Weak Interactions

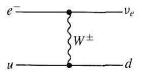
- History of Weak Interaction Theory
- Neutral Weak Currents
- Classification
- Lepton Universality
- W-lepton Interactions
- · Weak decays of quarks and the GIM model
- CKM matrix
- b Decays
- · Top Quark
- · Helicity of the Neutrino

J. Brau

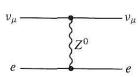
Physics 662, Weak Interactions

1

Weak Interaction Theory


- 1890's Beta decay discovered.
- 1930's Pauli proposed neutrino & Fermi developed theory based on four-fermion contact interaction.
- 1938 Heavy <u>charged particle exchange</u> proposed for beta decay by Oscar Klein.
- 1960's Unified theory of weak and EM interactions with heavy <u>neutral particle exchange</u> proposed by Glashow, Salaam & Weinberg.
- 1972 Neutral current interactions observed at CERN.

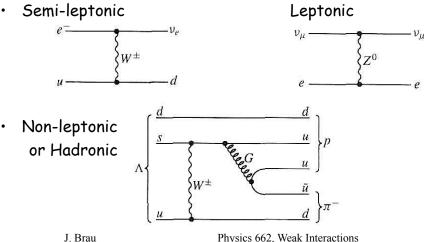
Classification


- Weak interactions are mediated by the "intermediate bosons" W[±] and Z⁰ (M ~ 80-90 GeV \rightarrow R ~ 10⁻¹⁶ cm)
- Just as the EM force between two current carrying wires depends on the EM current, the weak interaction is between two weak currents, describing the flow of conserved weak charge, g

$$j \propto \psi^* \psi$$

- Two types of interactions:
 - CC (charged current)

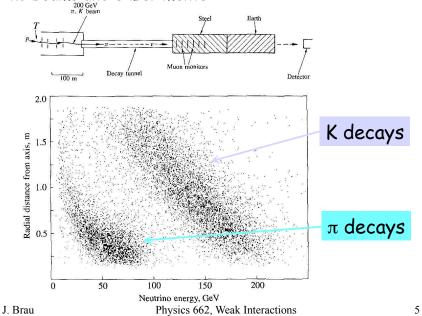
- NC (neutral current)


J. Brau

Physics 662, Weak Interactions

3

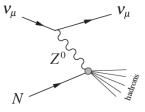
Classification


Weak interactions occur between all types of leptons and quarks, but are often hidden by the stronger EM and strong interactions.

Physics 662, Weak Interactions

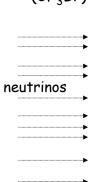
Neutral weak currents

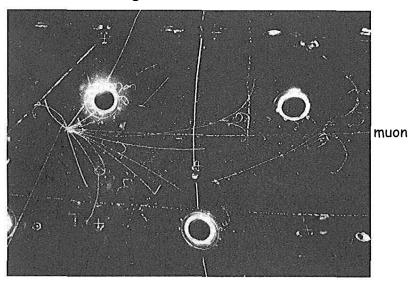
Neutrino beams and experiments


Neutral weak currents

Accelerator neutrino beams gave evidence in 1962 for lepton flavors

$$\nu_{\mu} + N \to \mu^{-} + X$$
$$\nu_{e} + N \to e^{-} + X$$

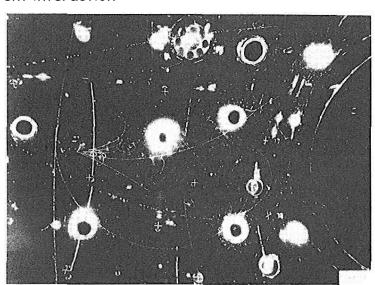

 In 1973, neutrino interactions without a charge lepton were discovered: Neutral-current events


$$\begin{split} \nu_{\mu} + N &\rightarrow \nu_{\mu} + X \\ \bar{\nu}_{\mu} + N &\rightarrow \bar{\nu}_{\mu} + X \\ \nu_{\mu} + e^{-} &\rightarrow e^{-} + \nu_{\mu} \\ \bar{\nu}_{\mu} + e^{-} &\rightarrow e^{-} + \bar{\nu}_{\mu} \end{split}$$

Neutral weak currents

- · Charge current interaction (Gargamelle bubble chamber CERN)
- 15 tons Freon (CF_3Br)


J. Brau


Physics 662, Weak Interactions

-7

Neutral weak currents

· Neutral current interaction

J. Brau

Physics 662, Weak Interactions

Neutral weak currents

- The discovery of neutral current interactions established the unified theory of weak and electromagnetic interactions
- Estimates of the masses of the W^{\pm} and Z^{0} were possible
- Once the masses were known, experiments could be planned to search for the intermediate bosons

J. Brau

Physics 662, Weak Interactions

9

Lepton universality

- · Unit of weak charge
 - all the leptons carry the same weak charge and therefore couple to the W^{\pm} with the same strength
 - The quarks DO NOT carry the same unit of weak charge
- Muon decay

$$\Gamma(\mu \to e \nu_e \bar{\nu}_\mu) = \frac{1}{\tau} \propto G^2 m_\mu^5$$
$$= \frac{G^2 m_\mu^5}{192\pi^3}$$

• experimental: $\tau_u = 2.197 \times 10^{-6} \text{ sec}$

Lepton universality

· Tau decay

$$\Gamma(\tau \to e \nu_e \bar{\nu}_{\tau}) = B(\tau \to e \nu \nu) \frac{1}{\tau} \propto G^2 m^5_{\tau}$$

$$= \frac{G^2 m^5_{\tau}}{192\pi^3}$$

- $B(\tau \rightarrow e \nu \nu) = 17.80 \pm 0.06\%$
- Test universality: since $\Gamma \sim G^2 \sim g^4$

$$g_{\tau}^{4} \propto B(\tau \rightarrow e \nu \nu) / (m_{\tau}^{5} \tau_{\tau})$$

$$\left(rac{g_{ au}}{g_{\mu}}
ight)^4 = B(au
ightarrow e
u_e ar{
u}_{ au}) \left(rac{m_{\mu}}{m_{ au}}
ight)^5 \left(rac{ au_{\mu}}{ au_{ au}}
ight)$$

J. Brau

Physics 662, Weak Interactions

11

Lepton universality

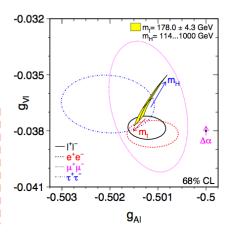
· Test universality:

$$\left(\frac{g_{\tau}}{g_{E}}\right)^{4} = B(\tau \rightarrow ev_{e}\bar{v}_{\tau})\left(\frac{m_{\mu}}{m_{\tau}}\right)^{5}\left(\frac{\tau_{\mu}}{\tau_{\tau}}\right)$$

With $\tau_{\mu} = 2.197 \times 10^{-6} \text{ s}$, $\tau_{\tau} = (291.0 \pm 1.5) \times 10^{-15} \text{ s}$, $m_{\mu} = 105.658 \text{ MeV}$ $m_{\tau} = 1777.0 \text{ MeV}$ and $B(\tau \rightarrow e \nu \nu) = 17.80 \pm 0.06\%$

$$\frac{g_{\tau}}{g_{\mu}} = 0.999 \pm 0.003$$

$$\frac{g_{\mu}}{g_e} = 1.001 \pm 0.004$$

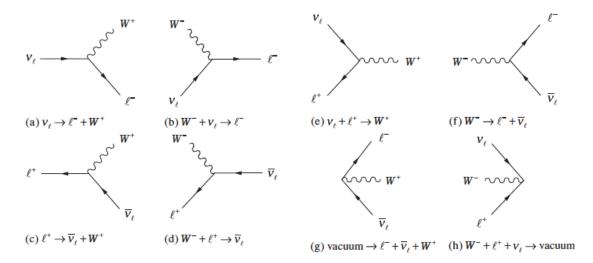

Lepton universality

· Lepton universality also holds for the Z couplings:

$$Z^0 \rightarrow e^+e^- : \mu^+\mu^- : \tau^+\tau^- = 1 : 1.000 \pm 0.004 : 0.999 \pm 0.005$$

 From the muon lifetime we can compute the Fermi constant, G:

$$G/(\hbar c)^3 = 1.1664 \times 10^{-5} \text{ GeV}^{-2}$$



J. Brau

Physics 662, Weak Interactions

13


W-lepton Interactions

Plus all particles replaced by anti-particles

Strength of W-lepton Interaction

- $\Gamma(W\rightarrow ev)\approx 0.230\pm 0.008~GeV$ Since only mass scale is W
 - (lepton masses are negligible):
- $\Gamma(W\rightarrow ev) \approx a_W M_W$

- So $a_W = 0.230 \, GeV/80.4 \, GeV = .003 = 1/350$
 - This is on the same scale as a = 1/137
 - Note: precise theoretical calculation yields

$$\Gamma(W \rightarrow ev) \approx 2\alpha_W M_W/3$$

and $\alpha_W = .0043 \pm .0002 = 1/233 = 0.6 \alpha$

J. Brau

Physics 662, Weak Interactions

15

Weak decays of quarks

 ΔS = 1 weak decays are suppressed relative to ΔS = 0 weak decays by a factor of about 20

$$\Sigma^-
ightarrow n + e^- + \bar{\nu}_e$$
 (AS = 1)

$$n \rightarrow p + e^- + \bar{\nu}_e$$
 ($\Delta S = 0$)

Fermi constant (G) deduced from neutron β -decay is slightly smaller than G deduced from muon decay ($\mu^+ \to e^+ + \nu_e + \bar{\nu}_\mu$)

Can these facts be explained?

Cabibbo theory: d and s quarks interacting in weak force are not flavor eigenstates, but rotated by a mixing angle (θ_c)

Weak decays of quarks

lepton doublets
$$\begin{pmatrix} e \\ v_e \end{pmatrix}$$
, $\begin{pmatrix} \mu \\ v_{\mu} \end{pmatrix}$ quark doublet $\begin{pmatrix} u \\ d\cos\theta_c + s\sin\theta_c \end{pmatrix} = \begin{pmatrix} u \\ d' \end{pmatrix}$ quark mixing

These three quarks were the only known quarks at the time Cabibbo wrote down his theory

With this assumption the "effective" couplings will be:

$$G\cos\theta_{c} \text{ for } \Delta S = 0 \text{ (d} \rightarrow u)$$

$$G\sin\theta_{c} \text{ for } \Delta S = 1 \text{ (s} \rightarrow u)$$
experiment yields $\theta_{c} \approx 13^{0} \text{ (sin } \theta_{c} \approx 0.22)$

J. Brau

Physics 662, Weak Interactions

17

Weak decays of quarks

 ΔS = 1 weak decays are suppressed relative to ΔS = 0 weak decays by a factor of about 20

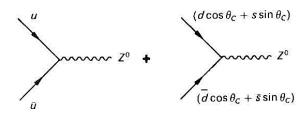
$$\Sigma^- \to n + e^- + \bar{\nu}_e$$
 (AS = 1)

$$n \rightarrow p + e^- + \bar{\nu}_e$$
 ($\Delta S = 0$)

this results from d' = d cos θ_c + s sin θ_c sin θ_c = (0.22)² = 1/20

Fermi constant (G) deduced from neutron β -decay is slightly smaller than G deduced from muon decay ($\mu^+ \to e^+ + \nu_e + \bar{\nu}_\mu$)

this results from d' = d cos θ_c + ...

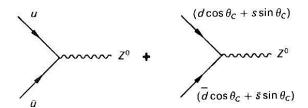

Weak decays of quarks. The GIM model.

Flavor-changing neutral currents

$$\frac{K^+ \to \pi^+ + \nu + \bar{\nu}}{K^+ \to \pi^0 + \mu^+ + \nu_{\mu}} \le 10^{-5}$$

$$\frac{1.7 \pm 1.1 \times 10^{-10}}{3.353 \pm 0.034 \%} = 4.8 \times 10^{-9}$$

2011



J. Brau

Physics 662, Weak Interactions

19

Weak decays of quarks. The GIM model.

Neutral current interaction should be:

$$\underbrace{u\bar{u} + (d\bar{d}\cos^2\theta_c + s\bar{s}\sin^2\theta_c)}_{\Delta S = 0} + \underbrace{(s\bar{d} + d\bar{s})\sin\theta_c\cos\theta_c}_{\Delta S = 1}$$

so flavor-changing neutral interactions should be allowed, with a slight suppression.

Why were they so rare?

GIM mechanism (1970)

J. Brau

Weak decays of quarks. The GIM model.

GIM mechanism (1970): introduce fourth quark (charm)

$$\begin{pmatrix} u \\ d' \end{pmatrix} = \begin{pmatrix} u \\ d\cos\theta_c + s\sin\theta_c \end{pmatrix}, \qquad \begin{pmatrix} c \\ s' \end{pmatrix} = \begin{pmatrix} c \\ s\cos\theta_c - d\sin\theta_c \end{pmatrix}$$

Neutral current interaction becomes:

$$\underbrace{u\bar{u} + c\bar{c} + (d\bar{d} + s\bar{s})\cos^{2}\theta_{c} + (s\bar{s} + d\bar{d})\sin^{2}\theta_{c}}_{\Delta S = 0}$$

$$\underbrace{+(s\bar{d} + \bar{s}d - \bar{s}d - s\bar{d})\sin\theta_{c}\cos\theta_{c}}_{\Delta S = 1}$$

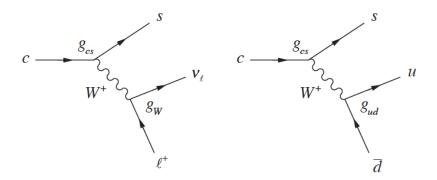
J. Brau

Physics 662, Weak Interactions

21

Weak decays of quarks. The GIM model.

The quark mixing,


$$\begin{pmatrix} u \\ d' \end{pmatrix} = \begin{pmatrix} u \\ d\cos\theta_c + s\sin\theta_c \end{pmatrix}, \qquad \begin{pmatrix} c \\ s' \end{pmatrix} = \begin{pmatrix} c \\ s\cos\theta_c - d\sin\theta_c \end{pmatrix}$$

can be expressed in matrix form:

$$\begin{pmatrix} d' \\ s' \end{pmatrix} = \begin{pmatrix} \cos \theta_c & \sin \theta_c \\ -\sin \theta_c & \cos \theta_c \end{pmatrix} \begin{pmatrix} d \\ s \end{pmatrix}$$

The weak interactions involving the four light quarks are consistent with this model, being defined by a unique value of θ_{c}

Charm decays

Decays of charmed quarks are dominated by strange quarks in the final state.

J. Brau

Physics 662, Weak Interactions

23

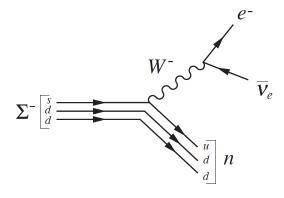
W boson decays

- $W \rightarrow I v, u d', c s'$
- Since d' = d cos θ_c + s sin θ_c ud will appear with prob ~ cos² θ_c and us with prob ~ sin² θ_c
- We expect approximately:

$$\Gamma(W \rightarrow ud') = \Gamma(W \rightarrow cs') = 3 \Gamma(W \rightarrow ev)$$
due to color

• So B (W \rightarrow hadrons) ~ 2/3 and B (W \rightarrow ev) = B (W \rightarrow ev) = B (W \rightarrow ev) = 1/9

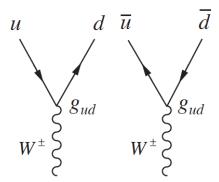
W boson decays


W+ DECAY MODES

W⁻ modes are charge conjugates of the modes below.

	Mode	Fraction (Γ_i/Γ)	Confidence level		
	$\ell^+ \nu$	[a] (10.80± 0.09) %	_		
	$e^+ \nu$ (10.75 ± 0.13) %				
$\mu^+ \nu$		(10.57± 0.15) %			
	$\tau^+ \nu$	(11.25 ± 0.20) %			
	hadrons (67.60 ± 0.27) %				
	$\pi^+\gamma$	< 8 × 10	o ^{–5} 95%		
	$D_s^+ \gamma$	< 1.3 × 10	0^{-3} 95%		
	cX (33.4 ± 2.6)%				
<u> </u>		$(31 {}^{+13}_{-11})\%$			
0	invisible	[b] (1.4 \pm 2.9)%			
	J. Brau	Physics 662, Weak Interactions	25		

Weak Decay Selection Rules


$$\frac{\Gamma(\Sigma^+ \to n + e^+ + v_e)}{\Gamma(\Sigma^- \to n + e^- + \bar{v}_e)} < 5 \times 10^{-3}$$

J. Brau

Weak Decay Selection Rules

• Δ 5 = 0, Δ Q = ± 1

- $\triangle S = \triangle Q = \pm 1$ $s \rightarrow c \text{ or } u$
 - J. Brau

Physics 662, Weak Interactions

27

Weak decays of quarks and the CKM matrix

Six quark model, mixing matrix (CKM matrix) is 3x3:

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = V \begin{pmatrix} d \\ s \\ b \end{pmatrix} \qquad V = \begin{vmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{vmatrix}$$

NxN unitary matrix has n(n-1)/2 real parameters (Euler angles) and (N-1)(N-2)/2 non-trivial phase angles

so this 3x3 matrix has 3 Euler angles and 1 phase • this phase results in T-violation (or CP-violation)

(CKM = Cabibbo, Kobayashi, Maskawa)

J. Brau

Physics 662, Weak Interactions

Weak decays of quarks and the CKM matrix

 V_{ud} (=cos θ_c) determined by comparing nuclear β -decay and μ -decay rates

$$V = \begin{vmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{vmatrix}$$

most precise from superallowed $0+ \rightarrow 0+$ nuclear beta decays, pure vector transitions: $|V_{ud}| = 0.97425 \pm 0.00022$ (avg of 20 meas.)

V_{us} determined from semi-leptonic decays of strange particles,

eg.
$$K_L^0 \to \pi e \nu, \ K_L^0 \to \pi \mu \nu, \ K^\pm \to \pi^0 e^\pm \nu, \ K^\pm \to \pi^0 \mu^\pm \nu \ {\rm and} \ K_S^0 \to \pi e \nu$$
 $|\mathsf{V}_{\mathsf{us}}| = 0.2252 \pm 0.0009$ Physics 662, Weak Interactions

Weak decays of quarks and the CKM matrix

 V_{ub} measured by selecting B semi-leptonic decays to non-strange particles (inclusive B ightarrow X $_u$ I $_V$ decays) for example, at the end-point

$$V = \begin{vmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{vmatrix}$$

$$|V_{ub}| = (3.89 \pm 0.44) \times 10^{-3}$$

 V_{cb} from exclusive and inclusive semileptonic decays of B mesons to charm (eg. B \rightarrow Dlv) $R(b \rightarrow clv) = G^2 m^5$

$$\Gamma(b \to cl\nu) = \frac{R(b \to cl\nu)}{\tau_B} = \frac{G^2 m_b^5}{192\pi^3} |V_{cb}|^2 f$$

$$|V_{cb}| = (40.6 \pm 1.3) \times 10^{-3}$$

29

Weak decays of quarks and the CKM matrix

$$\mbox{V}_{\mbox{\scriptsize cd}}$$
 from ν_{μ} di- $\!\mu$ events

m
$$v_{\mu}$$
 di- μ events
$$v_{\mu} + d \rightarrow \mu^{-} + c$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

$$V = \begin{vmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{vmatrix}$$

and D $\rightarrow \pi I \nu$

$$|V_{cd}| = 0.230 \pm 0.011$$

 V_{cs} from semileptonic D decays (eg. $D^+ \rightarrow K^0 \ e^+ \ \nu_e$) or leptonic D_s decays (eg. $D_s^+ \rightarrow \mu^+ \nu_\mu$)

$$|V_{cs}| = 1.023 \pm 0.036$$

J. Brau

Physics 662, Weak Interactions

31

Weak decays of quarks and the CKM matrix

 V_{td} , V_{ts} from B-Bbar oscillations mediated by box diagrams with top quarks, or loopmediated rare K and B decays

$$V = egin{array}{cccc} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \ \end{array}$$

$$|V_{td}| = (8.4 \pm 0.6) \times 10^{-3}$$

$$|V_{ts}| = (38.7 \pm 2.1) \times 10^{-3}$$

$$R = B(t \rightarrow Wb)/B(t \rightarrow Wq)$$

$$V_{tb}$$
 from top decay branching fractions
R = B(t \rightarrow Wb)/B(t \rightarrow Wq)
= $|V_{tb}|^2/(\sum |V_{tq}|^2) = |V_{tb}|^2$, where q = b,s,d.

$$|V_{tb}| = 0.88 \pm 0.07$$

Weak decays of quarks and the CKM matrix

$$V_{cKM} = \begin{bmatrix} V_{ud} = 0.97425 & V_{us} = 0.2252 & V_{ub} = 0.00389 \\ \pm 0.00022 & \pm 0.0009 & \pm 0.00044 \end{bmatrix}$$

$$V_{cKM} = \begin{bmatrix} V_{cd} = 0.230 & V_{cs} = 1.023 \pm & V_{cb} = 0.0406 \\ \pm 0.011 & 0.036 & \pm 0.0013 \end{bmatrix}$$

$$V_{td} = 0.0084 & V_{ts} = 0.0387 & V_{tb} = 0.88 \pm 0.0006 & \pm 0.0021 & 0.07 \end{bmatrix}$$

Diagonal terms are close to unity Off-diagonal terms are small Particle Data Group

J. Brau

Physics 662, Weak Interactions

33

Unitarity of the CKM Matrix

$$V_{CKM} = egin{array}{cccccc} V_{ud} = 0.9742 & V_{us} = 0.2252 & V_{ub} = 0.0039 \\ V_{cd} = 0.23 & V_{cs} = 1.02 & V_{cb} = 0.041 \\ V_{td} = 0.0084 & V_{ts} = 0.039 & V_{tb} = 0.88 \\ \end{array}$$

From the independently measured CKM elements, the unitarity of the CKM matrix can be checked.

$$\begin{aligned} |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 &= 0.9999 \pm 0.0006 \text{ (1st row)} \\ |V_{cd}|^2 + |V_{cs}|^2 + |V_{cb}|^2 &= 1.101 \pm 0.074 \text{ (2nd row)} \\ |V_{ud}|^2 + |V_{cd}|^2 + |V_{td}|^2 &= 1.002 \pm 0.005 \text{ (1st column)} \\ |V_{us}|^2 + |V_{cs}|^2 + |V_{ts}|^2 &= 1.098 \pm 0.074 \text{ (2}^{nd} \text{ column)} \end{aligned}$$

Weak decays of quarks and the CKM matrix

"Standard" parametrization of CKM matrix (PDG)

$$V = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{13}} \\ -s_{12}c_{23}-c_{12}s_{23}s_{13}e^{i\delta_{13}} & c_{12}c_{23}-s_{12}s_{23}s_{13}e^{i\delta_{13}} & s_{23}c_{13} \\ s_{12}s_{23}-c_{12}c_{23}s_{13}e^{i\delta_{13}} & -c_{12}s_{23}-s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{13} \end{pmatrix}$$

 c_{ij} = cos θ_{ij} s_{ij} = sin θ_{ij} (unitarity requirement limits to 3 angles and one phase)

Can we approximate?

$$V_{CKM} = egin{array}{cccccc} V_{ud} = 0.9742 & V_{us} = 0.2252 & V_{ub} = 0.0039 \\ V_{cd} = 0.23 & V_{cs} = 1.02 & V_{cb} = 0.041 \\ V_{td} = 0.0084 & V_{ts} = 0.039 & V_{tb} = 0.88 \\ \end{array}$$

Diagonal terms are close to unity

Off-diagonal terms are small: $s_{13} \ll s_{23} \ll s_{12}$

J. Brau Physics 662, Weak Interactions

35

Weak decays of quarks and the CKM matrix

Diagonal terms are close to unity

$$V = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{13}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{13}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{13}} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{13}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{13} \end{pmatrix}$$

Wolfenstein Parametrization

$$\lambda = s_{12}$$
, introduce A, ρ , η

$$V_{\text{CKM}} = \begin{vmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{vmatrix}$$

Global fit in the Standard Model

The CKM matrix elements can be most precisely determined by a global fit that uses all available measurements and imposes the SM constraints (i.e., three generation unitarity).

$$\begin{split} \lambda &= 0.2253 \pm 0.0007 \,, \qquad A = 0.808^{+0.022}_{-0.015} \,, \\ \bar{\rho} &= 0.132^{+0.022}_{-0.014} \,, \qquad \bar{\eta} = 0.341 \pm 0.013 \,. \\ \bar{\rho} &= \rho (1 - \lambda^2/2 + \ldots) \end{split}$$

$$V_{\rm CKM} = \begin{pmatrix} 0.97428 \pm 0.00015 & 0.2253 \pm 0.0007 & 0.00347^{+0.00016}_{-0.00012} \\ 0.2252 \pm 0.0007 & 0.97345^{+0.00015}_{-0.00016} & 0.0410^{+0.0011}_{-0.0007} \\ 0.00862^{+0.00026}_{-0.00020} & 0.0403^{+0.0011}_{-0.0007} & 0.999152^{+0.000030}_{-0.000045} \end{pmatrix}$$

Particle Data Group

 $\overline{\rho}$

38

J. Brau

Physics 662, Weak Interactions

37

Weak decays of quarks and the CKM matrix

Wolfenstein parametrization plot on η - ρ plane

$$V_{\text{CKM}} = \begin{vmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{vmatrix}$$

$$\lambda = 0.2253 \pm 0.0007$$

$$A = 0.808 + 0.022 - 0.015$$

$$V = \begin{vmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{vmatrix}$$

$$V = \begin{vmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{vmatrix}$$

Physics 662, Weak Interactions

$$\begin{pmatrix} 1 - \frac{\lambda^{2}}{2} - \frac{\lambda^{4}}{8} & \lambda & A\lambda^{3}(\rho - i\eta) \\ -\lambda - A^{2}\lambda^{5}(\rho + i\eta - \frac{1}{2}) & 1 - \frac{\lambda^{2}}{2} - (\frac{1}{8} + \frac{A}{2})\lambda^{4} & A\lambda^{2} \\ A\lambda^{3}[1 - (\rho + i\eta)(1 - \frac{\lambda^{2}}{2})] & -A\lambda^{2} - A\lambda^{4}(\rho + i\eta - \frac{1}{2}) & 1 - \frac{1}{2}A^{2}\lambda^{4} \end{pmatrix} + \mathcal{C}(\lambda^{6})$$

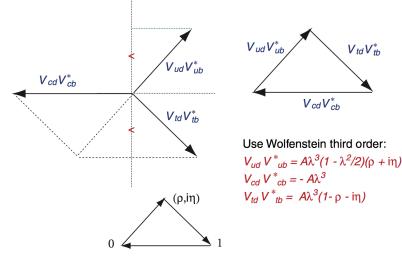
Unitarity requires:

$$\begin{aligned} &|V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = 1 & V_{ud}^{*}V_{cd} + V_{us}^{*}V_{cs} + V_{ub}^{*}V_{cb} = 0 \\ &|V_{cd}|^{2} + |V_{cs}|^{2} + |V_{cb}|^{2} = 1 & V_{ud}^{*}V_{td} + V_{us}^{*}V_{ts} + V_{ub}^{*}V_{tb} = 0 \\ &|V_{td}|^{2} + |V_{ts}|^{2} + |V_{tb}|^{2} = 1 & V_{cd}^{*}V_{td} + V_{cs}^{*}V_{ts} + V_{cb}^{*}V_{tb} = 0 \\ &|V_{ud}|^{2} + |V_{cd}|^{2} + |V_{td}|^{2} = 1 & V_{ud}^{*}V_{ub}^{*} + V_{cd}V_{cs}^{*} + V_{td}V_{ts}^{*} = 0 \\ &|V_{ub}|^{2} + |V_{cb}|^{2} + |V_{tb}|^{2} = 1 & V_{us}V_{ub}^{*} + V_{cs}V_{cb}^{*} + V_{ts}V_{tb}^{*} = 0 \\ &|V_{ub}|^{2} + |V_{cb}|^{2} + |V_{tb}|^{2} = 1 & V_{us}V_{ub}^{*} + V_{cs}V_{cb}^{*} + V_{ts}V_{tb}^{*} = 0 \end{aligned}$$

J. Brau

Physics 662, Weak Interactions

39


$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

vectors in complex plane:

$$V_{cd} = \mid V_{cd} \mid e^{i\vartheta} \qquad \qquad V_{cb}^{ \star} = \mid V_{cb} \mid e^{-i\phi}$$

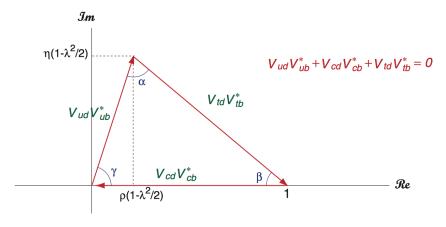
Phase factor common to row or column can be eliminated!

The three vectors define a triangle:

J. Brau

Physics 662, Weak Interactions

$$V_{ud}^* V_{cd} + V_{us}^* V_{cs} + V_{ub}^* V_{cb} = 0 \qquad \lambda, \lambda, \lambda^5$$


$$V_{ud}^* V_{td} + V_{us}^* V_{ts} + V_{ub}^* V_{tb} = 0 \qquad \lambda^3, \lambda^3, \lambda^3$$

$$V_{cd}^* V_{td} + V_{cs}^* V_{ts} + V_{cb}^* V_{tb} = 0 \qquad \lambda^4, \lambda^2, \lambda^2$$

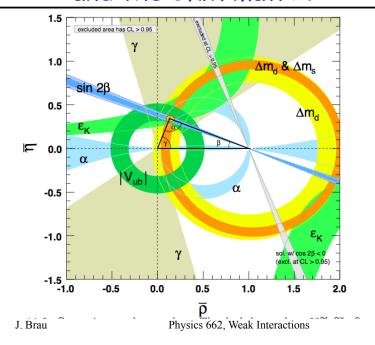
$$V_{ud}^* V_{us}^* + V_{cd}^* V_{cs}^* + V_{td}^* V_{ts}^* = 0 \qquad \lambda, \lambda, \lambda^5$$

$$V_{ud}^* V_{ub}^* + V_{cd}^* V_{cb}^* + V_{td}^* V_{tb}^* = 0 \qquad \lambda^3, \lambda^3, \lambda^3$$

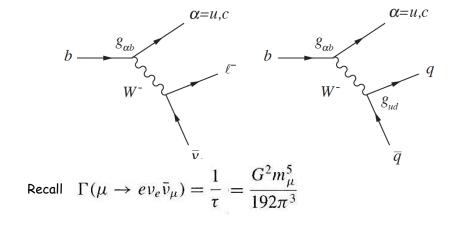
$$V_{us}^* V_{ub}^* + V_{cs}^* V_{cb}^* + V_{ts}^* V_{tb}^* = 0 \qquad \lambda^4, \lambda^2, \lambda^2$$

J. Brau

Physics 662, Weak Interactions


41

Physics with the Unitary Triangles:

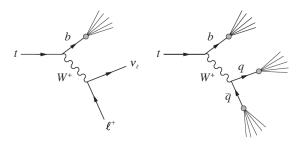

Sides:

Is the triangle a triangle? Check on Standard Model/ New Physics!

Weak decays of quarks and the CKM matrix

b lifetime

43


Top quark

- Decays dominated by $t \rightarrow b W^{+}$
- $\Gamma(t \to b \ W^+) = 1.7 \ GeV = 4 \times 10^{-25} \ sec$
 - $\Gamma \sim \alpha_W m_t$

•
$$a_W = .0043 \pm .0002 = 1/233 = 0.6 a$$

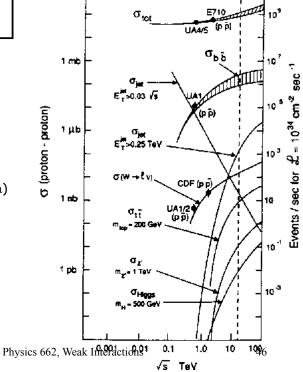
Hadron cannot form in less time than

$$t \sim 1 \text{ fm/3} \times 10^{23} \text{ fm/s} \sim 3 \times 10^{-24} \text{ sec}$$

J. Brau

Physics 662, Weak Interactions

45


Fermilab SSC

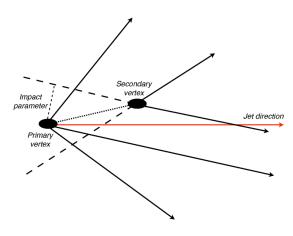
Discovery of the top quark

- Tevatron at Fermilab
- $t \rightarrow b W^+ \rightarrow l \nu 1/3$ \rightarrow qq 2/3
- Produced in pairs t tbar
- decay to
 - bblvlv 1/9 (2/3 are eµ)
 - bblvgg 4/9
 - bbqqqq 4/9
- Tevatron
 - Signal cross section
 - < 10⁻⁹ backgrounds

Need to reduce backgrounds

J. Brau

Top Quark


- · Event selection
 - $I v N jets (N \ge 3)$ (some jets merge)
 - Remove $Z \rightarrow l^+ l^-$
- · Background reduction
 - Large background from W production
 - - J. Brau

Physics 662, Weak Interactions

47

Top Quark

- · B jet tagging
 - Find secondary vertices
 - Reduce background by x20 while selecting 40% signal

J. Brau

Physics 662, Weak Interactions

48

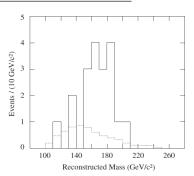
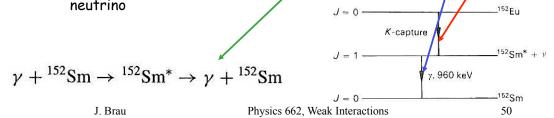

Top Quark Discovery Results

TABLE 8.1 The number of lepton + N-jet events of the type (8.56) observed with and without b-jets. (Data from Abe $et\ al.$, 1995.)

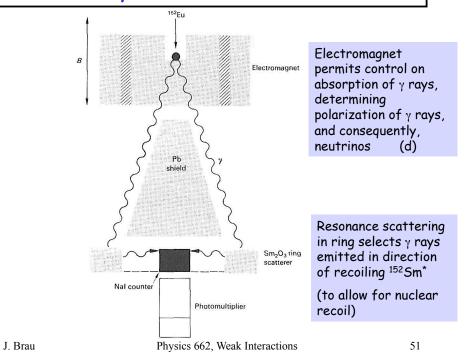
N	Observed events	Observed b-jet tags	Background tags expected
1	6578	40	50 ± 12
2	1026	34	5021 ± 6.5
3	164	17	5.2 ± 1.7
4	39	10	1.5 ± 0.4

$$M_{t} = 176 \pm 8 \pm 10 \, GeV$$

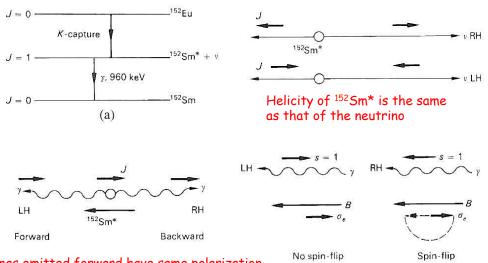
current PDG value M₊ = 173.07 ± 0.52 ± 0.72 GeV


J. Brau

Physics 662, Weak Interactions


49

Helicity of the neutrino


- The elegant experiment of Goldhaber, Grodzins, and Sunyar(1958) established the helicity of the neutrino
- The neutrino is emitted along with a positron in β ⁺ decay
- The antineutrino is emitted along with an electron in β decay
- Reaction used is K-capture in ¹⁵²Eu to an excited state of ¹⁵²Sm
 - the excited state of 152 Sm decays by emitting gamma ray,
 - resonance scattering of gamma-rays from ground state of Sm reveals the polarization of the event, and the helicity of the neutrino

Helicity of the neutrino

Helicity of the neutrino

Gammas emitted forward have same polarization as the neutrino (and the highest energy)

Gammas with spin aligned with B field in electromagnet are more absorbed (since electrons are aligned against B)

Physics 662, Weak Interactions