Physics 610 Problem Set 2

due: Thursday, November 6, 2014

In working each of these problems, error on the side of verbosity, showing all steps, without assuming the professor knows what is in your mind.

- 1. In the low energy limit, the exchange of a virtual particle of mass m corresponds to a potential with a range $\sim 1/m$.
 - (a) What is the range for the Z^0 gauge boson exchange?
 - (b) Compare this to the size of the hydrogen atom.
 - (c) Comment on your expectation for the effect of the \mathbb{Z}^0 exchange on atomic binding energies?
- 2. By varying the QED Lagrangian relative to the EM field A_{μ} , show that Maxwell's equations are obtained.
- 3. The Z^0 width to lepton pairs $\Gamma_{Z\to e^+e^-}$ has been measured to be 83.91±0.12 MeV. From this measured value and the measured values for M_Z and $sin^2\theta_W$, calculate $g^2/4\pi$. Compare this value to the value obtained from using

$$\frac{g^2}{4\pi} = \frac{1}{\sin^2 \theta_W} \alpha$$

where α is evaluated at the weak scale ($\alpha \approx 1/128$).

4. The cross-section for $e^+e^- \to Z^0 \to f\overline{f}$ is proportional to the square of the coupling of the Z^0 to the electron times the square of the coupling of the Z^0 to the fermion, f. Calculate

$$A_{LR} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R}$$

as a function of $sin^2\theta_W$, where $\sigma_L(\sigma_R)$ is the cross-section for left-handed (right-handed) electrons. Evaluate this for $sin^2\theta_W = 0.23$ and compare it to the experimental value given in the Particle Data Book. Comment on the comparison.

- 5. Consider an SU(2) invariant theory where the Higgs field is chosen to be an SU(2) triplet of <u>real</u> fields, like W_1 , W_2 , and W_3 . That choice might seem like a good way to try to give mass to the gauge bosons, with three W fields and 3 Higgs fields.
 - (a) Write the Lagrangian for the Higgs sector.
 - (b) Write the Higgs Lagrangian in terms of the covariant derivative, $\partial_{\mu} ig\mathbf{T} \cdot \mathbf{W}_{\mu}$.
 - (c) Study the terms that give mass to the W's. The triplet representation of T_k can be chosen as $-i\epsilon_{ijk}$. Show that only W_1 and W_2 get mass by this procedure.