Physics 662

Particle Physics Phenomenology

January 27, 2004

Weak Interactions

- Classification \checkmark Lepton Universality 🗸 Nuclear β-decay: Fermi theory \checkmark Inverse β-
 - (continued)
 - Parity nond Observation of W^{\pm} and Z^{0} bosons in p Helicity of collisions \checkmark The V-A in
- Z^o production at e⁺e⁻ colliders ✓ Conservati *
 - The weak ! . Weak decays of quarks. The GIM model and Pion and M the CKM matrix \checkmark Neutral we
 - Neutral K mesons
 - CP violation in the neutral kaon system
 - Cosmological CP violation
 - $D^0-\overline{D^0}$ and $B^0-\overline{B^0}$ mixing

I	I_3	S	Meson	Quark combination	Decay	Mass, MeV
$\frac{1}{2}$	$\frac{1}{2}$	+1	K^+	us	$K^+ \to \mu \nu$	494
$\frac{1}{2}$	$-\frac{1}{2}$	+1	K^0	$d\bar{s}$	$K^0 \to \pi^+\pi^-$	498
$\frac{1}{2}$	$-\frac{1}{2}$	-1	K^-	$\bar{u}s$	$K^- \to \mu \nu$	494
$\frac{1}{2}$	$\frac{1}{2}$	-1	$ar{K}^0$	$\bar{d}s$	$\bar{K}^0 \to \pi^+\pi^-$	498

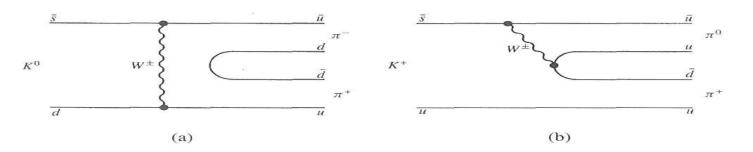
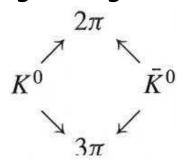



Fig. 7.18. Quark diagrams for $K \to 2\pi$ decay. (a) $K^0 \to \pi^+\pi^-$; (b) $K^+ \to \pi^+\pi^0$.

 K^0 and $\overline{K^0}$ are particle and antiparticle related by charge conjugation reversal of I_3 and change of strangeness $\Delta S = 2$ These particles are clearly distinctive in strong interaction, since SI conserves isospin and strangeness However, in propagating through free space, mixing occurs:

a pure K^0 state at t=0 will become a mixed state:

$$|K(t)\rangle = \alpha(t)|K^{0}\rangle + \beta(t)|\bar{K}^{0}\rangle$$

CP eigenstates can be defined for the K⁰ mesons

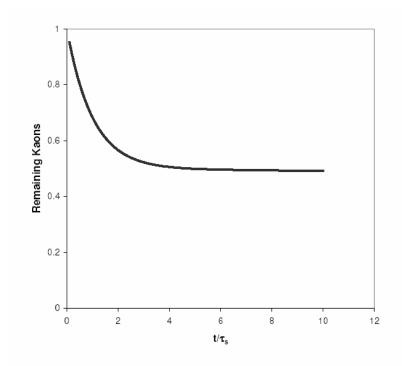
 K^0 and $\overline{K^0}$ are not CP eigenstates:

$$CP|K^{0}\rangle \to \eta|\bar{K}^{0}\rangle, \qquad CP|\bar{K}^{0}\rangle \to \eta'|K^{0}\rangle$$

we can form the linear combinations:

$$|K_S\rangle = \sqrt{\frac{1}{2}} \left(|K^0\rangle + |\bar{K}^0\rangle \right), \qquad CP = +1$$

 $|K_L\rangle = \sqrt{\frac{1}{2}} \left(|K^0\rangle - |\bar{K}^0\rangle \right), \qquad CP = -1$


resulting in:

$$CP|K_S\rangle \to |K_S\rangle, \qquad CP|K_L\rangle \to -|K_L\rangle$$

Consider K⁰ production and subsequent decay

Why don't the K⁰'s decay away with a single exponential?

 K^{0} 's are mixtures of K_{S} and K_{L}

$$K_S \to 2\pi (CP = +1), \qquad \tau_S = 0.893 \times 10^{-10} \text{ s}$$

 $K_L \to 3\pi (CP = -1), \qquad \tau_L = 0.517 \times 10^{-7} \text{ s}$

It can be shown that the 2π state has CP = +1, and the 3π state has CP = -1

Thus, if CP is conserved,

$$K_S = \sqrt{\frac{1}{2}}(K^0 + \bar{K}^0) \to 2\pi(CP = +1),$$

 $K_L = \sqrt{\frac{1}{2}}(K^0 - \bar{K}^0) \to 3\pi(CP = -1),$

Since the 2 and 3-pion decays have different Q values, the decay rates are different:

$$K_S \to 2\pi (CP = +1), \qquad \tau_S = 0.893 \times 10^{-10} \text{ s}$$

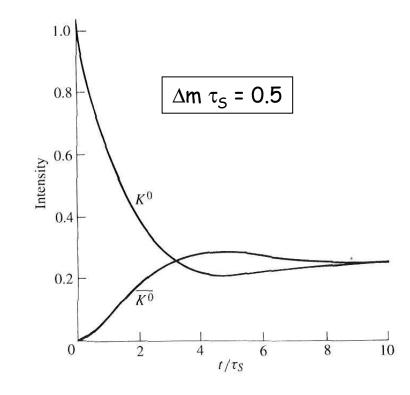
 $K_L \to 3\pi (CP = -1), \qquad \tau_L = 0.517 \times 10^{-7} \text{ s}$

which is why the CP=+1 state is called K-short(K_s) and the CP=-1 state is called K-long (K_L)

Strangeness oscillations

$$A_S(t) = A_S(0)e^{-(\Gamma_S/2 + im_S)t}$$

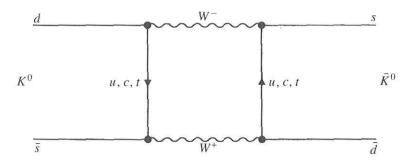
$$A_L(t) = A_L(0)e^{-(\Gamma_L/2 + im_L)t}$$


$$I(K^{0}) = \frac{1}{2} [A_{S}(t) + A_{L}(t)] [A_{S}^{*}(t) + A_{L}^{*}(t)]$$
$$= \frac{1}{4} [e^{-\Gamma_{S}t} + e^{-\Gamma_{L}t} + 2e^{-(\Gamma_{S} + \Gamma_{L})t/2} \cos \Delta mt]$$

Assuming an initially pure K^0 beam, so $A_S(0) = A_L(0) = 1/\sqrt{2}$

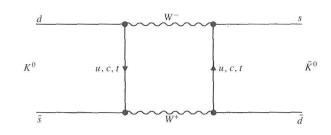
$$\Delta m = m_L - m_S$$

$$I(\bar{K}^{0}) = \frac{1}{4} [e^{-\Gamma_{S}t} + e^{-\Gamma_{L}t} - 2e^{-(\Gamma_{S} + \Gamma_{L})t/2} \cos \Delta mt]$$


$$\Delta m = (3.491 \pm 0.009) \times 10^{-12} \text{ MeV}$$

This mass diff<u>er</u>ence corresponds to the rate at which K^o oscillates into K^o.

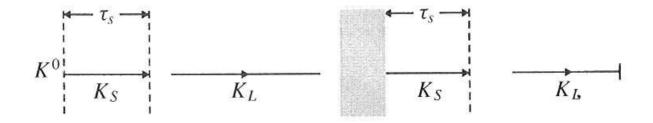
This oscillation proceeds through the second-order weak


interaction

The c quark dominates (CKM matrix)

$$\Delta m = \frac{G^2}{4\pi} m_K f_K^2 m_c^2 \cos^2 \theta_c \sin^2 \theta_c$$

$$\Delta m = \frac{G^2}{4\pi} m_K f_K^2 m_c^2 \cos^2 \theta_c \sin^2 \theta_c$$



 f_K is the called the "kaon decay constant" $f_K \approx 1.2~m_\pi$

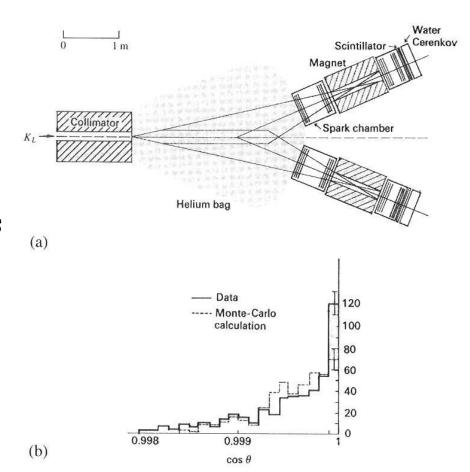
 $m_K f_K^2$ relates to $|\psi(0)\>|^2$, the wavefunction at the origin, or the point at which the quarks interact

measurement of m allowed the mass of the charmed quark to be estimated ($m_c \approx 1.5 \text{ GeV}$) before it was discovered.

K⁰ Regeneration

$$K_L = \frac{1}{\sqrt{2}} \left(K^0 - \bar{K}^0 \right)$$

 K^0 and $\overline{K^0}$ are absorbed differently


$$^{1}/_{\sqrt{2}}$$
 (fK⁰- \overline{f} K̄⁰) = $^{1}/_{2}$ (f+ \overline{f})K_L + $^{1}/_{2}$ (f- \overline{f})K_S

K_L is the CP=-1 eigenstate, and is not supposed to decay to two pions, just to three pions

1964 - experiment finds that K_L does decay to two pions with BR = 0.003

$$K_L \to \pi^+\pi^-$$
 (0.002)
 $K_L \to \pi^0\pi^0$ (0.001)

This violates CP since K_L was is the CP=-1 eigenstate, but the CP of two pions is +1

Let K_1 represent the CP = +1 state and K_2 the CP = -1 state

$$K_L = \frac{1}{\sqrt{1 + |\varepsilon|^2}} (K_2 + \varepsilon K_1)$$

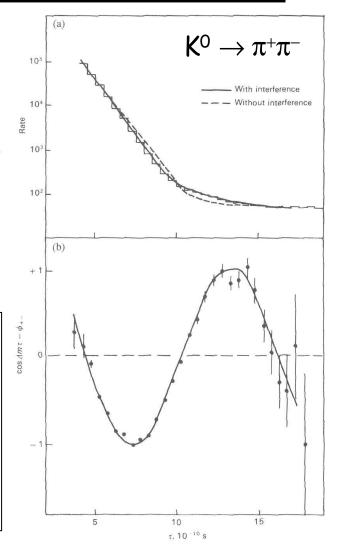
$$K_S = \frac{1}{\sqrt{1 + |\varepsilon|^2}} (K_1 - \varepsilon K_2)$$

 ϵ is a small parameter quantifying the CP violation, which must be determined experimentally

$$|\eta_{+-}| = \frac{\text{ampl}(K_L \to \pi^+ \pi^-)}{\text{ampl}(K_S \to \pi^+ \pi^-)} = (2.29 \pm 0.02) \times 10^{-3}$$

$$|\eta_{00}| = \frac{\text{ampl}(K_L \to \pi^0 \pi^0)}{\text{ampl}(K_S \to \pi^0 \pi^0)} = (2.28 \pm 0.02) \times 10^{-3}$$

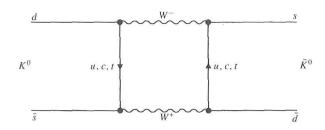
Interference between K_S and K_L Amplitudes


$$\frac{I_{2\pi}(t)}{I_{2\pi}(0)} = e^{-\Gamma_S t} + |\eta_{+-}|^2 e^{-\Gamma_L t} + 2|\eta_{+-}| e^{-[(\Gamma_L + \Gamma_S)/2]t} \cos(\Delta m t + \phi_{+-})$$

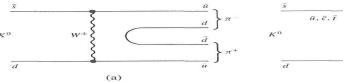
where φ is the phase angle between the K_s and K_L amplitudes

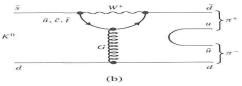
CPLEAR
$$p\bar{p} \rightarrow K^-\pi^+K^0$$

 $p\bar{p} \rightarrow K^+\pi^-\bar{K}^0$


Measured asymmetry between K⁰ and K⁰

$$A_{+-}(t) = \frac{2|\eta_{+-}|e^{[(\Gamma_S - \Gamma_L)/2]t}\cos(\Delta m t + \phi_{+-})}{1 + |\eta_{+-}|^2 e^{(\Gamma_S - \Gamma_L)t}}$$
$$\phi_{+-} = 43.7^{\circ} \pm 0.6^{\circ} \qquad \phi_{00} = 43.5^{\circ} \pm 1.0^{\circ}$$




There are two possible sources of CP violation in the K^0 decay:

1. Indirect CP violation - admixture of ϵ

2. Direct CP violation $\Rightarrow \epsilon'$, from interference

Penguin diagram

Fig. 7.24. (a) 'Tree' diagram showing
$$K^0 \to 2\pi$$
 decay via W^\pm exchange; (b) 'penguin' diagram showing $K^0 \to 2\pi$ decay via the intermediary \bar{u} , \bar{c} , \bar{t} quark states. The interference between diagrams (a) and (b) gives rise to a non-trivial phase factor and 'direct' CP violation shown in the decay process itself, rather than the 'indirect' CP violation shown in the 'box' diagram of Figure 7.20, where the mass eigenstates themselves are mixed states of even and odd CP .

$$\eta_{+-} = |\eta_{+-}|e^{i\phi_{+-}} \simeq \varepsilon + \varepsilon'$$
 $\eta_{00} = |\eta_{00}|e^{i\phi_{00}} \simeq \varepsilon - 2\varepsilon'$

Measuring precisely ϵ'/ϵ has been a major effort at CERN and Fermilab for many years

$$\frac{\varepsilon'}{\varepsilon} = (2.2 \pm 0.4) \times 10^{-3}$$

Direct CP violation is established.

This is a puzzle for the Standard Model because the interference (and therefore ε') should be small with m_t = 175 GeV

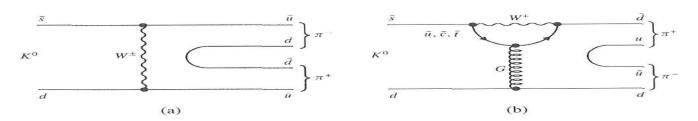


Fig. 7.24. (a) 'Tree' diagram showing $K^0 \to 2\pi$ decay via W^\pm exchange; (b) 'penguin' diagram showing $K^0 \to 2\pi$ decay via the intermediary \bar{u} , \bar{c} , \bar{t} quark states. The interference between diagrams (a) and (b) gives rise to a non-trivial phase factor and 'direct' CP violation shown in the decay process itself, rather than the 'indirect' CP violation shown in the 'box' diagram of Figure 7.20, where the mass eigenstates themselves are mixed states of even and odd CP.

CP Violation in leptonic decays

$$K_L \rightarrow e^+ + \nu_e + \pi^-$$

 $K_L \rightarrow e^- + \bar{\nu}_e + \pi^+$

These decays transform into one another under the CP operation, so CP-invariance demands they be equal

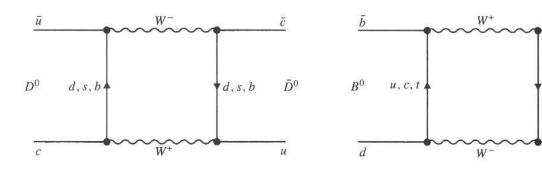
$$\Delta = \frac{\text{rate}(K_L \to e^+ + \nu_e + \pi^-) - \text{rate}(K_L \to e^- + \bar{\nu}_e + \pi^+)}{\text{rate}(K_L \to e^+ + \nu_e + \pi^-) + \text{rate}(K_L \to e^- + \bar{\nu}_e + \pi^+)}$$
$$= (0.327 \pm 0.012) \times 10^{-2}$$

Since e^+ must come from K^0 and e^- from $\overline{K^0}$

$$\Delta = \frac{|1+\varepsilon|^2 - |1-\varepsilon|^2}{|1+\varepsilon|^2 + |1-\varepsilon|^2} \simeq 2\operatorname{Re}\varepsilon$$

$$\Rightarrow \Delta(\varepsilon' = 0) = 2\eta\cos\phi = (0.332 \pm 0.004) \times 10^{-2}$$
Physics 662, lecture 6

Superweak Interaction?


Wolfenstein postulated (1964) that CP violation arises from a new superweak interaction ($\Delta S = 2$)

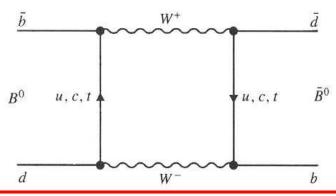
Prediction:

 $\varepsilon' = 0$ (no Direct CP violation) which now appears to be ruled out

$D^0-\overline{D^0}$ and $B^0-\overline{B^0}$ mixing

Mixing which is seen for Kaons, can also occur in charm and bottom mesons

Mixing in the charm meson is very small:


the b quark diagram depends on $|V_{cb}V_{ub}|^2 \approx |0.04 \times 0.005|^2 \approx |0.0002|^2 \approx 4 \times 10^{-8}$

and the s quark diagram is suppressed by the small value of the s quark mass

$D^0-\overline{D^0}$ and $B^0-\overline{B^0}$ mixing

Mixing in the bottom meson is dominated by the t quark exchange,

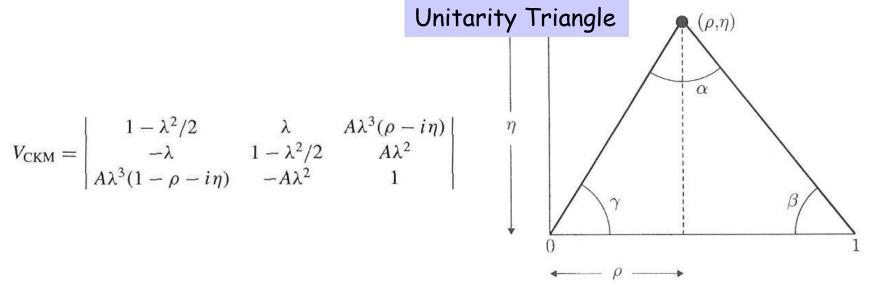
and is substantial

for kaons we had
$$P(t)dt = \frac{\Gamma e^{-\Gamma t}}{2} \left[\frac{e^{-y\Gamma t}}{2} + \frac{e^{+y\Gamma t}}{2} \pm \cos x\Gamma t \right] dt$$

$$\Gamma = (\Gamma_S + \Gamma_L)/2 \approx \Gamma_S/2; \ \ y = (\Gamma_S - \Gamma_L)/2\Gamma \approx 1; \ x = \Delta m/\Gamma \approx 0.95$$

For Bs,
$$\Gamma$$
 = $(\Gamma_S + \Gamma_L)/2$
y = $(\Gamma_S - \Gamma_L)/2\Gamma \approx 0$ (B° and \overline{B}^0 decay to common channels)
x = Δ m / Γ

$$P(t)dt = \frac{\Gamma e^{-\Gamma t}}{2} \left[\begin{array}{c} \mathbf{1} & \pm \cos x \Gamma t \\ \end{array} \right] dt$$
Physics 662, lecture 6


Do-Do and Bo-Bo mixing

CKM matrix should be unitary

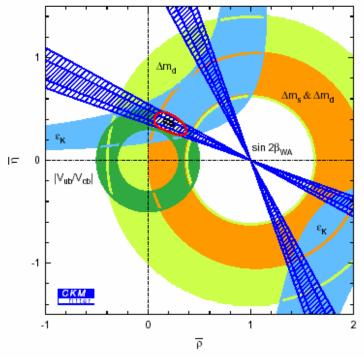
$$V_{\text{CKM}} = \begin{vmatrix} V_{ud} = 0.975 & V_{us} = 0.221 & V_{ub} = 0.005 \\ V_{cd} = 0.221 & V_{cs} = 0.974 & V_{cb} = 0.04 \\ V_{td} = 0.01 & V_{ts} = 0.041 & V_{tb} = 0.999 \end{vmatrix}$$

Therefore off-diagonal

terms will vanish, such as:
$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

Physics 662, lecture 6

CP Violation in the B System


CP violation shows up as large asymmetries in decay modes with very small BRs

eg.
$$B^0 \to J/\psi~K_S{}^0$$

$$R \propto e^{-t/\tau} (1 \pm \sin 2\beta \sin \Delta m t)$$

BaBar

$$\sin 2\beta = 0.741 \pm 0.067 \text{ (stat)} \pm 0.034 \text{ (syst)}$$

 $hep\text{-}ex/0207042$
 $88 \text{ million BB decays}$

Cosmological CP violation

- 1966 Sakharov showed that three conditions are required for the baryon asymmetry of the Universe to have developed
 - 1) B-violating interactions
 - 2) a non-equilibrium situation
 - 3) CP and C violation

The CP violation observed in the K and B systems is not sufficient to explain the baryon asymmetry additional CP violation must occur

Weak Interactions

Classification \checkmark Lepton Universality 🗸 Nuclear β-decay: Fermi theory \checkmark (continued) ✓ Inverse β-Parity nond • Observation of W^{\pm} and Z^{0} bosons in pp Helicity of collisions 🗸 The V-A in Z^o production at e⁺e⁻ colliders ✓ Conservati • The weak ! . Weak decays of quarks. The GIM model and Pion and M the CKM matrix \checkmark Neutral we Neutral K mesons 🗸 CP violation in the neutral kaon system 🗸 Cosmological CP violation D^0 - D^0 and B^0 - B^0 mixing \checkmark