visually Inspect

Visually inspect the inside the Power Source. The high levels of power present in the Power Source can cause burning or arcing of components and PCBs when a failure occurs. Carefully inspect all components including the Input Rectifier, IGBT Modules, Secondary Diode Modules and the PCBs. Look in particular for the following:

- a. Loose or broken wires or connectors.
- b. Cracked or broken cores on the high frequency or magnet circuits.
- c. Burned or scorched parts or wires or evidence of arcing.
- d. Remove any accumulation of metal dust or filings which may have caused shorting or arcing.
- e. If any parts are damaged, or if they are found to be faulty they must be replaced.

7.04 Advanced Power Source Malfunctions

	Problem		Possible Cause		Remedy
1.	Cooling Fan is not rotating, and	Α.	Airflow Obstructed	A.	Clear any obstructions or dust that may inhibit cooling.
		B.	Cooling Fan Wiring or Plug connector.	В.	Check wiring between cooling fan and connector CN12 on PCB2 (WK-4983). Confirm that plug is firmly connected to connector CN12 on PCB2 (WK-4983).
		C.	Ribbon Cable connection between PCB2 (WK-4983) and PCB5 (WK-4919).	C.	Check Ribbon Cable connections at connector CN17 on PCB2 (WK-4983) and connector CN2 on PCB5 (WK-4919) are firmly connected.
		D.	Defective Cooling Fan.	D.	After Power Source is turned on for approx 8 seconds check at CN12 between Pins 1 and 2 (-ve) on PCB2 (WK-4983) for 24VDC supply to Cooling fan. (Note that after approx 30 seconds due to fan on demand circuit, the voltage will be dropped to 15VDC.). If voltage is present and Cooling fan is not rotating replace Cooling fan.
		E. Power Supply Voltage to the Cooling Fan ci not present on (WK-4983).	Power Supply Voltage to the Cooling Fan circuit is not present on PCB2 (WK-4983).	E.	After Power Source is turned on for approx 8 seconds check between CN12 pin1 on PCB2 (WK-4983) and CN23 pin2 (-ve) on PCB2 (WK- 4983) for 24VDC unregulated supply to the Cooling Fan circuit. (Note that after approx 30 seconds due to cooling fan on demand circuit, the voltage will be dropped to 15VDC.) If 24VDC is not present replace PCB2 (WK-4983).
		F.	Opto Coupler PHC4 on PCB2 (WK-4983) is not receiving the correct signal from the Control PCB PCB5 (WK-4919).	F.	Check the Cooling Fan control signal is present from the Control PCB5 (WK-4919) by measuring between pins 2 and 3(-ve) on Opto coupler PHC4 on PCB2 (WK-4983). The signal should measure approx 1.4VDC (Note that if the Cooling Fan is in reduced speed mode the Cooling Fan control signal will measure approx 0.9V). If this voltage is not present replace PCB5 (WK-4919).

	Problem		Possible Cause		Remedy
		G.	Defective Cooling Fan driver circuit components on PCB2 (WK-4983).	G.	After Power Source is turned on for approx 8 seconds check CN12 between Pins 1 and 2(-ve) on PCB2 (WK-4983) for 24VDC supply to Cooling fan. (Note that after approx 30 seconds due to cooling fan on demand circuit, the voltage will be dropped to 15VDC.) If 24VDC is not present replace PCB2 (WK-4983) or refer to Replacing Cooling Fan Driver circuit components on PCB2 (WK-4983).
2.	No Welding Output and the Cooling Fan is rotating.	A.	Check the Machine is switched into the correct mode.	A.	Check the Machine is either in Stick mode or trigger switch is closed in Lift Tig or HF Tig mode.
	-	B.	Ribbon Cable connection between PCB2 (WK-4983) and PCB5 (WK-4919).	B.	Check Ribbon Cable connections at connector CN17 on PCB2 (WK-4983) and connector CN2 on PCB5 (WK-4919) are firmly connected.
		C.	Poor IGBT Q1, Q2 Gate Driver Connections between PCB4 (WK-4984) and PCB7 (WK-5012) and/or between PCB4 (WK-4984) and PCB8 (WK-5012).	C.	Check wiring and connections for Q1 Gate Driver signal between connector CN5 on PCB4 (WK-4984) and connector CN1 on PCB7 (WK- 5012 mounted on IGBT) are connected firmly. Check wiring and connections for Q2 Gate Driver signal between connector CN4 on PCB4 (WK-4984) and connector CN1 on PCB8 (WK-5012 mounted on IGBT) are connected firmly.
		D.	Poor IGBT Q1, Q2 Gate Driver Connections between PCB4 (WK-4984) and PCB2 (WK-4983).	D.	Check connections between connector CN223 on PCB4 (WK-4984) and connector CN123 on PCB2 (WK-4983) are connected firmly.
		E.	Poor IGBT Q3, Q4 Gate Driver Connections between PCB12 (WK-3367) and PCB11 (WK- 4963) and between PCB13 (WK-3367) and PCB11 (WK- 4963).	E.	Check wiring and connections for Q3 Gate Driver signal between connector CN1 on PCB12 (WK-3367 mounted on IGBT) and connector CN4 on PCB11 (WK-4963) are connected firmly. Check wiring and connections for Q4 Gate Driver signal between connector CN1 on PCB13 (WK-3367 mounted on IGBT) and connector CN4 on PCB11 (WK-4963) are connected firmly.

	Problem		Possible Cause		Remedy
		F.	Poor IGBT Q3, Q4 Gate Driver Connections between PCB5 (WK-4919) and PCB11 (WK-4963).	F.	Check wiring and connections for Q3, Q4 Gate Driver signals between connector CN3 on PCB5 (WK-4919) and connector CN3 on PCB11 (WK-4963) are connected firmly.
		G.	Secondary Connections	G.	Check connections are tight and are not burnt or cracked on output terminals, transformer, IGBT's, secondary diodes, inductor, coupling coil.
		H.	Current Transformer CT1.	H.	Replace Current Transformer CT1 if damaged. Check wiring and plug connectors at CT1 and CN13 on PCB2 (WK-4983) are firmly connected.
		Ι.	Secondary Diodes D2, D3, D4, D5, D6 are short circuit or open circuit.	Ι.	Check Secondary Diodes D2, D3, D4, D5, D6. Refer to section 18. Replace if values are not obtained.
		J.	Defective IGBT Q1,Q2.	J.	Check IGBT Q1, Q2.
		K.	Defective IGBT Q3,Q4.	K.	Check IGBT Q3, Q4.
		L.	Power Supply Voltages are not present at PCB2 (WK- 4983) and/or PCB5 (WK- 4919).	L.	Check Power Supply Voltages are present at PCB2 (WK-4983) and connector CN1 on PCB5 (WK-4919). If not present replace PCB2 (WK- 4983). Refer to section for PCB2 Power Supply Voltages and section for PCB5 (WK-4919) Power Supply Voltages.
3.	No Gas flow	A.	The Machine is in	A.	Switch to either Lift Tig or HF Tig Mode.
	when torch trigger is depressed but the Cooling Fan	B.	Stick Mode. Torch Trigger switch lead is disconnected or switch/cable is faulty.	B.	Reconnect Trigger switch lead or repair faulty switch/cable.
	is rotating.	C.	Gas hose	C.	Check that gas hose is firmly connected into the fitting at the inlet and outlet. Confirm that the layout of the gas hose so that it is not bent or kinked. Confirm there are no breaks, burns or holes in the hose.
		D.	Gas Solenoid valve is	D.	Remove any obstructions from the Gas solenoid
		E.	Poor electrical connection to solenoid.	E.	vaive. Make sure that the quick-disconnect terminals are connected firmly at solenoid. Check wiring and plug connector at CN12 at PCB2 (WK-4983) are firmly connected.

	Problem	Possible Cause		Remedy
		 F. Ribbon Cable connection between PCB2 (WK-4983) and PCB5 (WK-4919). C. Defective Cas selence 	F.	Check Ribbon Cable connections at connector CN17 on PCB2 (WK-4983) and connector CN2 on PCB5 (WK-4919) are connected firmly.
		valve.	и.	connections and Gas Solenoid Valve is not operating then replace the Gas Solenoid Valve
		 H. Power Supply Voltage to the Gas Solenoid Valve circuit is not present on PCB2 (WK-4983). 	H.	After Power Source is turned on for approx 8 seconds check between connector CN12 pin1 on PCB2 (WK-4983) and connector CN23 pin2 (-ve) on PCB2 (WK-4983) for 24VDC unregulated supply to the Gas Solenoid Valve circuit. If 24VDC is not present replace PCB2 (WK-4983)
		 Opto Coupler PHC3 or PCB2 (WK-4983) is not receiving the correct signal from the Control PCB PCB5 (WK-4919). 	n I. e	Check that the Opto coupler PHC3 on PCB2 (WK- 4983) measures approx 1.4VDC between pins 1 and 2(-ve). If approx 1.4VDC is not measured replace PCB5 (WK-4919). Before replacing refer to section on routine inspection and maintenance.
		J. Defective Opto couple PHC3 on PCB2 (WK- 4983).	rJ.	After Power Source is turned on for approx 8 seconds check connector CN12 Pins 3 and 4 on PCB2 (WK- 4983) for 24VDC supply to Gas Solenoid. (Note that after approx 30 seconds due to cooling fan on demand circuit, the voltage will be dropped to 15VDC). If 24VDC is not present, replace PCB2 (WK-4983) or refer to Replacing Gas Solenoid Driver circuit components on PCB2 (WK-4983).
4.	HF will not operate	A. The Machine is in Stic	k A.	Switch to HF Tig Mode.
	wnen torch trigger switch is depressed, but the Cooling Fan is	B. Check Torch Trigger Circuit is operating correctly.	B.	Reconnect Trigger switch lead or repair faulty switch/cable.
	rotating.	 C. Check Machine will Weld in Stick Mode. D. Connection between High Frequency (H.F. Unit and Coupling Coil (CC). 	C. D.	If not refer to No Welding Output and the Cooling Fan is rotating. Check that the quick-disconnect terminals from the coupling coil are inserted onto the terminals of H.F. Unit correctly and completely. Confirm there are no short circuits, burnt or broken wires between the H.F. unit and the Coupling

Problem	Possible Cause	Remedy
	E. Connection between High Frequency H.F. Unit and Current Limiting Resistor R2.	E. Check that the quick-disconnect terminals from R2 are inserted onto the terminals of H.F. Unit correctly and completely. Confirm there are no short circuits, burnt or broken wires between the H.F. unit and R2.
	F. Connection of AC1 and AC2 to High Frequency Unit terminals.	F. Check that the quick-disconnect terminal AC1 from busbar at Transformer T1, T2 secondary and AC2 from CN10 on PCB2 (WK-4983) are inserted onto the terminals of H.F. Unit correctly and completely. Confirm there are no short circuits, burnt or broken wires.
	G. Wire AC1 connection from the H.F. Unit to Transformer T1 and wire AC2 Connector plug connection to PCB2 (WK- 4983).	G. Check wire AC1 and connection to Transformer T1 is connected firmly. Check that wire AC2 at plug connector at CN10 on PCB2 (WK-4983) is connected firmly.
	H. H.F. Points Gap.	H. Check H.F. Points. Refer to Section 0.
	 Resistor R2 short or open circuit. 	 Replace Resistor R2 if faulty (blown, burnt, cracked etc).
	J. Voltage is not present between terminals AC1 and AC2 at H.F. Unit.	J. Check that voltage at AC1 and AC2 at H.F. Unit is approx 140VAC. If not check relay RY3 refer to item K below.
	K. Defective HF relay RY3 on PCB2 (WK- 4983).	K. Check that relay RY3 on PCB2 (WK-4983) contacts close when the trigger switch is depressed in HF TIG mode, if relay does not work then replace PCB2 (WK-4983)
	L. Defective HF Unit.	L. Remove the quick-disconnect terminals from the HF Unit terminals AC1 and AC2. If the HF Unit terminals between AC1 and AC2 test short circuit replace the HF Unit
	M. Defective Coupling Coil.	M. Check the Coupling Coil and replace if necessary.
5. Front Control Panel does not light when the machine is turned on but the Cooling Fan is rotating.	 PCB plug connections from PCB5 (WK- 4919) to PCB6 (WK- 4971). 	A. Check that all four connectors between PCB5 (WK- 4919) and PCB6 (WK-4971) are firmly connected. Check the condition of the pins on the connectors and the connectors themselves, if any bent pins or damaged connectors are found replace the suspect PCB.

Problem		Possible Cause		Remedy
	B. C. D.	 B. Ribbon Cable connection between PCB2 (WK-4983) and PCB5 (WK-4919). C. Connector plug 	В. С.	Check ribbon cable connections at connector CN17 on PCB2 (WK-4983) and connector CN2 on PCB5 (WK-4919) are connected firmly. Check wiring and plug connectors at connector
		connections from PCB2 (WK-4983) to PCB5 (WK-4919).	<u>)</u>	CN16 on PCB2 (WK-4983) and connector CN1 on PCB5 (WK-4919) are firmly connected.
		 D. Power Supply Voltage is not present on PCB2 (WK-4983). 	D.	After Power Source is turned on for approx 8 seconds check Power Supply Voltages are present at PCB2 refer to 13.3 page 42. if not present replace PCB2 (WK-4983).
		E. Defective Control PCB5 (WK-4919)	E.	Replace PCB5 (WK-4919).
		F. Defective Front Controls PCB6 (WK- 4971).	F.	Replace PCB6 (WK-4971).
6.	Machine cannot be	A. Accumulation of dust.	Α.	Refer to visual inspection section in this manual.
	set using the front panel controls or welding mode cannot be changed, but the Cooling Fan is rotating.	B. Defective Current Transformer CT1.	В.	Turn Power Source to Off. Disconnect CT1, if Welding Mode can then be changed replace CT1.
		C. PCB plug connections from PCB5 (WK- 4919) to PCB6 (WK- 4971).	C.	Check that all four connectors between PCB5 (WK- 4919) and PCB6 (WK-4971) are firmly connected. Check the condition of the pins on the connectors and the connectors themselves, if any bent pins or damaged connectors are found replace the suspect PCB
		 D. Ribbon Cable connection between PCB2 (WK-4983) and PCB5 (WK-4919). 	D.	Check ribbon cable connections at connector CN17 on PCB2 (WK-4983) and connector CN2 on PCB5 (WK-4919) are connected firmly.
		 E. Connector plug connections from PCB2 (WK-4983) to PCB5 (WK-4919). 	E.	Check wiring and plug connectors at connector CN16 on PCB2 (WK-4983) and connector CN1 on PCB5 (WK-4919) are firmly connected.
		 F. Power Supply Voltage is not present on PCB2 (WK-4983). 	F.	After Power Source is turned on for approx 8 seconds check Power Supply Voltages are present at PCB2 (WK-4983). If not present replace PCB2 (WK- 4983).
		G. Defective Control PCB5 (WK-4919).	G.	Replace PCB5 (WK-4919).
SECTION 8: PCB DESCRIPTIONS

8.01 Main PCB (WK-4961)

Main PCB circuit description.

Input Rectifier reservoir Capacitor PCB. This PCB contains Input Rectifier Capacitors and Precharge circuit. Also RC dv/dt snubbers and primary current transformers.

Circuit Function	Parts Used
In rush current protection	R44, RY1, RY2
Input rectifier circuit	DC cut capacitor
Primary over current detection	CT1, CT2
Balance circuit	L1
R44 RY1	

Art # A-05575 Figure 8-1: Main PCB WK-4961

Main PCB PCB1 WK-4961 U01				
Connector	Pin	Value	Description	
CN2	1	0-5	Gate on	
	2	0-5	Gate on	
CN6	1		Noise GND	
	2			
	3			
CN18	1	0VDC		
	2	5VDC		
	3			
	4			
	5	800VDC max		

Main PCB PCB1 WK-4961 U01					
Connector	Pin	Value	Description		
CN21	1	+12V			
	2	0/12V	pre-charge start		
	3	0/12V	gate on		
	4	approx. 5V			
	5	approx. 5V			
CN22	1	3V pulse			
	2	3V pulse			

8.02 Control Source PCB PCB2 (WK-4983)

Control Source PCB circuit description.

Auxiliary Power Supply and Interface PCB.

Circuit Function	Parts Used
Auxiliary power supply circuit	Auxiliary transformer T1
Gas Solenoid valve operation	Opto coupler PHC3
Output voltage detection	Τ6
Output short circuit detection	IC9
HF operation circuit	RY3
Cooling Fan operation circuit	PHC4, Q20, Q21
14 PIN socket connection	-
Hole CT connection	CT1

Figure 8-2: Control Source PCB WK-4983

Control Source PCB PCB2 WK-4983 U01					
Connector	Pin	Value	Description		
CN1	1	300VDC			
	2				
	3	Not used	Not used		
CN3	1-12				
CN7	1	0/5V	running enable		
	2	0/5V	running enable		
	3				
	4	0/5V	input voltage error		
	5	0/5V	input voltage error		
CN8	1	0/5V	internal process		
	2	0/5V	internal process		
	3	0/5V	internal process		
	4	0/5V	internal process		
CN9	1	30V 100kHz			
	2	30V 100kHz			
	3	Not used	Not used		
	4	Not used	Not used		
	5				
CN10	1	0-16V	output short detection		
	2	Not used	Not used		
	3	0-16V	output short detection		
	4	Not used	Not used		
	5				
	6	Not used	Not used		
	7	0/70V	HF unit control		
	8	Not used	Not used		
	9	0/70V	HF unit control		
CN12	1	0-24VDC	fan		
	2	0-24VDC	fan		
	3	0-24VDC	Gas Solenoid 300Pi only		
	4	0-24VDC	Gas Solenoid 300Pi only		
CN13	1	+12V			
	2	-12V			
	3	0-4V	CT1 Current Signal,Output Current=0-200A		
	4	0-4V	CT1 Current Signal,Output Current=0-200A		
CN14	1-5	Not used	Not used		

Control Source PCB PCB2 WK-4983 U01						
Connector	Pin	Value	Description			
CN15	1	short/open	ok to move			
	2	Not used	Not used			
	3	short/open	ok to move			
CN16	1	+12VDC				
	2	+5VDC				
	3	-12VDC				
	4	GND				
	5					
	6					
	7					
CN17	1-26					
CN19	1	0/12	remote/panel signal			
	2	0-10V	remote signal			
	3	0-10V	remote signal			
	4	0-10V	remote signal			
	5	0/12	remote /panel signal			
CN20	1	+12V				
	2					
	3	0-4V	voltage signal			
	4	0-4V	Current signal			
CN23	1	0-24V	Torch switch			
	2	0-24V	Torch switch			
CN118	1					
	2					
	3	Not used	Not used			
	4	Not used	Not used			
	5					
CN121	1					
	2					
	3					
	4					
	5					
CN122	1					
	2					

8.03 Power Supply Voltage Reference Points on Control PCB2 (WK-4983)

Power Supp	Power Supply Voltage Reference Points on Control PCB PCB2 WK-4983 U01			
Connector	Pin	Value	Reference	Description
CN16	1	+12VDC	CN16 Pin 4	Secondary Circuit Power Supply. Voltage Regulator IC4
CN16	2	+5VDC	CN16 Pin 4	Secondary Circuit Power Supply. Voltage Regulator IC5
CN16	3	-12VDC	CN16 Pin 4	Secondary Circuit Power Supply. Voltage Regulator IC6
CN16	4	GND		Secondary Circuit Power Supply GND.
CN12	1	+24VDC	CN23 Pin 2	Torch Trigger, Gas Solenoid, Cooling fan Unregulated
				Power Supply
CN10	9	+17VDC	CN10 Pin 7	VRD sensing circuit Voltage Regulator IC8
CN121	1	+12VDC	CN1 Pin 2	Primary Circuit Power Supply. Voltage Regulator IC7

Component	Point	Value	Reference	Description
Diode D64	Cathode	+5VDC	Anode (-ve)	Primary Circuit Power Supply. Voltage Regulator IC1

8.04 Detection PCB PCB3 (WK-4819)

Detection PCB circuit description.

Primary Voltage Detection and Isolation.

Circuit Function	Parts Used
Primary voltage detection	IC7
Input sequence circuit	IC7
Input 200/400V detection	IC7
Input power supply failure	IC7

NOTE

Ensure that the link is connected to CN4 of WK-4819 between pins 2 and 4.

Detection PCB PCB3 WK-4819 U01						
Connector	Pin	Value	Description			
CN1	1	+12V	Vdd for primary circuit (input)			
	2	Not used	Not used			
	3	+5V	Vcc for primary circuit (input)			
	4	Not used	Not used			
	5	0V	GND for primary circuit			
	6	Not used	Not used			
	7		Reserved (output)			
	8	0V if pre-charge	pre-charge signal (output)			
	9	Not used	Not used			
	10	0-5V as primary DC voltage	primary DC voltage detect (input)			
	11	0-5V as primary DC voltage	primary DC voltage detect (input)			
	12	Not used	Not used			
	13	0-5V as primary AC voltage	primary AC voltage detect (input)			
CN4	1	Not used	Not used			
	2		Link Plug			
	3	Not used	Not used			
	4		Link Plug			
CN5	1	0V if on	input voltage on/off detect			
	2	0V if on	input voltage on/off detect			
	3	Not used	Not used			
	4	0V if error	input voltage level detect			
	5	0V if error	input voltage level detect			
CN6	1	+5VDC				
	2	+5VDC				
	3					
	4					
CN7	1	+12VDC				
	2	Not used	Not used			
	3	Not used	Not used			
CN10	1	Not used	Not used			
	2	Not used	Not used			

8.05 IGBT Driver PCB PCB4(WK-4984)

IGBT Driver circuit description.

Isolated IGBT Gate Drive PCB.

IGBT Driver PCB PCB4 WK-4984 U01							
Connector	Pin	Value	Description				
CN4	1	0/20V 30kHz pulse					
	2	0/20V 30kHz pulse					
	3	Not used	Not used				
	4	Not used	Not used				
	5	0/20V 30kHz pulse					
	6	0/20V 30kHz pulse					
CN5	1	0/20V 30kHz pulse					
	2	0/20V 30kHz pulse					
	3	Not used	Not used				
	4	Not used	Not used				
	5	0/20V 30kHz pulse					
	6	0/20V 30kHz pulse					
CN223	1	+12V					
	2	0/5V					
	3	0/5V					
	4	+12V					

8.06 Control PCB PCB5 (Wk-4919)

Control PCB circuit description.

Control Display and user interface drive PCB.

Circuit Function	Parts Used
Control circuit	IC20
Sequence circuit	IC20
Protection circuit	IC20
Model selection circuit	DIP Switch DSW1, DSW2

Figure 8-5: Control PCB WK-4919

Control PCB PCB5 WK-4919 UO6				
Connector	Pin	Value	Description	
CN1	1-7			
CN2	1	0/5V	input power detection	
	2	0/5V		
	3	+5V		
	4	0/5V	send data	
	5	0/5V	receive data	
	6	0V	GND	
	7	0/5V	output short detection	
	8	0V	GND	
	9	0/12V	gas valve drive signal	
	10	0/5V		
	11	0/12V	HF drive signal	
	12	3V peak	primary current signal	
		2VDC as		
	13	lo=100A	output current detection	

Control PCB PCB5 WK-4919 U06					
Connector	Pin	Value	Description		
CN2	14	2VDC as Io=100A	output current detection		
	15	2VAC as Vo=10V	output voltage detection		
	16	2VAC as Vo=10V	output voltage detection		
	17	0/5V	output short detection		
	18	0/12V	torch on/off signal		
	19	0/12V	ok to move signal		
	20	0/12V	panel/remote select signal		
	21	+10V			
	22	0-10V	external analog signal		
	23	0/12V	water pressure signal		
	24	1V as Vo=10V	output voltage signal		
	25	1V as lo=100A	output current signal		
	26	Not used	Not used		
CN3	1	+12V			
	2	0V	GND		
	3	pulse of 12V peak	secondary IGBT drive signal		
	4	pulse of 12V peak	secondary IGBT drive signal		
	5	pulse of 12V peak	secondary IGBT drive signal		
	6	0/12V	start compensation signal		
	7	0V if error	over voltage error signal		
CN4	1-12				
CN5	1-12				
CN6	1-12				
CN7	1-12				
CN8	1	0-5V by temp	temperature signal		
	2	0-5V by temp	temperature signal		
	3	0-5V by temp	temperature signal		
	4	0-5V by temp	temperature signal		

8.07 Power Supply Reference Points on PCB5 (WK-4919)

Po	Power Supply Voltage Reference Points on Control PCB PCB5 WK-4919 U06					
Connector	Pin	Value	Reference	Description		
CN1	1	+12VDC	CN1 Pin 4	Secondary Circuit Power Supply +12VDC		
CN1	2	+5VDC	CN1 Pin 4	Secondary Circuit Power Supply +5VDC		
CN1	3	-12VDC	CN1 Pin 4	Secondary Circuit Power Supply -12VDC		
CN1	4	GND		Secondary Circuit Power Supply GND.		

8.08 Front Controls PCB PCB6 (WK-4971)

Circuit Function	Parts Used
Operation circuit	Encoder
LED circuit	Switch
	LED

Figure 8-6: Front Controls PCB WK-4971

Front Controls PCB PCB6 WK-4971 U05				
Connector	Pin	Value	Description	
CN4	1-12			
CN5	1-12			
CN6	1-12			
CN7	1-12			

8.09 Filter 430V PCB PCB9 (WK-4917)

Filter 430V PCB circuit description.

Transient Suppression PCB.

Circuit Function	Parts Used
Input filter circuit	Y Capacitor
Surge protection circuit	ZNR
Input voltage detection circuit	Discharge GAP, SA5

Figure 8-7: Filter 430V PCB WK-4917

Filter 430V PCB PCB9 WK-4917 U02				
Connector	Pin	Value	Description	
CN1	1	Approx 5VDC		
	2	Approx 5VDC		

8.10 Start PCB PCB10 (WK-4970)

Start PCB circuit description.

Starting Arc stability and filter circuit.

Circuit Function	Parts Used
Output filter circuit	
Starting arc stability circuit	

Art # A-05582

Figure 8-8: Start PCB WK-4970

Start PCB PCB10 WK-4970 U01				
Connector	Pin	Value	Description	
CN1	1			
	2			
CN2	1-5			

8.11 Secondary IGBT Gate Driver PCB PCB11 (WK-4963)

Secondary IGBT Gate Driver PCB circuit description.

Secondary IGBT Gate Driver PCB.

Circuit Function	Parts Used
Secondary IGBT gate driver	Transformer
Super Impose circuit	PHC, IGBT

Figure 8-9: Secondary IGBT Gate Driver PCB WK-4963

	Secondary IGBT Gate Driver PCB PCB11 WK-4963 U01					
Connector	Pin	Value	Description			
CN1	1	270VAC				
	2	Not used	Not used			
	3	270VAC				
CN2	1	30V 100kHz				
	2	Not used	Not used			
	3	30V 100kHz				
CN3	1	+12V				
	2	+12V				
	3	10/12V as on/off	super impose signal			
	4	10/12V as on/off	positive pole signal			
	5	10/12V as on/off	negative pole signal			
	6	0/12V as on/off	enable/disable of super impose			
	7	0/5V as on/off	over voltage of output signal			
	8	Not used	Not used			

Secondary IGBT Gate Driver PCB PCB11 WK-4963 U01				
Connector	Pin	Value	Description	
CN4	1	0/15V	negative pole	
	2	0/15V	negative pole	
	3	0/15V	negative pole	
	4	0/15V	negative pole	
	5	Not used	Notused	
	6	0/15V	positive pole	
	7	0/15V	positive pole	
	8	0/15V	positive pole	
	9	0/15V	positive pole	
CN5	1		to external resister	
	2	Not used	Not used	

8.12 Filter PCB PCB14 (WK-5022)

Circuit Function	Parts Used
Input filter circuit	Capacitor
Input capacitor discharge circuit	-

Figure 8-10: Filter PCB (WK-5022)

Filter PCB PCB14 WK-5022 U01				
Connector Pin Value Description				
CN1	1			
	2	Not Used	Not Used	
	3			
	4	Not Used	Not Used	
	5			

8.13 300TSW Control PCB 5 (WK -4919) Switch Settings

CAUTION

When fitting a new Control PCB5 (WK-4919) the Welding Parameter Setting must be set. Refer to section 4.09 .

Figure 8-11: Control PCB5 (WK-4919)

Figure 8-12: Control PCB5 Switch Settings

8.14 Test Procedure for Input Rectifier D1

Part No: 454160160 Type: DFA50BA160

Figure 8-13: View with PCB1 (WK-4961) removed

Test Procedure:

- a. In order to check Input Rectifier D1 remove PCB1 (WK-4961) from the Power Source Refer to Figure 8-13.
- b. Disconnect the connections from the terminals of the Input Rectifier D1.
- c. Verify the characteristic of the Input Rectifier D1 using a diode tester.
- d. Refer to Table 8-1 below, Figure 8-14 and Figure 8-15 for the test points on Input Rectifier D1.

CAUTION

When installing the Input Rectifier D1 apply 1.5-2.5 N.m torque to the M5 mounting screws and the M5 Terminal screws. Clean and reapply heat sink compound (Shinetsu silicon G-747 or equivalent) uniformly to the base surface of the Input Rectifier. Refer to Data Sheet for further detail.

COMPONENT	TERM	INALS	TESTER MODE	ACCEPTABLE VALUE	
IESIED	Positive lead	Negative lead			
Diada of D1	3,4,5	0	Diodo Tost	0.3 to 0.5V	
	0	3,4,5	Didue Test	Open circuit	
Diodo of D1	3,4,5	2	Diada Tast	Open circuit	
	2	3,4,5	Didue Test	0.3 to 0.5V	
	0	1	Diada Tast	Open circuit	
	1	0	DIDUG TEST	Open circuit	

Table 8-1: Input Rectifier D1 Test Points

5 C 4 C 3 C

Figure 8-14: Input Rectifier D1 Test Points

)
Art # A-05589	
Figure 8-15: Input Rectifier D1 Circuit	

Input Rectifier D1 Torque Values (Refer to CAUTION Above)			
1.5-2.5 N.m			
Terminal Screws M5 1.5-2.5 N.m			

Table 8-2: Input Rectifier D1 Torque Values

8.15 Test Procedure for IGBT Q1, Q2.

Part No: UOA705300 supplied complete with PCB WK-5012.

Type: CM100DUS-12F

Figure 8-16: View with PCB1 (WK-4961) removed.

Test Procedure:

- a. To check IGBT Q1, Q2 remove PCB1 (WK-4961) from the Power Source Refer to Figure 8-16
- b. Disconnect the connections from the terminals of IGBT Q1, Q2.
- c. Confirm there is no abnormal appearance on PCB7, PCB8 (WK-5012).
- d. Verify the IGBT Q1, Q2 Collector Emitter test using a diode tester.
- e. Verify the IGBT Q1, Q2 Gate Emitter test using an ohm meter.
- f. Refer to Table 8-3, Figure 8-17 and Figure 8-19 for the test points on IGBT Q1, Q2.

CAUTION

When installing the IGBT Q1, Q2 apply 3.5-4.5 N.m torque to the M5 mounting screws. Apply 2.5-3.5 N.m torque to the M5 Terminal screws. Clean and reapply heat sink compound (Shinetsu silicon G-747 or equivalent) uniformly to the base surface of the IGBT. Refer to Data Sheet for further detail.

COMPONENT TESTED	TERMINALS		TESTER	ACCEPTABLE
	Positive lead	Negative lead	MODE	VALUE
Collector-Emitter of Q1,	C1	C2E1	Diada Tast	Open circuit
Q2 with PCB7, PCB8	C2E1	C1	Didue Test	0.2 to 0.5V
Collector-Emitter of Q1,	C2E1	E2	Diada Tast	Open circuit
Q2 with PCB7, PCB8	E2	C2E1	Didue Test	0.2 to 0.5V
Gate-Emitter of Q1,Q2 with PCB7, PCB8	G1	E1	Ohms	2178-2222?
Gate-Emitter of Q1, Q2 with PCB7, PCB8	G2	E2	Ohms	2178-2222?

Table 8-3: IGBT Q1, Q2 Test Points

Figure 8-17: IGBT Q1,Q2 Test Points

Figure 8-18: IGBT Q1, Q2 Circuit

IGBT Q1, Q2 Torque Values (Refer to CAUTION Above)		
Mounting Screws M5 3.5-4.5 N.m		
Terminal Screws M5 2.5-3.5 N.m		

Table 8-4: IGBT Q1, Q2 Torque Values

8.16 Test Procedure for IGBT's Q3, Q4

Part No: UOA705400 supplied with PCB WK-3367 Type: GCA200CA60

Figure 8-19: View with PCB11 (WK-4963) and links removed

Test Procedure:

- a. In order to check IGBT Q3, Q4 remove PCB11 (WK-4963) and links from the Power Source See Figure 8-19.
- b. Disconnect the connections from the terminals of IGBT Q3, Q4.
- c. Confirm there is no abnormal appearance on PCB12, 13 (WK-3367).
- d. Verify the characteristic of the IGBT Q3, Q4 using a diode tester.
- e. Refer to Table 8-5 Figure 8-20 and Figure 8-21 for the test points on IGBT Q3, Q4.

CAUTION

When installing the IGBT Q3, Q4 apply 2.5-3.9 N.m torque to the M5 mounting screws and 1.5- 2.5 N.m torque to the M5 Terminal screws. Clean and reapply the heat sink compound (Shinetsu silicon G-747 or equivalent) uniformly to the base surface of the IGBT. Refer to Data Sheet for further detail.

COMPONENT TESTED	TERMINALS Positive lead		Tester Mode	ACCEPTABLE VALUE
Collector Emitter of 02				Onan airauit
Collector-Emiller of Q3,	UT (3)	62ET (T)	Diode Test	Open circuit
Q4 with PCB12, PCB13.	C2E1 (1)	C1 (3)	Diode 1631	0.2 to 0.4V
Collector-Emitter of Q3,	C2E1 (1)	E2 (2)	Diada Tast	Open circuit
Q4 with PCB12, PCB13.	E2 (2)	C2E1 (1)	Didue Test	0.2 to 0.4V
Gate-Emitter of Q3, Q4	61	E1	Ohme	2178-2222 ohme
with PCB12, PCB13	GI	LI	UIIIIS	2170-2222 011115
Gate-Emitter of Q3, Q4	62	E0	Ohme	2178-2222 ohme
with PCB12, PCB13	uz	LZ	011115	2110-2222 011115

Table 8-5: IGBT Q3, Q4 Test Points

Figure 8-20: IGBT Q3, Q4 Test Points

Figure 8-21: IGBT Q3, Q4 Circuit

IGBT Q3, Q4 Torque Values			
(Refer to CAUTION on Previous page)			
Mounting Screws M5	3.5-4.5 N.m		
Terminal Screws M5	2.5-3.5 N.m		

Table 8-6: IGBT Q3, Q4 Torque Values

8.17 Test Procedure for Secondary Diode D2, D3, D4, D5, D6

Part No: 4583A0060

Type: DBA200UA60

figure 8-22: View with PCB15 (WK-4962) and links removed.

Test Procedure:

- a. Check the condition of Secondary Diodes from machine Output Terminals with a diode tester. Connect the positive diode tester lead to the negative output terminal and the negative diode tester lead to the positive output terminal the reading should be 0.2- 0.3V. If this value is not obtained refer to individual diode tests as below.
- b. In order to check D2, D3, D4, D5, D6 remove PCB15 (WK-4962) and links from the Power Source See Figure 8-22.
- c. Disconnect the connections from the terminals of the Diode.
- d. Verify the characteristic of the Diode using a diode tester.
- e. Refer to Table 8-7 and Figure 8-23 for the test points on D2, D3, D4, D5, D6.

CAUTION

In the event of replacing a failed diode it is recommended that if the remaining diodes are more than 3 years old or have been subjected to heavy use they should also be replaced at that time.

CAUTION

When installing the Diode apply 1.0-1.4 N.m torque to the M4 mounting screws and 1.0-1.4 N.m torque to the M4 Terminal screws. Clean and reapply heat sink compound (Shinetsu silicon G-747 or equivalent) uniformly to the base surface of the Diode. Refer to Data Sheet for further detail.

COMPONENT TESTED	TERMINALS		TESTER	ACCEPTABLE
	Positive lead	Negative lead	MODE	VALUE
Diode1 of D2, D3, D4,	Anode	Cathode	Diode	0.2 to 0.3V
D5, D6	Cathode	Anode	Test	Open circuit
Diode2 of D2, D3, D4,	Anode	Cathode	Diode	0.2 to 0.3V
D5, D6	Cathode	Anode	Test	Open circuit

Table 8-7: D1, D2, D3, D4, D5, D6 Test Points

Diode D2 D3 D4 D5 D6 Torque Values (Refer to CAUTION on previous page)				
Mounting Screws M4	1.0-1.4 N.m			
Terminal Screws M4	1.0-1.4 N.m			

Table 8-8: Diodes D2, D3, D4, D5, D6 Torque Values

August 10, 2005

8.18 High Frequency Points Gap Adjustment.

The unit will generate a High Voltage component that can cause extreme personal harm and test equipment damage.

The H.F. unit is located underneath the heat sink assembly.

Confirm that the points are connected to H.F. Unit correctly and completely.

Confirm there is no dust or foreign debris between the space of the H.F. points.

If there are any abnormalities observed with the H.F. points, replace the H.F. points.

The H.F. points Gap is factory set for an optimal setting for most welding applications. It is recommended that the H.F. points Gap setting not be changed. The H.F. points Gap is factory set at 0.8mm.

If the H.F. points Gap is increased (larger than 0.8mm), the H.F. voltage increases and the frequency tends to decrease. If the H.F. points Gap is increased too much, H.F. will no longer be generated.

If the H.F. points Gap is decreased (smaller than 0.8mm), the H.F. voltage decreases and the frequency tends to increase.

Figure 8-24: HF Points

8.19 Replacing Pre Charge circuit components on PCB1 (WK-4961)

Pre Charge Kit Part Number : 710035

Contains the following: 1 x 12VDC 10A Relay (RY1)

1 x 12VDC 5A Relay (RY2)

1 x Resistor (R44)

Remove faulty components by carefully removing all solder using a de-soldering tool. Solder in replacement components as supplied with kit. Cover replaced components with an electrical grade varnish.

Art # A-05599

Figure 8-25: PCB1 (WK-4961) Pre Charge circuit components.

8.20 Replacing Cooling Fan/Gas Solenoid Driver circuit components on PCB2 (WK-4983)

Cooling Fan/Gas Solenoid Driver Kit Part Number : 710029

Contains the following: 1 x Transistor (Q20) Cooling Fan.

- 1 x Transistor (Q21) Cooling Fan
- 1 x Opto coupler (PHC4) Cooling Fan.
- 1 x Transistor (Q5) Gas Solenoid
- 1 x Opto coupler (PHC3) Gas Solenoid.

Remove faulty components by carefully removing all solder using a de-soldering tool. Solder in replacement components as supplied with kit. Cover replaced components with an electrical grade varnish.

Figure 8-26: WK-4983 Cooling Fan and Gas Solenoid Driver Components.

8.21 Replacing IGBT Q3, Q4 Gate Driver circuit components on PCB11 (WK-4963)

IGBT Q3, Q4 Gate Driver Components Kit Part Number : 710032

Contains the following: 1 x Resistor (R29), 1 x Resistor (R30), 1 x Resistor (R32)

- 1 x Resistor (R33)
- 1 x Zener Diode (ZD4)
- 1 x Zener Diode (ZD5)
- 1 x Opto coupler (PHC2).
- 1 x Opto coupler (PHC3).

Remove faulty components by carefully removing all solder using a de-soldering tool. Solder in replacement components as supplied with kit. Cover replaced components with an electrical grade varnish.

Figure 8-27: PCB11 (WK-4963) IGBT Q3, Q4 Gate Driver Components

SECTION 9: PARTS LIST

9.01 Equipment Identification

All identification numbers as described in the Introduction chapter must be furnished when ordering parts or making inquiries. This information is usually found on the nameplate attached to the equipment. Be sure to include any dash numbers following the Specification or Assembly numbers.

9.02 How To Use This Parts List

The Parts List is a combination of an illustration and a corresponding list of parts which contains a breakdown of the equipment into assemblies, subassemblies, and detail parts. All parts of the equipment are listed except for commercially available hardware, bulk items such as wire, cable, sleeving, tubing, etc., and permanently attached items which are soldered, riveted, or welded to other parts. The part descriptions may be indented to show part relationships.

To determine the part number, description, quantity, or application of an item, simply locate the item in question from the illustration and refer to that item number in the corresponding Parts List.

SPEC NUMBERS:

300TSW: 208-230/460V 50/60Hz, 1/3 phase 10-3074

9.03 300 TSW Parts List

Ref. Des.	Qty.	Description	Part Number
CC	1	Coupling Coil - F2A677800 CC	10-6767
CON1	1	Remote Socket - MS3102A20-27S	10-6768
CT1	1	Current Sensor -HC-TN200V4B15M 200A 4V	10-5003
D1	1	Diode - DFA100BA160	10-6769
D2	1	Diode -DBA200UA60	10-6629
D3	1	Diode - DBA200UA60	10-6629
D4	1	Diode - DBA200UA60	10-6629
D5	1	Diode - DBA200UA60	10-6629
D6	1	Diode - DBA200UA60	10-6629
D6	1	Diode - DBA20011A60	10-6629
FAN	i	Fan - 109E5724H507 DC 24V 16 8W (with Wire)	10-6770
FCH	i	Inductor - F2A677600 FCH	10-6771
HELINIT	1	HE linit (WK-4840 102)	10-6632
	1	HE $G_{20} = 100A601100$	10-6633
1105	1	Inductor - 1615MRE RING CORE	10-6538
	1	DCR WK-4061 1101 MAIN DCR (with Cable ERA521700)	10-0330
FUDI	I	with Thunder Label	10 6779
0000	4		10-0772
	1	PGD, WK-4903 UUT GIL.3UURGE DCD WK 4910 UG1 DETECT DCD	10-0773
	1		10-0033
PUB4	1	PUB, WK-4984 UUT IGBT DRIVER	10-0//4
PUB5	ļ	PUB, WK-5157 UU5 AU UUNIKUL	10-6846-1
PCB6		PCB, WK-5037 UU2 AC TIG PANEL	10-6/75
PCB9	1	PCB, WK-4917 UU4 FILIER 480V	10-6740
PCB10	1	PCB, WK-49/0 U01 START.PCB	10-6776
PCB11	1	PCB, WK-4963 U01 2 IGBT PCB	10-6///
PCB14	1	PCB, WK-5100 U01 DISCHARGE PCB	10-6778
PCB15	1	PCB, WK-5246 U01 DI. SNUBBER	
		with Thunder Label	10-6852
PCB16	1	PCB, WK-5040 U01 C TYPE RELAY	10-6780
PCB17	1	PCB, WK-5248 U01 GATE PCB-2	10-6853
PCB18	1	PCB, WK-5248 U01 GATE PCB-2	10-6853
PCB19	1	PCB, WK-5249 U01 RESISTOR PCB	10-6876
Q1	1	Transistor - CM100DUS12F-1 600V 100A	
		(with WK-5247 U01)	10-6856
Q2	1	Transistor - CM100DUS12F-1 600V 100A	
		(with WK-5247 U01)	10-6856
Q3	1	Transistor - GCA200CA60 (with WK-3367 U04)	10-6643
Q4	1	Transistor - GCA200CA60 (with WK-3367 U04)	10-6643
R2	1	Resistor - ERF20HMJ151 20W 150?	10-5081
R3	2	Resistor - JG23V101J 68W 100?	10-5137
S1	1	Switch - DCP-103SR100C-480V 3P	10-6857
S2	1	Switch - SDKGA4-A-1-A	10-6781
SOL	1	Solenoid Valve - 5505NBR1 5 DC24V 11VA/10W	
002	·	(with Gas Inlet and PC4-02)	10-6645
T1	1	Transformer - E2A705700 MTR	10-6782
T2	1	Transformer - E2A705700 MTR	10-6782
T3	1	Transformer - $F2A869300 3000 \Delta C/DC DT$	10-6877
TH1 2	1	Thermistor - FBTA53D203 (Two-niece group)	10_678/
· · · · · , ~	1		10-0704

Ref. Des.	Qty.	Description	Part Number
	1	Front Panel - E0D004800	10-6785
	1	Rear Panel - E0D004900	10-6786
	2	Side Panel - E0D006200	10-6787
	1	Front Control Cover -J4B570500	10-6788
	1	Rear Control Cover - JDA173300	10-6789
	1	Protection Cover -E0C299200	10-6790
	1	Encoder Cover - EBA514400	10-6654
	1	PCB Cover - E1B547900	10-6792
	2	Name Label - N4A056400	10-6793
	2	Side Label - N4A009200	10-6657
	1	VRD Label - N4A155900	Ref. Only
	1	Warranty Label - N4A155800	Ref. Only
	1	Warning Label 1 - NOB891300	10-5497
	1	Warning Label 2 - N0B476400	10-5496
	1	Output Terminal Label - N4A040600	10-6794
	1	Gas Input Label - N4A040700	10-6733
	1	Gas Outlet - E5A925600 (with PC4-02)	10-6659
	2	C-Ring	10-5184
	2	Output Terminal (female) - TRAK-BE35-70S	10-6660
	1	Input Cable - SOOW AWG8X4C L=3.4m	Ref. Only
	1	Input Cable Clamp - EBA156800	10-6795
	1	Heatsink - E1B548900 FIN 1	10-6796
	1	Heatsink - E1B549000 FIN 2	10-6797
	1	Knob - 2628603	10-6798
	1	Knob Cap - 3028104	10-6799
	1	Control Cover Sheet - NOB882700	10-6800
	1	Flat Cable - EAA547301	10-6668
	3	Post11 (S1) - EBA643600 (M5-M5) 9	10-6751
	3	Post2 (Q4) - EBA425000 (M5)11.4	10-6801
	9	Post3 (D1,Q1,Q2) - EBA425100 (M5-M5)23	10-6802
	8	Post421 (D2-6) - BSB421 (M4)7.0	10-6803
	4	Post410 - 4SQ10	10-6867
	3	S1 Bus Bar - ECA321000	10-6868
	1	Transformer Bus Bar 1 - EBA365600	10-6804
	2	Q2.3 Bus Bar 1 - EBA429000	10-6806
	1	Q2,3 Bus Bar 2 - EBA429100	10-6807
	1	Q-(+) Bus Bar - EBA501200	10-6808
	1	D Bus Bar 2 - EBA364800	10-6810
	1	D Total Bus Bar 1 - ECA129100 D Total Bus Bar 1	10-6870
	1	D Total Bus Bar 3 - ECA129300 D Total Bus Bar 3	10-6871
	1	D Total Bus Bar 4 - ECA129400 D Total Bus Bar 4	10-6872
	1	D Total Bus Bar 5 - ECA129600A D Total Bus Bar 5	10-6878
	1	D Total Bus Bar 6 - ECA129700 D Total Bus Bar 6	10-6879
	4	Clip - #74 NATURAL (Plastic Tab)	10-5259

Ref. Des.	Qty.	Description	Part Number
	1	Right Chassis - J2C977100	10-6814
	1	Left Chassis - J2C976800	10-6815
	1	PCB10 Chassis - JDA013400	10-6816
	1	Transformer Chassis 2 - JDA024800	10-6817
	1	Transformer Chassis 1 - JDA026000	10-6818
	1	Transformer Hold Chassis 2 - JDA064300	10-6819
	2	Transformer Sheet - EBA460900	10-6820
	1	14-Pin Con Cover Set - 1070500-20 (with String and Clip)	10-6821
	1	Nylon Hose - T0425B Nylon Hose L=0.5m	10-6681
	2	Output Terminal (male) - TRAK-SK50	10-2020
	1	Operating Manual - K1A208900 300TSW	430429-511
	1	Service Manual	0-4752

APPENDIX 1: GENERAL INFORMATION

• Note the model and specification number shown on the equipment nameplate.

APPENDIX 2: PRO-WAVE 300 TSW PARTS ARRANGEMENT

Art # A-05602

APPENDIX 3: PRO-WAVE 300 TSW INTERCONNECTION DIAGRAM

Art # A-05603

Global Customer Service Contact Information

Thermadyne USA

82 Benning Street West Lebanon, NH 03784 USA Telephone: (603) 298-5711 800-752-7621 Fax: 800-221-4401 Email: sales@thermalarc.com

Thermadyne Victor Brasil

Avenida Brasil 13629-Cordovil Rio de Janeiro, Brazil 21012-351 Telephone: 55-21-2485-8998 Fax: 55-21-2-485-8735

Thermadyne Chile

Piloto Lazo #90 Cerrillos Santiago, Chile 7278-654 Telephone: 56-2-557-2465 Fax: 56-2-557-5349

Thermadyne Europe

Europe Building Chorley North Industrial Park Chorley, Lancashire England, PR6 7Bx Telephone: 44-1257-261755 Fax: 44-1257-224800

Thermadyne Asia Pacific Pte Ltd 5 Shenton Way #37-02 / 38-02 UIC Building Singapore 068808 Telephone: 65-6832-8066 Fax : 65+ 6763 5812

Thermadyne, China RM 102A 685 Ding Xi Rd Chang Ning District Shanghai, PR, 200052 Telephone: 86-21-69171135 Fax: 86-21-69171139

Thermadyne Asia Sdn Bhd Lot 151, Jalan Industri 3/5A Rawang Integrated Industrial Park - Jln Batu Arang 48000 Rawang Selangor Darul Ehsan West Malaysia Telephone: 603+ 6092 2988 Fax : 603+ 6092 1085

Cigweld, Australia 71 Gower Street Preston, Victoria Australia, 3072 Telephone: 61-3-9474-7400 Fax: 61-3-9474-7510

Corporate Headquarters

82 Benning Street West Lebanon, NH 03784 USA Telephone: (603) 298-5711 800-752-7621 Fascimile: 800-221-4401 Email: sales@thermalarc.com

www.thermalarc.com

