SLUO LECTURE SERIES

Calorimetry II

LECTURE #14

Jim Brau

University of Oregon

January 14, 1999

Outline

; '

- Hadronic Showers
 - components
 - electromagnetic, hadronic, binding energy losses, etc.
 - properties
 - longitudinal and transverse distributions
 - fluctuations
 - resolution of calorimeters
 - compensation
 - examples of calorimeters

Hadron Calorimetry

- Hadron Calorimeters, as electromagnetic calorimeters, measure the energy of the incident particle(s) by fully absorbing the energy of the particle(s) and providing a measurement of the absorbed energy.
- Hadronic Showers are more complicated than electromagnetic showers, significantly reducing the optimal precision

Electromagnetic and Hadronic Showers

100 GeV Hadronic Shower

• The strongly interaction particle will interact (inelastically) with a nucleus according to the nuclear cross section:

$$\lambda_{\rm I} \approx 35 {\rm g cm}^{-2} {\rm A}^{1/3}$$

Survival (without interacting)
=
$$e^{\lambda_{I} \times / p}$$

• The nuclear interaction length is longer than the radiation length, defining the fundamental scale of the hadronic shower

Material	Atomic	Radiation		Interaction Length (λ)		X_0 / λ
	(\mathbf{Z})	(g/cm^2)	(X_0) (cm)	(g/cm^2)	(\mathbf{cm})	
Bervllium	4	65.19	35.28	75.2	40.7	1.2
Carbon	_6	42.70	18.8_	86.3	38.1	2.0
Aluminum	13	24.01	8.9	106.4	39.4	4.4
Iron	26	13.84	$1.7\overline{6}$	131.9	16.8	9.5
Copper	29	12.86	1.43	134.9	15.1	15.1
Tungsten	74	6.76	0.35	185	9.6	27.4
Lead	82	6.37	0.56	194.	17.1	30.5
Uranium	92	6.00	0.32	199.	10.5	33.2

The higher Z materials separate hadronic & EM interactions more fully

Hadronic Showers: Longitudinal Development

• The longitudinal development is characterized by the nuclear interaction length

- As a strongly interacting particle (hadron) passes through matter, it eventually initiates a nuclear interaction, and starts a nuclear shower.
- The initial interaction will be characterized by:
 - meson (π , K, ...) production.
 - emission of nucleons and low energy gammas by the interacting nucleus.
 - absorption of energy to release bound nucleons by the nucleus (binding energy is ~ 8 MeV/ nucleon)

• Intial interaction

- Binding energy lost in <u>first interaction</u> of a 5 GeV π⁻ on a uraniumscintillator calorimeter
 - average = 380 MeV (or 7.6% of incident energy)

Hadronic Showers: Cascade of Interactions

- In hadronic showers, we have many particle types, which have different processes
 - $\pi^0 s$
 - decay "instantly" to γγ, which intitiate electromagnetic showers
 - roughly 1/3 of the mesons of the initial interaction
 - charged mesons
 - secondary interactions
 - decays (producing neutrinos & μ's, which escape with their energy)
 - nucleons from nuclear break-up & evapor.
 - protons lose energy through ionization, can range out before interacting
 - neutrons chargeless, and therefore will not range out transport energy
 - gammas from nuclear excitation
 - interact electromagnetically

Hadronic Showers: Cascade of Interactions (cont.)

 The distribution of the number of nuclear interactions in a shower initiated by a 5 GeV π
on a uranium-scintillator calorimeter.

(neutrons are cut-off at 20 MeV)

Hadronic Showers: Cascade of Interactions (cont.)

 With 30% of the meson production at the initial interaction (on average) going into electromagnetic showers (π⁰->γγ), and similar fractions on subsequent interactions, the fraction of the shower which is electromagnetic will increase with energy.

Hadronic Showers: Energy Fractions (Fe)

ż

Hadronic Showers: Energy Fractions (U)

ż

Hadronic Showers: Cascade of Interactions (cont.)

- Binding energy lost in a 5 GeV π⁻ incident on a uranium-scintillator calorimeter.
 - average = 1600 MeV (32% of incident energy)

Hadronic Showers: Longitudinal Development

3

Hadronic Showers: Long. Development (cont.)

• The curves on the previous transparency are fit to the Bock parametrization (NIM 186, 533 (1981))

Ξ,

$$dE = \kappa \left[\underbrace{\omega s^{-\alpha} \exp(-\beta s)}_{EM} + (\underbrace{1-\omega})t^{-\alpha} \exp(-\delta t) \right] \\ (s = z/1.76 \text{ cm}) \\ (t = z/19.5 \text{ cm}) \\ \omega = 1.03 - 0.365 \log E \text{ (GeV)} \\ \alpha = 0.214 - 0.984 \log E \text{ (GeV)} \\ \beta = 0.29 \\ \delta = 0.978 \\ E \text{ Hoghes}$$

Hadronic Showers: Long. Development (cont.)

Hadronic Showers: Long. Development (cont.)

Hadronic Showers: Transverse Distribution

÷.....

-- - .

Hadronic Showers: Trans. Distribution (cont.)

3

Electromagnetic Sampling Inefficiencies

Consider a Sampling Calorimeter

• Calibrate the energy in the calorimeter using muons

$$\frac{E_{det}}{E_{tot}} = \frac{\frac{dE}{dx}}{\frac{dE}{dx}} \frac{t_{det}}{t_{det}} \frac{t_{det}}{dE}}{\frac{dE}{dx}} \frac{t_{det}}{dx} \frac{dE}{dx}} \frac{t_{rad}}{t_{rad}} \frac{t_{$$

Electromagnetic Sampling Inefficiencies (cont.)

- The interaction of low energy photons differs from material to material (see next transparency)
- Therefore, an electromagnetic cascade will not deposit its energy in the same proportion between the high Z radiator material and the lower Z material of the sensitive layers
- Typical examples:
 - Fe or Cu radiator: $e/\mu \sim 0.9 - 1$
 - $e/\mu \sim 0.9$
 - Pb radiator

 $e/\mu \sim 0.7 - 0.8$

U radiator
e/μ ~ 0.6 - 0.7

Electromagnetic Sampling Inefficiencies (cont.)

The electromagnetic sampling inefficieny results from the rise in low energy photon absorption in high Z materials below 1 MeV

Hadronic Showers: The role of neutrons

• Neutrons carry information on the nuclear binding energy releases

Morsé calculation

Hadronic Showers: Fluctuations

- EM vs. non-EM components
- nuclear binding energy losses
- sampling
- leakage of ionizing particles
- leakage of non-ionizing particles
- saturation of the detector response
 - or non-linear response of the detector
- noise
- non-uniformities of the detector
- time dependence of the various components: eg. EM or neutrons

Sampling Fluctuation in Hadronic Calorimeters

Hadronic Showers: Resolution

- The most important fluctuation: binding energy losses
- However, binding energy losses are correlated with fraction of the shower energy which goes into <u>electromagnetic energy</u>
 - if this is <u>large</u>, there will be fewer nuclear interactions, and <u>less</u> <u>binding energy lost</u>
 - if it is <u>small</u>, there are more nuclear interactions, and <u>more binding</u> <u>energy lost</u>
- The binding energy losses are large and variable, and are a fundamental obstacle to the best resolution

Hadronic Showers: Resolution

• Illustration of fluctuations in energy measurement

In order to achieve optimal resolution, one needs to equalize the response of type A and type B events

Hadronic Showers: Resolution

• Illustration of fluctuations for calorimeter with equalized response

This is referred to as <u>compensation</u>. Also notice that e / h = 1.

Hadronic Showers: Compensation

Compensation

- A dominant factor in the resolution of a hadron calorimeter is the <u>unequal</u> <u>response</u> to <u>electromagnetic energy</u> deposition and <u>hadronic energy</u> deposition
 - the fluctuations in the proportion of energy deposited from either harms resolution
- one can reduce this fluctuation by equalizing the electromagnetic and hadronic response:

$$e / h = 1$$

Compensation: Approaches

- The electromagnetic and nonelectromagnetic components of the hadronic shower can be equalized in response with a variety of techniques (Willis, 1995):
 - Amplify the nuclear signal
 - amplify the nuclear energy itself
 - favor the nuclear signal in sampling
 - Attenuate the EM signal
 - Measure the hadronic/EM ratio in each event and correct
 - by spatial character
 - by temporal character
 - by differential response of two detectors

Hadronic Calorimetry: Compensation

- Uranium/Scintillator Calorimeters
 - Electromagnetic Sampling inefficiencies reduce the EM response
 - Neutron response in the scintillator recovers the binding energy losses
 - WHY?
 - Recall the neutrons carry energy which is proportional to the binding energy losses
 - Neutrons preferentially scatter off hydrogen, and transfer a lot of energy to hydrogen when they scatter. (see next transparency)

Uranium/Scintillator Calorimeters (cont.)

• 1. The nuclear scattering cross sections in hyrdogen and argon

2. The max recoil energy for non-rel neutron: $E_{Rmax} = 4A E_n / (1+A)^2$

The Original U/Scintillator Compensating Calorimeter (AFS)

- Simulation confirmed the importance of (NIM A238, 489 (1985).):
 - electromagnetic sampling inefficienies
 - neutron detection

C

The Original U/Scintillator Compensating Calorimeter (AFS)

AFS made measurements with several mixtures of Cu and U and the simulations (NIM A238, 489 (1985).) reproduced them well

Compensating Calorimetry: Uranium/Scintillator

• The mix of uranium and scintillator must be just right to achieve the compensation condition (e/h = 1).

This was discovered by H. Bruckmann (Caltech Workshop, 1985, CALT-68-1305)

Compensating Calorimetry: Uranium/Scintillator

• Calculations

 \mathbf{y}

Uranium-Liquid Argon

- Uranium-Liquid Argon does not achieve full compensation:
 - the electromagnetic sampling inefficiency does reduce the electron signal
 - neutron signal is not amplified
 - neutron cross sections are small
 - maximum energy transfer is small
 - high density energy deposition is saturated
 - Partial Compensation

Uranium-Liquid Argon Simulations

÷

HEXAGONAL URANIUM-IRON-LIQUID ARGON CALORIMETER 5 Gev PROTONS

Hadron Calorimeters: Leakage and Tail Catchers

Particle Identification with Calorimetry

Different particles interact differently in the calorimeter

- Electron identification
 - identified by early shower (EM)
 - background from charge exchange
 - π^- N -> π^0 X early in calorimeter
 - discrimination of 100-1000
- Photon identification
 - EM shower with charged track entering
 - background from meson decays to photons
- Muons
 - isolated, min-I tracks
 - punchthrough
- Neutrinos
 - missing energy

Particle Identification with Calorimetry (Electrons)

- Electrons can be identified by discriminating <u>against</u> hadronic showers:
 - match momentum measurement with energy measurement (E/p)
 - transverse shower limited to few Moliere radii
 - energy in calorimeter starts early (in few radiation lengths)
 - energy in calorimeter ends early (~20 radiation lengths) - little leakage (no hadronic energy)
 - pulse height of shower large near shower max

Electron Identification with Calorimetry

فتو

Pb-glass at SLAC Hybrid Facility 196,403(1982) NIM Add position and shape cuts 11 Total Energy (e; > 1.5 Gev) 1500 \mathfrak{N} e. reject. accept Electrons EVENTS/(200 MeV) 1.5×10 82% ×10-1.5×10 50% Pions 1000 500 0 2 0 8 4 6 10 **ENERGY** (GeV)

Trigger

- Calorimeters often provide a significant trigger input:
 - fast

÷

- inclusive or exclusive
- low backgrounds with thresholds
- Example: SLD

Simulations Tools

- Electromagnetic Showers
 - EGS
 - W.R. Nelson, H. Hirayama, and D.W.O. Rogers, SLAC Report-165
 - GEANT
 - R. Brun, GEANT 3.15 Manual
- Hadronic Showers
 - CALOR

11 × 51.

- T.A. Gabriel et al, CALOR89, ORNL/TM-11185
- Gheisha
 - H. Fesefeldt, The simulation of hadronic showers, PITHA 85/02 (Aachen, 1985)
- FLUKA
 - P.A. Aarnio, FLUKA 89 Users Guide, 1990
- GEANT
 - R. Brun, GEANT 3.15 Manual

The Calorimeters of the Collider Experiments

Exp.	EM cal	Had cal
SLD	Pb/LArgon	Pb/LAr + Fe/gas
ALEPH	Pb/Al tubes	Pb/plastic tubes
L3	BGO	U/brass tubes
OPAL	Pb-glass	Fe/prop chambers
H 1	Pb/LArgon	Pb/LArgon
ZEUS	U/scin	U/scin
ATLAS	Pb/LAr(acc.)	Pb/Scin
CMS	PbWO4 crystals	Cu/Scin

ы_{с н.}

ZEUS Calorimeter

• Shortly after the understanding of compensation was established, ZEUS capitalized on this and built the best possible hadron calorimeter (U/Scin)

ZEUS Calorimeter

Atlas Forward Calorimeter

- Very forward region important to maintain detection of all energy in events and enable SUSY searches
- Very high radiation region
- Atlas: Liquid argon with a tungsten rod in a hole in a tungsten block

Figure 2.19: Front face of the e.m. module in the region of the beam pipe. The circle labelled $R_{\rm M}$ indicates the Molière radius for e.m. showers. The insert at the upper right shows the detail of four tube electrodes embedded in the absorber matrix.

Neutrino Detector (NuTeV)

Neutrino Detector (NuTeV) (cont.)

Jet Resolution

6. U.S.

 Just as with single particles, achieving e/h ~ 1 is important for jets:

E_{jet} [GeV]

Summary

÷.

- In these two lectures we have only scratched the surface on calorimetry in high energy physics.
- It is still an advancing field, despite the significant advances in recent years.
- Many publications report new ideas and tests (see the series of International Conference on Calorimetry in High Energy Physics, for example).

References

Calorimetry Reviews

- Ugo Amaldi, Fluctuations in Calorimetry Measurements, Physica Scripta 23, 409 (1981).
- P.M. Mockett, Proc. 11th SLAC Summer Institute on Particle Physics, July 1983, ed. P.M.McDonough, SLAC-267, 335 (1984).
- C. Fabjan, Calorimetry in High-Energy Physics, Techniques and Concepts of High Energy Physics III, Plenum Corp., T. Ferbel, ed. (1985).
- C.W. Fabjan and R. Wigmans, Energy measurement of elementary particles, Rep. Prog. Phys. 52, 1519 (1989).
- William J. Willis, New Directions in Calorimetry, in Techniques and Concepts of High-Energy Physics VIII, edited by Thomas Ferbel (1995).

References (cont.)

Hadron Calorimeters

- C.W.Fabjan et al, Iron Liquid-argon and Uranium Liquidargon Calorimeters for Hadron Energy Measurements, NIM 141, 61 (1977).
- J. Brau and T.A. Gabriel, Nucl. Inst. Methods A238, 489 (1985).
- R. Wigmans, Nucl. Inst. Methods A259, 389 (1987).
 - J.E. Brau and T.A. Gabriel, Theoretical Studies of Hadronic Calorimetry for High Luminosity, High Energy Colliders, Nucl. Inst. and Methods A279, 40 (1989).
 - M. Derrick et al, Nucl. Inst. Methods A309, 77 (1991).
 - D. Acosta et al., Nucl. Inst. Methods A308, 481 (1991).
 - Richard Wigmans, Advances in Hadron Calorimetery, Annu. Rev. Nucl. Part. Sci. 41, 133 (1991).
 - James E. Brau, Simulation of hadronic showers and calorimeters, Nucl. Inst. and Methods A312, 483 (1992).
 - ATLAS and CMS Technical Design Reports.

References (cont.)

Electromagnetic Calorimeters

- E. Bloom and C. Peck, Ann. Rev. Nucl. and Part. Sci 33, 143 (1983).
- E. Blucher et al, Nucl. Inst. Methods A249 (1986).
- Peter Sonderegger, Fibre Calorimeters: Dense, Fast, Radiation Resistant, Nucl. Inst. Methods
- Ren-yuan Zhu, Limits to the Precision of Electromagnetic Calorimeters, Proceedings of the First Intl., Conf. on Calorimetry in HEP, World Scientific (1991).
- D.M. Strom, "Silicon Luminosity Monitors," Proceedings of the Third Intl., Conf. on Calorimetry in HEP, World Scientific (1993).
- J.E. Brau, A.A. Arodzero, and D.S. Strom, "Calorimetry for the NLC Detector," Proc. of the Workshop on New Directions for HEP, 1996
- R.S. Kessler, Nucl. Inst. Methods A368, 653 (1996).