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Introduction

e Calorimeters are used to measure
energy of neutral and charged particles

e neutral particles cannot be momentum
analyzed

e electrons can be measured with better
precision, and identified with a calorimeter

® as energy increases
e momentum measurements are less
precise [0p/p ~p]
e energy measurements become more
precise [og/E ~1/E'/?]

e jets are often best measured by total
absorption rather than measurement of
individual particles



" Introduction (cont.)

\ - - .
\ .

e Fundamental underlying principle:
conservation of energy

e convert energy of incident particle to
detector response

e ionization

e Cerenkov radiation from charged
particles

e scintillation of excited molecules
e acoustic energy

e Details of this conversion complicate
measurement

e this is especially true for strongly
interacting particles (hadrons)



Outline

e Introduction

e examples of important applications

e Electromagnetic showers
e fundamental processes

# characteristics of showers

{
e Electromagnetic Calorimeters
e resolution
e examples of calorimeters

e Next week: Hadron Calorimetry



" EM and Hadronic Sub-detectors

\

e (Calorimeters are subdivided into
electromagnetic and hadronic sub-
detectors

e Electromagnetic interactions develop over
shorter distances than hadronic
interactions x

e Fundamental processes of signal
generation differ, calling on different
optimization

ﬂ\




Evolution of Calorimeters

e Nuclear Physics

e the advances of solid state detectors in the
‘50s broadened the technique of total
absorption and energy measurement of
nuclear radiation

e Cosmic Rays ,
e 1958 -JETP 7, 348 (1958)
Grigorov, Murzin and Rapoport
report construction of first sampling
calorimeter

e Particle Physics

e First electromagnetic calorimeters,
eventually hadronic calorimeters became
essential components



Evolution of Calorimeters (cont.)

e Uranium/Compensation

e in an effort to advance energy resolution,
Willis et al introduced uranium
calorimeters (1979) to “compensate” for
the lost energy in nuclear collisions.

e Zeus took the emerging understanding of
the underlying mechanisms in hadronic
showers to build the best hadronic
calorimeter to date, uranium - scintillator

e High Precision Electromagnetic
Calorimetry
e Crystals have continued to advance

e Other techniques, as well, are pushing the
performance limits

e e.g.. accordion liquid argon

¢ scintillating fiber calorimeters



- Evolution of Calorimeters (cont.)

® Today, calorimeters are in widespread
use in particle physics

e 47 detectors at colliders

e energy measurements
e particle identification
e triggers ‘

e neutrino detectors at accelerators

e underground proton decay detectors

e underground neutrino detectors

e and in astrophysics
@ space-based detectors (--GLAST)
e air showers



- Examples of Calorimetry in
Discovery

e Discovery of the anti-proton

e Total absorption lead glass detector used to
identify anti-proton annihilations.

e Discovery of the 1

e Detection of electron-muon + missing
energy events identified.

e Charm Spectroscopy

@ The radiative lines were studied in
charmonium. (see figure)

e Discovery of the W

e High transverse energy electron was
detected and measured, and the recoiling
neutrino was deduced and shown to
balance the electron. (see figure)



Examples of Calorimetry in
Discovery (cont.)

e Measurement of A;

e The SLD Calorimeter provides the primary
ihstrument for triggering and event

tagging.

e W mass measurement
@ Di-jet events are reconstructed .
® e+e--> Y+ missing energy

e Measurements of EM showers, combined
with missing energy in the hadron
calorimeter. (see figure)

e Higgs-> vy (future?)

¢ The preferred channel for discovery at
LHC has an enormous background; high
precision is demanded. (see figure)
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Discovery of the W

e High transverse energy electron was
detected and measured, and the
recoiling neutrino was deduced and
shown to balance the electron

E,. parallel 1 Gev
to electron UA 1
L3 Events

-40 -20 20 L0 GCeV
£, . normal

to electron

lectron
irection

-~

Q. m




_e+e- >y + missing energy

\ -
|
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- Higgs >y y at the LHC

e QOutstanding EM resolution is needed

to discover the Higgs ->vyy ata
hadron collider (LHC)




“ldeal Calorimeter

i i - ) .
excellent energy resolution
stable calibration

excellent position resolution
large dynamic range

excellent shower containment with
multi-shower separation

compact

fast (high rate capability)
operates in a magnetic field
inexpensive

robust

Compromise is always required
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Electromagnetic and Hadronic
Showers

e FElectromagnetic e Hadronic
¢ multiplication ¢ multiplication
through pair through
production and multiparticle
bremsstrahlung production in
@ mean free path nuclear
9X,/7 fory  Interactions
X,/In(E/K) for e ¢ mean free path
@ no invisible energy ~ A
& nuclear binding
energy and

neutrinos invisible
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~ Electromagnetic Showers

e In matter high energy electrons and
photons interact primarily through

electromagnetic interactions with the
nucleus (and at lower energies with
the atomic electrons)

{

e FElectrons
e Bremsstrahlung (nuclear)

e Photons
e Compton scattering (atomic electrons)

e pair production (nuclear)
@ photoelectric effect (atomic electrons)

17



Electromagnetic Showers:
Electrons

\‘.

e Bremsstrahlung

dE/dXIbrems = E/XO

~ 716 9M C'f;f:ZA
Z(2+) bn(2%7/(Z )

O
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~ Electromagnetic Showers:
Electrons (cont.)

\
\

e Electron energy loss

1 TTTTH] T T T1T 1T T T TTT17
—0.20
lonization
© 1.0+
T2 —0.15
-~ o
o Bremsstrahlung &
c £
S (&S]
—o.10 &
)| > c
g o) D
© 0.5 =
_IUJ
[}
—0.05
onnihilation
0 Lol T bk
10 10 1000

E (MeV)

19



Electromagnetic Showers:
'Electrons (cont.)

\A

e Critical Energy (E.)

At high energy, the energy loss of an
electron from bremsstrahlung
dominates over ionization loss.

At a low enough energy, the ionization
loss becomes important.

The energy at which ionization loss
equals bremsstrahlung loss, is the
critical energy (E_)

(eg. E.~7MeV for Lead -

see last and next transparencies)
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. Electromagnetic Showers:
- Electrons (cont.)

vy . - . .
\ . - . “ .

e Critical energies of materials
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Electromagnetic Showers: Photons

e Compton scattering .-

® pair production

— - -

g—
L ~ \—-/ -~ o ~

¢
.
(4
®

e photoelectric effect
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| EIeotrOmagnetic Showers: Photons
(cont.)

Photon cross sections
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Electromagnetic Showers

Many important properties of an EM
shower can be understood by a simple
model:

e after one radiation length a photon
produces an e~ et pair

{

e the electron and positron each emit
one bremsstrhalung photon after
another radiation length.

> This sequence leads to a cascading
number of particles (N), which is

N(t) =2t (for tsteps)
> and each particle has an energy (E)
E(t)=E,/ 2t

24



Electromagnetic Showers

\ - - - .

[llustration of simple model of shower

25



~ Electromagnetic Showers

|
e [ongitudinal development scales with
the radiation length (X,)
X, =180 A / 72 g/cm?
(higher Z materials have shorter
radiation lengths),

e Transverse dimension scales with the
Moliere radius (Ry,)

Ry =21 MeV X,/ E.
where E_=550MeV / Z

26



Typical Scales for EM Calorimeters

N B

Material  Atomic Critical  Radiation Moliere
No. Energy Length(X,)  Radius

(E) (R,)
(Z4) MeV) (g/em”) (cm)  (cm)

Beryllium 116._ 63.19 35.28 6.4
Carbon 6 84, 42770 18.8_ 4,7
Aluminum 13 43. 2401 8.9 4.4
Iron 26 22._ 1384 1.76 1.7
Copper 29 20._ 1286 143 1.5
Tungsten 74 81 6.76 035 0.9
Lead 82 73 637 0.56 1.6

Uranium 92 6.5 600 032 1.0
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- EM Showers: Longitudinal
Development

\ .- . . :

e Electrons generate photons through
bremsstrahlung and photons produce
electrons and positrons through pair
production

e The observed development depends
on the minimum kinetic energy of an
electron or a positron that can be
detected (known as the cut-off energy).

This means the shower maximum will
occur when the energy falls to E_

Ec — EO / 2 t—max,
or t-max ~ In (E, /E, )

28



- EM Showers: Longitudinal
Development (cont.)

A
-

e Approximate formula (t=x/ X,):
dE/dt = E b+l teebt / T(a+1)
b ~ 0.5 (material dependent)
a = 0.5 ln(Eo/EC) '1.1
(+0.8 for y)

so t...=a/b ~In(E,/E) -

tos, =t + 0.08Z+ 96

29



EM Showers: Longitudinal
- Development (cont.)

"\
WX

e Best fits are achieved with b adjusted
for material and energy
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L ongitudinal development (cont.)

An example of longitudinal development
(30 GeV electron induced shower in

iron)
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Longitudinal development (cont.)

.

o Effect of critical energy on longitudinal
energy distribution
e shower maximum
e shower tail

Cu Curve: data Ph
T Histdgram: Monte Carlo 71 10
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Figure 2.19 Longitudinal distribution of energy deposition in a 6-GeV electron shower (after

Bathow et al. 1970).
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- Electromagnetic Showers: Radial
~distribution

N - - : .
3 . - - :

e Scales with Moliere radius
Al(Z=13) R, =44 cm
Cu(Z=29) Ry =1.5cm
Pb(Z=82) R,,=1.6cm
e ~90% of energy is within R,,, and
~95% of energy is within 2 R,,.
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- Electromagnetic Showers:
Calorimetry

\|

e The energy of the incident electron or
photon is proportional to the total
track length of the electrons and
positrons in the EM shower

e Therefore, by measuring the electron+
positron track lengths, one measures a
variable which is proportional to
energy

e Measurements of:
e Cerenkov radiation from e~ & e*
e scintillation from molecules in calorimeter
e ionization of the detection medium

34



- Electromagnetic Showers:
- Calorimetry (homogeneous or sampling)

e Homogeneous calorimeter:

calqrimeters in which the shower is
“observed” throughout the detector

examples: lead glass, Nal, CsI, BGO, BaF
e Sampling calorimeter: |

calorimeters in which the shower is
sampled by an “active” readout
medium alternated with denser
radiator material

examples: scintillator sandwich, scintillating
fiber, liquid argon, silicon, liquid scintillator

35



- Electromagnetic Calorimetry:
- homogeneous vs. sampling tradeoffs

e Homogeneous e Sampling
@ better energy e limited energy
resolution resolution
e observation of ¢ sampling
full shower fluctuation
e limited spatial e good spatial
resolution t resolution
¢ segmentation e segmentation
is limited to gives detailed
preserve shower shape
energy information

resolution

36



~ Electromagnetic Showers:
- Fluctuations

e The measurement of energy will be
limited in precision by fluctuations in
the EM shower and in the

measurement process

e The shape of an EM shower fluctuates
only modestly, and resolution of an
EM calorimeter is usually limited by
other effects (assuming full
containment has been achieved)

e Dominant fluctuation in the shower is the
depth of the first pair conversion.

37



- EM Calorimeters: Energy
- Resolution

\l

Sampling Fluctuations (a)
Noise (b)

Pedestal Fluctuations (b)
Nonuniformities (c)
Calibration errors (c)

¢ @ e ¢ ¢ o

Incomplete shower containment
(leakage) (c)

6/E=aNE ®b/E ® c

38



- EM Calorimeters: Energy
- Resolution (sampling fluctuations)

e The calorimeter is measuring total
track length. This track length (S) will
fluctuate as S /2 so that the energy
measurement will have an error which
scales as (since E ~ S)

6/E~E-1/2

e In a sampling calorimeter we have the
further scaling law that the resolution
will scale with the sampling thickness

c/E~t12/E1/2
e The limiting resolutions are
(6 / E)shower ~ 0.005 E -1/2
(6 / E)sampling ~ 0.04 (1000 AE/ E ) 1/2

39



EM Calorimeters: Energy
~ Resolution (longitudinal. leakage)
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50 GeV
'EM Shower

0 -
Energy Deposition

41



| Examples of EM Calorimeters
- (pdg)

e Nal(T]) 2.7%/E 1/4

e Lead Glass | 5%/ E 1/2
e Lead-lig. argon 7.5%/ E 1/2
Lead-scin. sand. 9%/ E 1/2

&
e Lead-scin. spaghetti + 13%/ E 1/2
e Prop. wire chamber 23%/ E1/2

e most of these resolutions must be added in
quadrature with the appropriate constant
term, typically on the order of 1%, or a bit
smaller.

e Better resolution has been achieved with
most advanced crystals (eg. CsI)

42



~Position and Pointing Resolution

N - - - .

e The measurement of the impact point
of a photon entering an EM
calorimeter is limited by the transverse
fluctuations in the shower, and the
measurement errors of this
measurement. ‘

e This measurement involves
determining the centroid of the shower
as a function of depth in the
calorimeter

e Typically, the achievable resolution is:
few mm / E /2

43



- Position and Pointing Resolution
(cont.)

\1

e More challenging than position impact
position measurement, is a
measurement of the direction of the
incident particle

e This is particularly important at high
luminosity colliders where multiple event
occur within the same beam crossing (or
readout window)

e Atlas has acheived about
40 mrad / EV/2? (see figure)

e Position resolution often reflects on the
electron identification performance

44



- Examples of Recent Advances in
'EM Calorimeters

Accordion liquid argon calorimeter
Radiation resistant crystals

Scintillating Fiber

)
°
e Silicon luminosity monitors
°
o (sl :

e CLEO

o KTeV

e BaBar (thallium doped)
e BELLE (thallium doped)

45



~ Accordion Liguid Argon Calorimeter

e fastreadout
° combines electrode and transmission line

e amenable to very fine readout

—RAAARA bt




- Accordion Liquid Argon Calorimeter
(cont.)

A .

o Excellent performance has been
demonstrated in beam tests
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- Accordion Liquid Argon Calorimeter
~ (cont.)

EY - - - o .
\ - - - e

e Atlas measures the position of the
shower at front and back of
calorimeter to get a vector

30 p

¢ (mrad)

25 H

20 Fi

10 -

$

>;141 VIR ENIDST SIS S EPED ST S S AR SR PR I B
0 25 50 75 100 125 150 175 200 225
Energy(GeV)

48



~ Liquid Krypton (in ATLAS tests)

e better sampling fraction
e double to signal
e saturated drift velocity
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50

in the hostile environment of the LHC

e 1krad/ day

Radiation resistant Crystal

 Calorimeters
e CMS Plans a 83,000 crystal calorimeter



Radiation resistant Crystal
Calorimeters (cont.)

\\

e PbWO, (Lead Tungstate)

e very dense
o fast
e intrinsically rad hard

e Radiation damage mechanism now
better understood |

e scintillation light yeild is not significantly
damaged by radiation

e predominant radiation damage effect is
radiation induced absorption

e Rad-hard crystal R&D continues
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Silicon Calorimetry: Luminosity
Monitors

e SLD built first silicon luminosity monitor
(installed in 1991); it has provided reliable
performance.

e OPAL improved on the design with a silicon
calorimeter that achieves < 0.04% luminosity

measurement
Silicon Wedge

pad 11.25°
X 2.5 mm

0.05 mm region
between pads
and guard ring

\ A

\ .
03 mmA\f______ L)
guard ring v
vl
- 1
:)2 Y



Silicon Calorimetry: OPAL
Luminosity Monitor (cont.)

' OPAL SW

RUN 4386 EVE 1

NT 101432
LEFT END (-2) %w RIGHT END (+2)
Longitudinal Shower Profile ———— ‘
Lateral Showar Profila l I
1 J N l| Ilhhl
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Y |
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Silicon Calorimetry: OPAL
~ Luminosity Monitor (cont.
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_Scintillating Fiber EM Calorimeters

N, - - - .
\

e [atest application - KLOE:

e scintillating fiber (1 mm diameter) -lead
calorimeter at DAFNE, the phi factory at
Frascati

e Fiber:Lead:Glue = 50:40:10

e Beam test performance:

o0/E =(4.96x0.01)% / VE

e Very fast:

or=71.7 1.0 psec/ VE
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- Cesium lodide

\

¢ CLEOQ has an excellent history with CsI
and BaBar and BELLE will soon.

e KTeV has completed physics run with
Csl

{
e outstanding performance has been
achieved.

6/E= 2%/ VE® 0.2% @ 0.4%

¢ The e rejection is 680/1, based on a shape
XZ
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- Compact, Highly Segmented
Calorimeter for the NLC

\l

e Highly segmented silicon/tungsten
EM calorimeter for the NLC

e motivated by desire to separate EM
showers from charged tracks in the jet
environment

e 4 million readout cells, very dense
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“Summary

\1

e Electromagnetic Showers are very well
understood theoretically.

e Electromagnetic Calorimeters are
continuing to advance many varieties.
For example:

e crystals |
e accordion liquid argon
e silicon sampling
e scintillating fibers
¢ Optimization is always a trade-off

between competing constraints.
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100 GeV

Hadronic Shower
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'Hadronic Showers

\I

e Hadronic Showers are much more
complex than EM showers, and
hadron resolution is more limited (eg.

the best performance of hadron
calorimeters is ~ 30% / E 1/2)

e Next week - Hadronic Calorimetry
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