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Collections of interacting, self-propelled particles have been
extensively studied as minimal models of many living and
synthetic systems from bird flocks to active colloids. However,
the influence of active rotations in the absence of self-propulsion
(i.e., spinning without walking) remains less explored. Here, we
numerically and theoretically investigate the behavior of ensem-
bles of self-spinning dimers. We find that geometric frustration of
dimer rotation by interactions yields spatiotemporal order and
active melting with no equilibrium counterparts. At low density,
the spinning dimers self-assemble into a triangular lattice with
their orientations phase-locked into spatially periodic phases. The
phase-locked patterns form dynamical analogs of the ground
states of various spin models, transitioning from the three-state
Potts antiferromagnet at low densities to the striped herringbone
phase of planar quadrupoles at higher densities. As the density is
raised further, the competition between active rotations and
interactions leads to melting of the active spinner crystal. Emer-
gent edge currents, whose direction is set by the chirality of the
active spinning, arise as a nonequilibrium signature of the
transition to the active spinner liquid and vanish when the system
eventually undergoes kinetic arrest at very high densities. Our
findings may be realized in systems ranging from liquid crystal and
colloidal experiments to tabletop realizations using macroscopic
chiral grains.
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The past two decades have seen significant progress in our
understanding of active matter. Early theoretical progress

(1–3) has been accompanied by the engineering of soft materials
made of self-propelled polymers, colloids, emulsions, and grains
(4–11), which exhibit novel nonequilibrium phenomena. Prom-
inent examples include phase separation of repulsive spheres,
giant number fluctuations away from criticality, and long-range
orientational order in 2D flocks (12–14).
The systems mentioned above have in common the character-

istic that constituents acquire translational momentum because of
active propulsion but rotate only in response to collisions or dif-
fusion. By contrast, insights into the consequences of active rota-
tion without self-propulsion remain scarce, although this situation
is relevant to a wide range of experimental systems (15), including
spinning microorganisms (16, 17), treadmilling proteins (18),
sperm cell and microtubule aggregates (19, 20), shaken chiral
grains (21), light-powered chiral colloids (22), thermally and
chemically powered liquid crystals (23, 24), electrorheological
fluids (25), and biological and synthetic cilia driven by rotary
molecular motors (26).
Until now, theoretical and numerical studies on ensembles of

active spinners have separately addressed their phase dynamics
and their spatial organization. The emergence and robustness of
synchronized rotation in lattices of hydrodynamically coupled
rotors (27, 28) have been studied as an archetype of Kuramoto
dynamics in coupled oscillator systems (29). In these models, the
lattice geometry is imposed, a situation relevant, for instance, to

the propagation of metachronal waves at the surface of ciliated
tissues (30–33). Local orientational synchronization has also
been observed in self-organized disordered arrays of rotating
rods (34, 35). A separate class of numerical studies has been
devoted to the spatial structures of ensembles of active spinners
interacting via either contact or hydrodynamic interactions (36–
42). Special attention has been paid to phase separation in binary
mixtures of counterrotating spinners and hydrodynamic inter-
actions yielding spatial ordering.
Here, we bridge the gap between these two lines of research.

Combining numerical simulations and analytical theory, we show
the inherent interplay between the spatial structure and the
phase dynamics of active spinners. We uncover a generic com-
petition between monopole-like interactions that dominate at
large separations and shorter-range multipole gear-like interac-
tions. We find that their interplay frustrates ordered states but
also, yields unique spatiotemporal order and unanticipated col-
lective flows including edge currents.
We study a prototypical system of soft dimers interacting via

repulsive interactions and undergoing unidirectional active
rotation as sketched in Fig. 1. When isolated, dimers spin in
response to the active torque, attaining a steady-state spinning
speed caused by background friction. As they get closer, the
multipole character of the pair interactions resists the rotation
of adjacent dimers (Fig. 1 B and C). At very high densities, the
relative motion of neighbors is completely obstructed (Fig.
1D). By tuning the density, we explore how the frustration
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between monopole and multipole interactions plays out as
their relative strengths are varied (Movie S1). We observe
transitions from collections of independently spinning dimers
to unusual crystal states, which are ordered in particle position
as well as orientation over time (Movies S2 and S3), to active
spinner liquids to jammed states. Repulsive interactions with
boundaries also obstruct spinning (Fig. 1E); to compensate, the
system channels the rotational drive into linear momentum,
giving rise to robust edge currents and collective motion
(Movie S1).
Our model system consists of a 2D ensemble of N like-charge

dimers, each consisting of two point particles of mass m con-
nected by a stiff link of length d (Fig. 1A). Point particles in-
teract only via a repulsive pair potential of the Yukawa form
be−κr=r, where b sets the overall strength of the repulsion, r is the
interparticle separation distance, and κ is the inverse screening
length (Fig. 1). By setting κ−1 ∼ d, we discourage dimer links from
crossing each other and also, maximize the orientational de-
pendence of the effective pair interaction between dimers.
Each dimer is actively driven, implemented by a torque τ=Fd

implemented as a force dipole (Fig. 1A). Energy is dissipated by
drag forces acting on each particle with associated drag co-
efficient γ. The equations of motion for the position ri and ori-
entation θi of the ith dimer are

2mr
::
i =−2γ _ri −∂ri

X
j≠i

V
�
rj − ri, θi, θj

�
[1]

and

Iθ
::
i = τ− γΩ _θi −∂θi

X
j≠i

V�rj − ri, θi, θj
�
, [2]

where I =md2=2 and γΩ = γd2=2 are the moment of inertia and
rotational friction coefficients, respectively, and the position-
and orientation-dependent interaction potentials V and V, re-
spectively, are derived from the Yukawa pair interactions between
the point particles. An isolated dimer attains a steady state of
counterclockwise rotation about its center with a constant spin-
ning speed Ω0 = τ=γΩ (Fig. 1B). In contrast to systems where the
dimer orientation is slaved to an external field [e.g., colloids
driven by a rotating magnetic field (43, 44)], the instanta-
neous dimer orientation is not dictated by the internal drive
in our system.
On rescaling distances by κ−1 and time by Ω−1

0 , the dynamical
equations are characterized by three dimensionless quantities:
κd, α≡ Iτ=γ2Ω, which measures the characteristic dissipation time
for angular momentum in units of the spinning period, and
β−1 ≡ τ=κb, which quantifies the drive in units of the character-
istic interaction energy scale. We focus here on the competition
between rotational drive and interactions as the dimer density is
varied for fixed α and β as sketched in Fig. 1 B–D. We constrain
ourselves to the asymptotic limit where both α � 1 and β � 1.

Phase Behavior
We characterized the bulk behavior of interacting spinners
through simulations under periodic boundary conditions in
which the dimer density was varied by changing the dimensions
of the simulation box with constant screening parameter
κ= 0.725=d, particle number N = 768, and activity parameters
α= 131 and β= 133 (Materials and Methods). Density is quanti-
fied by the packing fraction ϕ=Aρ, where ρ is the number
density of dimers, and A= πðd+ 2κ−1Þ2=4 is the soft excluded
area of a spinning dimer on timescales t � 1=Ω0. Fig. 2 char-
acterizes the phase behavior of our system via changes in particle
ordering, orientational ordering, and dynamics in the non-
equilibrium steady states reached at long times. Nearly identical
behavior is observed for simulations with N = 3,072, indicating
that finite size effects are negligible (Fig. S1).

Active Spinner Crystals. At low packing fractions, the dimers self-
organize into a hexagonal crystalline pattern, with little or no
change in position, as shown for two representative densities in
columns 1 and 2 in Fig. 2A, Right. In this regime, the repulsions
between dimers give rise to a Wigner-like crystal quantified by
high values of the bond-orientational order parameter jhψ6ij
(Fig. 2D, triangles). Although the dimers are highly restricted in
their position, they continue to spin without hindrance, attaining
the same angular speed as an isolated dimer (h _θi≡Ω≈Ω0) (Fig.
2E). Apart from small fluctuations, the orientation of dimer i at
time t has the form θiðtÞ=Ω0t+ δi, with the angular phase δi
defined up to a global phase shift. This state is reminiscent of
plastic crystals but with the equilibrium fluctuations of the ori-
entational dfs replaced by active rotation: we term this state an
active spinner crystal.
The crystals display ordering in not only dimer positions but

also, dimer orientations, which are phase-locked into regular
spatial patterns (Movies S2 and S3). The angular phases δi take
on a few discrete values determined by the lattice position. We
find evidence for two distinct configurations. At low densities, δi
acquires one of three values f0, π=3, 2π=3g, with no two neigh-
bors sharing the same value (column 1 in Fig. 2C, Right). This

CBA

ED

Fig. 1. Competing rotation and interactions in active spinners. (A) Makeup
of a single self-spinning dimer, consisting of a pair of identically charged
particles (black circles) connected by a rigid rod of length d (double line).
Particles repel each other with a Yukawa interaction with screening length
κ−1, which determines the soft exclusion zone (light-blue disks), beyond
which the repulsion falls off exponentially with distance. Each particle ex-
periences a force of magnitude F and direction indicated by dotted arrows,
oriented to provide zero net force and a net torque τ= Fd on the dimer at all
times. (B–D) The density determines the influence of interactions on dimer
dynamics. (B) At large separations, interactions are negligible, and dimers
freely rotate at the terminal angular velocity set by the activity and the
background drag. (C ) As separations become comparable with the
screening length, adjacent dimers still rotate past each other but experi-
ence interaction forces (red dashed arrows show instantaneous force
caused by the interaction between two of the particles) that depend on
their instantaneous orientations. (D) At very high densities, interactions
completely obstruct dimer rotation. (E ) Hard boundaries also obstruct
dimer rotation, and their effect is transmitted into interior dimers by
interactions.
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pattern is identical to the equilibrium ground state of the three-
state Potts antiferromagnet (3P-AFM) on the triangular lattice
(45). When ϕ>ϕC3−C2

≈ 1.2, the rotational symmetry of the pat-
tern changes from C3 to C2 as stripes of alternating δi ∈ f0, π=2g
form along a spontaneously chosen lattice direction (column 2 in
Fig. 2C, Right). This phase is a dynamical analog of the striped
herringbone (H) phase observed in lattices of elongated molecules
(46). Local order parameters ψAFM and ψH (defined in Materials
and Methods) measure the extent to which phase differences
among neighboring dimers match those prescribed by the re-
spective ordered states. As shown in Fig. 2F, the 3P-AFM and H
states are each observed over a range of densities.
To understand the origin of the phase-locked patterns, we study

a minimal model of the dimer–dimer interactions. To lowest order
in dimer size d, each dimer is a superposition of a charge mono-
pole and a charge quadrupole. The monopole repulsion arranges
the dimer centers into a triangular crystal with lattice constant
a∼ 1=

ffiffiffi
ϕ

p
. We assume that the dimer positions are thus fixed and

focus on the orientation dynamics (Eq. 2) caused by the quad-
rupolar interactions. When averaged over the common rotation
period 2π=Ω0, Eq. 2 reduces to ∂θih

P
j≠ iVðrj−ri, θi, θjÞit= 0 (i.e.,

the nonequilibrium steady states extremize the time-averaged
potential energy as a function of orientation).
On ignoring fluctuations around the constant speed evolution

θiðtÞ=Ω0t+ δi and considering only nearest neighbor interactions
among dimers, the average effective energy takes the compact form

Veff ≡

*X
j≠ i

V�θi − θj
�+

t

=
X
hiji

"
A1 +A2

�
d
a

�4

cos 2
�
δi − δj

�#
,

[3]

where A1 and A2 vary with density (details are in SI Materials and
Methods). For an infinite lattice of dimers, Veff has arbitrarily

many extrema. However, the extrema can be exhaustively listed
for a triangle of neighboring dimers. Up to a global phase shift
and vertex permutations, the effective energy as a function of the
phase shifts fδ1, δ2, δ3g on the triangle vertices has three unique
extrema at f0, π=3, 2π=3g, f0,0, π=2g, and f0,0,0g. The 3P-AFM
and H phases extend the first and second of these extrema, re-
spectively, onto the infinite triangular lattice and are, thus, also
extremal states of the periodic crystal. In fact, the 3P-AFM state
is the global energy minimum for Veff, as seen by mapping the
effective energy to the antiferromagnetic (AFM) XY model on
the triangular lattice (47).* The extremum with phase values
δi = 0, which would correspond to all dimers sharing the same
orientation at all times, maximizes the frustration of spinning by
interactions and is not observed in our simulations.
In summary, spinning dimers are frustrated. The spatiotem-

poral crystal states that are compatible with the mutual frustra-
tion of the position and orientation dfs are captured by the
extrema of the effective potential Veff. However, in principle,
active spinner crystals could harbor a multitude of other phase-
locked patterns, which cannot be reduced to repetitions of a
single triangular unit but nevertheless, extremize Veff. These
states may be accessible by modifying the initial or boundary
conditions or the dynamics of approaching the nonequilibrium
steady state.

Melting and Kinetic Arrest. We now elucidate how synchronized
spinning motion frustrates positional order and melts dense
spinner crystals. As the packing fraction is increased, we observe

A

B

C

D

E

F

Fig. 2. Bulk phases of the active spinner system. The behavior of dimer positions and orientations is investigated as a function of packing fraction ϕ for
constant activity level α= 131.026. A–C highlight different physical quantities of the system, shown schematically and displayed for simulation snapshots for
four representative values of ϕ in A–C. The snapshots cover roughly 10% of the simulation area. (A) Center of mass position (dark dots) and velocities (red
arrows) shown along with the soft exclusion area of individual charges (translucent disks). (B) Angular rotation speed Ω=Ω0. (C) Orientation represented by a
fixed-length segment colored by the angle made by the dimer with the x axis. Segment length does not represent actual dimer size. (D–F) Ensemble
measurements of steady-state physical quantities as a function of ϕ. (D) Bond-orientational order parameter and diffusivity of dimer positions. (E) Average
angular speed. These quantities identify three distinct phases in different density ranges: crystal (blue background), liquid (red background), and jammed
(green background). The rotational speed abruptly drops to zero (within numerical precision) in the jammed phase. (F) Order parameters quantifying Potts
AFM (ψAFM) and striped H (ψH) order in the phase relationships between rotating dimers in the crystal.

*The effective energy inherits a discrete and a continuous ground-state degeneracy from
the AFM XY model. An arbitrary global phase shift gives the same state, but this shift is
equivalent to a choice of t = 0 in the description of the orientations. The discrete de-
generacy is in the chirality of phase order (0→ π=3→2π=3 vs. 0→2π=3→ π=3) on circling a
plaquette. Adjacent plaquettes always have opposite chirality, and the two possible
chirality arrangements on the triangular lattice provide two distinct ground states.

van Zuiden et al. PNAS | November 15, 2016 | vol. 113 | no. 46 | 12921

A
PP

LI
ED

PH
YS

IC
A
L

SC
IE
N
CE

S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1609572113/-/DCSupplemental/pnas.201609572SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1609572113/-/DCSupplemental/pnas.201609572SI.pdf?targetid=nameddest=STXT


a loss of crystalline ordering, signaled by a sharp drop in jhψ6ij
from 1 to 0.2 at ϕ=ϕmelt ≈ 1.9. This drop coincides with the onset
of diffusive dynamics of the dimer centers of mass at long times
(Fig. S2). The diffusivity D≡ limt→∞hjriðt0 + tÞ− riðtÞj2ii=t is non-
zero for a range of densities above ϕmelt, characteristic of a liquid
phase. Melting is accompanied by a disruption of the phase-
locked spinning dynamics as quantified by (i) a drop in the av-
erage spin velocity to below 0.1Ω0 (Fig. 2E), (ii) a marked increase
in spin speed fluctuations (Fig. S3), and (iii) a loss of H order in
the orientations (Fig. 2F). Column 3 in Fig. 2 A–C, Right shows a
typical liquid configuration with no discernible order in the posi-
tions, orientations, or spinning speeds.
The melting of the dimer crystal on increasing the density, at

odds with the typical behavior of athermal or equilibrium re-
pulsive particles, is a direct result of the orientational de-
pendence of dimer–dimer interactions coupled with the active
spinning. The monopole part of the pair interaction is respon-
sible for the crystalline arrangement of dimer centers. The
quadrupolar component generates a gearing effect, which hin-
ders the activity-driven corotation of adjacent dimers as shown
schematically in Fig. 1C. The competition between interactions
and active spinning results in geometrical frustration of the
crystalline order, akin to the frustration of AFM Ising spins on
the triangular lattice. Increasing the density strengthens the
quadrupolar component of the interactions relative to the
monopole component, destabilizing the crystal at the threshold
packing fraction ϕmelt. In the liquid state, the frustration of in-
place dimer rotation by interactions is partially relieved by di-
mers constantly sliding past each other at the cost of crystalline
and phase-locked order.
On increasing the packing fraction beyond ϕmelt, the diffusive

and spinning dynamics slow down as interactions become more
prominent. At ϕ=ϕJ ≈ 3.3, the diffusivity and spinning speed of
the ensemble both drop abruptly to zero, signifying a sharp
transition from a liquid to a frozen solid, in which interactions
completely overwhelm the external drive (48). As shown by
representative snapshots (column 4 in Fig. 2 A–C, Right) and the
bond-orientational order parameter (Fig. 2D), the dimer posi-
tions and orientations in the frozen state do not exhibit the or-
dering of the crystalline phases. However, a different form of
short-range orientational order persists: dimers tend to form
ribbon-like assemblies, which share a common alignment (col-
umn 4 in Fig. 2C, Right and Fig. S4). This structure, which locally
resembles smectic ordering in liquid crystals, is a consequence of
the constraints on tightly packing repulsive dimers. The full de-
scription of this state, reminiscent of a degenerate crystal (49),
goes beyond the scope of our work.

Confinement-Induced Collective Motion
At a microscopic level, the bulk phases are distinguished by
the relative importance of rotational drive and orientation-
dependent interactions. For a steady state to be attained, torques
must be balanced globally as well; in a confined system, the
overall torque may be balanced by viscous drag as well as
boundary forces. To investigate the interplay between rotational
drive, interactions, and confinement, we simulated a system
confined by a circular frictionless boundary as depicted in Fig. 3A
for the same particle number (N = 768), activity level, and den-
sity range as in Fig. 2. Densities are changed by varying the circle
radius, because ϕ=NA=πR2. Fig. 3A and Movie S1 show the
dimer center of mass motion for three representative densities
across different phases, all of which display spontaneous
macroscopic flows.
Measurements of the coarse-grained azimuthal velocity vθðrÞ

as a function of distance r from the disk center (Materials and
Methods) reveal qualitative differences in the collective flows
across phases. In both the crystal (ϕ= 0.827) and frozen
(ϕ= 3.750) phases, the angular velocity about the disk center,

ωðrÞ= vθðrÞ=r, is constant throughout the disk (Fig. 3B), showing
that the ensemble rotates around the center in unison as a rigid
body. By contrast, the angular velocity profile is nonuniform for
the liquid (ϕ= 2.395), growing monotonically with distance from
the disk center. These distinct behaviors persist over the entire
phase diagram, as shown in Fig. 3C, which compares the steady-
state values of the flow angular velocity at the center [ωð0Þ] and
edge [ωðRÞ] of the disk as a function of density. The center and
edge values coincide in the solid phases, consistent with rigid
body rotation, whereas the liquid phase shows a persistent en-
hancement of flow at the edge. Collective vortical motion and
boundary flows were previously shown in suspensions of swim-
ming cells (50, 51). However, their spatial structure and physical

A

E F

B

C

D

Fig. 3. Collective motion reflects phase changes. (A) Snapshots showing the
drift of N= 768 dimers confined by a circular boundary. Arrows indicate the
displacements after Δt = 164=Ω0 for ϕ= 0.827 (crystal), ϕ= 2.395 (liquid), and
ϕ= 3.750 (jammed). Arrows are scaled differently for visibility. (B) Time-
averaged steady-state radial distributions of the orbital angular speed ωðrÞ
about the disk center (orange) and the local spin speed (blue) for the sim-
ulations shown in A. Dashed lines are fits to the hydrodynamic theory.
(C) Steady-state orbital angular speed ωðrÞ in simulation units as a function
of density measured at the disk center (r = 0) and edge (r =R). Coincidence of
the two values is consistent with rigid body rotation. The solid and dashed
red lines show the theoretical prediction for the rigid body rotation speed in
the crystal and jammed phases, respectively. (D) Steady-state tangential
speed of dimers at the wall as a function of density for N= 768 dimers
confined by two walls perpendicular to the x direction and periodic
boundary conditions along y. Density is varied by changing the area be-
tween the slabs, while keeping the aspect ratio Ly=Lx =2 unchanged.
(E) Snapshot of dimer motion for 768 dimers confined between parallel slabs
at ϕ= 2.410, with Ly=Lx = 1=3. (F) Averaged steady-state velocity profile be-
tween the slabs (orange) and local spin speed (blue) for the simulation
shown in E. Dashed lines are fits to the hydrodynamic theory.
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origin are profoundly different from the confinement-induced
flows reported here, which depend on the chiral activity of the
spinners as we now elucidate.

Spontaneous Collective Rotation of Rigid Phases. The rigid body
rotation in the two solid phases, ordered and jammed, can be
understood by balancing torques about the center of the circular
boundary to obtain an acceleration-free steady state. The forces
exerted by the boundary, being radially oriented, do not exert
torque. Thus, the driving torques acting on the dimers must be
balanced by drag forces. In the crystal interior, dimers homo-
geneously and steadily spin about their individual centers at a
rate Ω0 (Fig. 3A), and the resulting friction balances the driving
torques at all times. However, the spinning of the outermost
layer of Ne dimers is obstructed by the hard boundary as shown
schematically in Fig. 1E, which implies that the driving torques
on these dimers are not balanced by spinning. Rather, these
torques drive an overall rotation of the crystal. The corre-
sponding rigid body rotation speed, ωrb, is obtained by balancing
the net drive Neτ against the net drag torque caused by the
rigid body rotation, which scales as NγΩR2, thereby leading to
ωrb ∼ ðNe=NÞτ=γR2 ∝ϕ.
In the frozen phase, local spinning of dimers relative to their

neighbors is completely frustrated by interactions. Therefore, the
entire external torque Nτ is balanced solely by the drag caused by
orbital motion, giving rise to ωrb ∼ τ=γR2 ∝ϕ. The measured ro-
tation speeds quantitatively match the predictions because of
overall torque balance (solid and dashed lines in Fig. 3C).

Emergent Edge Current in Active Spinner Liquids. The rigid body
motion of the two solid phases relies on the transmission of
torque via shear stresses throughout the sample. If the disk is
partitioned into circular annuli, the net external drive acting on
each annulus differs from the net drag torque; neighboring an-
nuli must exert shear forces on each other to balance the total
torque. Unlike the solid phases, the liquid cannot support a shear
stress through elastic deformations, which qualitatively explains
the absence of pure rigid body rotation (Fig. 3 A and B). For a
quantitative description of the emergent flow, we use a contin-
uum theory of an active chiral liquid coupled to a solid substrate.
This phenomenological model, introduced in refs. 21 and 52,
generalizes the so-called micropolar fluid hydrodynamics (53,
54) by including couplings to a frictional substrate.
Assuming incompressibility (as justified by the lack of signifi-

cant spatial variations in dimer density), the hydrodynamic de-
scription relies solely on the conservation of momentum and
angular momentum and therefore, involves two coarse-grained
fields: the flow velocity vðrÞ and the internal angular rotation, or
spin, field ΩðrÞ. The hydrodynamic equations take on a compact
form when written in terms of ΩðrÞ and the scalar vorticity
ζðrÞ= 1=2ẑ ·∇× vðrÞ. In the viscous steady-state limit, these
equations, which amount to local torque and force balance, re-
spectively, are (21, 52)

DΩ∇2Ω−ΓΩΩ−ΓðΩ− ζÞ+ ρτ= 0 [4]

and

ð4η+ΓÞ∇2ζ− 4Γvζ−Γ∇2Ω= 0, [5]

where ρ is the active spinner fluid density, η is the shear viscosity,
and DΩ is a spin viscosity controlling the diffusive transport of
angular momentum. The coefficients ΓΩ and Γv quantify the
dissipation of angular and linear momentum, respectively,
caused by substrate friction. The crucial spin vorticity coupling
is embodied in the rolling friction Γ, which coarse grains the
frustration between rotations and interactions outlined in Fig. 1C.
Orientation-dependent interactions hinder the free spinning of

adjacent fluid elements, causing shear stresses proportional to Γ,
unless the elements flow past each other in such a way that the
vorticity cancels the local spin.
Analysis of the hydrodynamic equations reveals that spatial

variations in the local spin field induce persistent flows. In the
absence of boundaries, the equations admit the flow-free solu-
tion Ω= ρτ=ðΓΩ +ΓÞ=Ω, ζ= 0. If a hard boundary hinders
spinning, however, ΩðrÞ varies from its value imposed by the
boundary to the constant interior value Ω over a length scale
λΩ = ½DΩ=ðΓ+ΓΩÞ�1=2 set by the competition between diffusion
and dissipation of local spin. The spatial variations in Ω, confined
to the boundary, act as a source for vorticity, which itself decays
over a length scale λζ = ½ð4η+ΓÞ=ð4ΓvÞ�1=2 set by drag. These
predictions match the simulation results, and a fit to radially
symmetric spin and flow fields (dashed lines in Fig. 3B, Center)
provides quantitative agreement with four fitting parameters
(more details are in SI Materials and Methods).
The spontaneous liquid flow only requires the obstruction of

spinning by the boundary, independent of its geometry. To
highlight the robustness of this emergent flow, we also study
active spinner liquids in a slab geometry with two edges aligned
perpendicular to the x axis and periodic boundary conditions
along y, as shown in Fig. 3E. This geometry suppresses rigid body
rotation in all phases; excess driving torques are balanced by
normal boundary forces. Accordingly, no dimer motion is mea-
sured in the crystal and jammed phases (Fig. 3D). However, a
persistent flow parallel to the slab edges arises in the liquid
phase, showing that the emergence of localized shear flows at
edges is a robust feature of geometrically confined active spinner
liquids. The mechanism for the edge current is the exchange
between local spin and vorticity described above, which hinges
on the orientation dependence of dimer–dimer interactions. The
hydrodynamic description quantitatively reproduces the flow
velocity profile vyðxÞ and spin field ΩðxÞ (Fig. 3F, dashed lines).

Conclusion
Combining numerical simulations and analytical theory, we have
elucidated the phase behavior of interacting active spinners. The
mutual frustration of positional and time-periodic orientational
order has been shown to yield a variety of crystal and disordered
phases. Although we have focused on the density dependence of
the bulk and edge phenomena, the phases and their associated
emergent flows persist over a broad range of activity strengths
(Fig. S5), which makes experimental realizations feasible. Col-
loidal dumbbells (55, 56) spun by phoretic stresses (57) or
Quincke rotation (6) would provide a near-literal realization of
our model. More broadly, the essential ingredients of active
spinners with orientation-dependent repulsive interactions are
present in a wide variety of experimental systems, including
chiral liquid crystals confined to a monolayer and driven via the
Lehmann effect (58), rotating nanorods propelled by bio-
molecular motors (59), and light-driven micromotors (22). We
also envision macroscopic realizations using chiral particles
driven by airflow (60) or vibrations (21), with soft interactions
provided by electrostatic or magnetic repulsion. Other than
opening up avenues to explore nonequilibrium physics in simple
settings, the phases arising from the interplay between interac-
tions and spinning may be exploited for tunable torque trans-
mission (61) or self-assembly of anisotropic particles into
ordered patterns.

Materials and Methods
Details of the molecular dynamics simulations, including implementation of
dimers and boundaries, ensemble averaging and spatial coarse graining of
relevant physical quantities, and order parameters used to distinguish various
phases, are provided in SI Materials and Methods.
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SI Materials and Methods
Simulations. Our molecular dynamics simulations solve Newton’s
equations for a system of point particles with specified pairwise
interactions, external forces, and drag coefficients. Particles in-
teract with a pairwise repulsive Yukawa potential with identical
charge b and screening length κ, enabled for all particle pairs
with separation r< 10κ−1. Dimers are created by connecting pairs
of particles with stiff harmonic springs of equilibrium length d and
spring constant k= 104bκ3. Torques are applied via an external
force F = τ=d oriented perpendicular to the link at all times. Each
point particle also experiences a drag force proportional to velocity
with coefficient −γ. Simulations are initialized with dimers at ran-
dom positions and orientations within the simulation box. Particle
positions and velocities are updated by integrating Newton’s
equations using a symplectic Euler method with time step
Δt= 0.0086=Ω0. A typical simulation runs for 107 time steps, taking
roughly 100 processor hours for system size N = 768 at the highest
densities, with a snapshot of dimer data saved every 103 steps.
Ensemble averages are carried out over the final 8,000 snapshots.
Confining boundaries are implemented using a steep one-sided

harmonic repulsive potential V ðxÞ= kwx2=2 experienced by all
particles, where x is the penetration distance into the boundary,
and kw = 3.14× 102bκ3. For simulations confined by a circular
boundary, coarse-grained fields of the form f ðrÞ are computed by
dividing the simulation region into 39 concentric annuli with widths
inversely proportional to their mean radius r, so that the number of
dimers is the same in each annulus on average. The relevant
quantity averaged over all dimers occupying the annulus at r pro-
vides a discretized numerical estimate of the coarse-grained field
value fpðrÞ in frame p. The estimate is then averaged over the final
8,000 snapshots to obtain the coarse-grained field f ðrÞ= hfpðrÞip. A
similar averaging provides the coarse-grained fields ΩðxÞ and vyðxÞ
for the slab geometry but with the simulation area between the
slabs divided into 40 strips with edges parallel to the y axis. Aver-
aging the relevant quantity over dimers occupying a strip centered
at x provides the discrete coarse-grained field value fpðxÞ.
Order Parameters. The local bond-orientational order parameter
ψ6,i =

Pni
j=1e

6iθij=ni, where j indexes the ni nearest neighbors of i,
and θij is the angle made by the bond connecting i and j with the x
axis, measures the extent to which the neighbors of dimer imatch
the orientational order of the triangular lattice. The global order
parameter jhψ6ij= jPN

i=1ψ6,i=Nj measures the extent to which
local bond orientations are aligned across the system. A perfect
triangular lattice has jhψ6ij= 1.
The local order parameters ψAFM,i and ψH,i report whether the

orientations of dimer i and its nearest neighbors j (identified via
a Delaunay triangulation) are consistent with the expected phase
differences for the 3P-AFM and H crystal phases, respectively.
To identify the 3P-AFM phase, we check whether orientation
differences between neighbors are ±π=3 by computing

ψAFM,i =
1
zi

Xzi
j=1

1−
1
3
�
4 cos2

�
θij
�
− 1

�2
, [S1]

where θij = θi − θj, and zi is the number of neighbors of dimer i.
The expression evaluates to one if ½ðθi − θjÞmod π�∈ fπ=3, 2π=3g
for all neighbors and has an expectation value of zero if angle
differences are randomly distributed.
For the H phase, we first arrange the neighbors in order of

increasing angle made by the link connecting i and j with the x

axis. Our goal is to evaluate the closeness of all possible circu-
lar shifts of this neighbor arrangement with the sequence
S≡ f0, π=2, π=2, 0, π=2, π=2g. We define the shift k as the integer
in f0,1,2g, which minimizes sin2ðθikÞ+ sin2ðθi − θk+3Þ in the ordered
arrangement. The local order parameter is then computed via

ψH,i =−
1
zi

Xzi
j=1

cos
��

2θij + π, if   jmod 3= k
2θij, otherwise

�
, [S2]

which evaluates to one only if the sequence of θij starting from
j= k matches S and is close to zero for a random distribution of
dimer orientations.
Under periodic boundary conditions, the crystals formphase-locked

domains separated by defects and grain boundaries, which bring down
the value of the order parameters from one when averaged over all
points. In Fig. 2F, we identify the predominant local order within do-
mains by plotting the most probable values ψAFM and ψH. These order-
parameter values are obtained by binning the local values ψ i from
every 50th frame in the range 8,000≤ p≤ 10,000 into 20 equally spaced
bins and reporting the coordinate of the bin with highest occupancy.

Effective Interaction Between Dimer Pairs. In the limit that the dimer
length d is small compared with the dimer separation, each dimer
can be considered a superposition of a monopole carrying the net
charge 2b and a quadrupole charge distribution. Therefore, the
interaction between a pair of dimers can be written as a sum of
monopole–monopole, monopole–quadrupole, and quadrupole–
quadrupole terms. The monopole–monopole contribution is in-
dependent of dimer orientation. Suppose the angle made by dimer
i evolves in time as θi =Ω0t+ δi. By symmetry considerations, the
monopole–quadrupole contribution integrates to a quantity that is
independent of the phases δi. The quadrupole–quadrupole con-
tribution does depend on the relative phases and has the form

Eij = J
�
rij
�
cos

�
2θi − 2θj

�
+K

�
rij
�
cos

	
2θi + 2θj − 4ϕij



, [S3]

where ϕij is the angle made by the link connecting i and j with the
x axis, and J   and  K are functions of the center of mass separation
rij set by the Yukawa parameters:

JðrÞ= b
128r

�
d
r

�4

e−κr
h
9ð1+ κrÞ+ 5ðκrÞ2 + 2ðκrÞ3 + ðκrÞ4

i
[S4]

and

KðrÞ= b
128r

�
d
r

�4

e−κr
h
105ð1+ κrÞ+ 45ðκrÞ2 + 10ðκrÞ3 + ðκrÞ4

i
.

[S5]

For the rotating dipoles with constant angular speed Ω0 with fixed
center of mass positions separated by the lattice spacing a, we have

Eij = JðaÞcos�2δi − 2δj
�
+KðaÞcos

	
4Ω0t+ 2δi + 2δj − 4ϕij



. [S6]

When the energy is integrated over a cycle, the second term in-
tegrates to zero, and hence, the average potential energy over the
cycle is ð1=TÞ R T

0 Eij   dt= JðaÞcosð2δi − 2δjÞ.
Hydrodynamic Model: Rescaling and Approximate Solution. In this
section, we derive closed form approximate solutions to
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the hydrodynamic equations (Eqs. 4 and 5), which are useful for
numerical fitting to the spin and velocity profiles of the active
spinner liquid under confinement. We follow ref. 21 and in-
troduce lengths via λ2Ω =DΩ=ðΓ+ΓΩÞ and λ−2ζ = 4Γv=ð4η+ΓÞ and
unitless parameters p=Γ=ðΓ+ΓΩÞ and q=Γ=ð4η+ΓÞ. Then, the
equations become

�
λ2Ω∇

2 − 1
�
Ω+ pζ+~τ= 0 [S7]

and 	
∇2 − λ−2ζ



ζ− q∇2Ω= 0, [S8]

where ~τ= ρτ=ðΓΩ +ΓÞ∼ τ=ðγΩ +Γ=ρÞ. In the interior of a sample,
away from the edges, we expect (and observe) Ω≈~τ− pζ. We also
observe, numerically, that pζ is negligible compared with the other
two terms. Because hΩi � Ω0 in the liquid phase, this condition
implies Γ � ΓΩ ⇒ p≈ 1. With these simplifications and the require-
ment of zero spin and zero tangential forces at the boundary, we get
a closed form solution for the two hydrodynamic fields. In the slab
geometry, with slab boundaries at x=±L=2, they have the form

ΩðxÞ=~τ

�
1− sech

�
L
2λΩ

�
cosh

�
x
λΩ

��
[S9]

and

ζðxÞ=
q~τ
h
sech

�
L
2λζ

�
cosh

�
x
λζ

�
− sech

�
L
2λΩ

�
cosh

�
x
λΩ

�i
1− λ2Ω

λ2ζ

. [S10]

The corresponding velocity field is obtained by inte-
grating the vorticity. The current magnitude at the edges
(x=±L=2) is

vedge =
2q~τ

h
λζ tanh

�
L
2λζ

�
− λΩ tanh

�
L
2λΩ

�i
1− λ2Ω

λ2ζ

. [S11]

Using these results, we can extract the values of the lengths and
dimensionless parameters from the simulations. We first fit the
spin field ΩðxÞ, because the decay length λΩ tends to be much
smaller than λζ, allowing the former to be fit accurately for
narrow slabs, where the width might be comparable with the
latter. The fit to the spin field fixes the parameters ~τ and λΩ.
The second fitting of the velocity field then fixes the remaining
two parameters q and λζ.
The parameter values obtained from the fit for the slab simu-

lation in Fig. 3F, with L= 121.43d, are ~τ= 0.06627,   q= 0.0150,  
λΩ = 3.554d,   and  λζ = 22.65d. The approximation that pζ � Ω
requires q � 1 satisfied by the fit.
The same procedure is used for a liquid confined to a disk of

radius R, for which the approximate radially symmetric solutions
for the spin and vorticity fields, respectively, are

ΩðrÞ=

~τ

2
6641−

R
	
1− λ2Ω

λ2ζ



I2
	
R
λζ



I0
	

r
λΩ




2bλζI1
	
R
λζ



I2
	

R
λΩ



+ I2

	
R
λζ


	
R
	
1− λ2Ω

λ2ζ



I0
	

R
λΩ



− 2bλΩI1

	
R
λΩ




3
775

[S12]

and

Here, Im is the modified Bessel function of first kind of order m.
The parameters obtained from the fit to the approximate solu-
tion for the disk simulation in Fig. 3B (ϕ= 2.395,   R= 33.65d) are
~τ= 0.1475,   q= 0.0161,   λΩ = 2.484d,   and  λζ = 15.61d.

ζðrÞ=
bR~τ

�
I0
	

r
λζ



I2
	

R
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r
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2λζ
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R
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R
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#. [S13]
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Fig. S1. Ensemble measurements of steady-state physical quantities as a function of ϕ for a system with N= 3,072 dimers, four times the system size of the
simulations reported in Fig. 2. (Top) Bond-orientational order parameter and diffusivity of dimer positions. (Middle) Average angular speed. These quantities
identify three distinct phases in different density ranges: crystal (blue background), liquid (red background), and jammed (green background). The rotational
speed abruptly drops to zero (within numerical precision) in the jammed phase. (Bottom) Order parameters quantifying Potts AFM (ψAFM) and striped H (ψH)
order in the phase relationships between rotating dimers in the crystal. The vertical lines are at the same values of ϕ as in Fig. 2. The density ranges for the
distinct phases are almost identical for N= 768 and N= 3,072. The transition from liquid to jammed occurs at a slightly higher density, ϕJ ≈ 3.5, for N=3,072
(compared with ϕJ ≈ 3.3 for N= 768).
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Fig. S2. Mean squared displacement of dimers over time for the periodic system under four representative densities, which are the same as in Fig. 2. The mean
squared displacement is calculated independently for 76 randomly chosen dimers (one-tenth of the total) and averaged over them. Lower shows the same data
on a logarithmic scale. The system in the liquid phase (ϕ= 2.168) has diffusive dimer dynamics with the mean square displacement growing linearly with time.
Dimers in the crystal (ϕ= 0.717 and ϕ= 1.523) and jammed (ϕ= 3.700) states do not diffuse over long times. However, in the crystal phases, there is a finite
displacement at short times, reflecting the vibrations of the dimers around their mean positions, which are fixed over time. These vibrations are larger in the H
phase compared with the AFM phase.

Fig. S3. Fluctuations in dimer spin velocities _θi around their mean value Ω in the steady state for the simulations under periodic boundary conditions with
α= 131  and  β= 0.0075. The fluctuations are quantified by the SD of spin velocities normalized by their mean. The normalized fluctuations are negligible in the
3P-AFM crystal phase (ϕ< 1.2) and small in the H crystal phase (1.2<ϕ<1.9). They become very large in the liquid phase (ϕ> 1.9), showing that dimers no longer
rotate uniformly in the liquid; their rotational dynamics are dominated by interactions, which change constantly as dimers diffuse through the liquid. In the
jammed phase (ϕ> 3.3), the mean spin velocity Ω= 0, and the normalized spread in spin velocities is undefined.
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Fig. S4. Snapshot of a simulation in the jammed phase (α= 131.026,ϕ= 3.7) colored by (Upper) orientation angle and (Lower) orientation angle multiplied by
three. Regions of uniform color in Lower indicate regions where dimers are aligned modulo π=3.
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Fig. S5. Bulk phases are reflected in edge currents and persist over a range of torques. The flow at the edge is plotted as a function of activity level α and
packing fraction ϕ in the disk geometry. In these simulations, the disk radius R= 48.27d was kept constant, and the density was varied by changing the number
of dimers confined to the disk. The tangential flow velocity vθðrÞwas measured as for the systems in Fig. 3, and the edge flow is reported as the difference in
ωðrÞ= vθðrÞ=r at the edge and center of the disk. Symbols are colored by edge current magnitude, whereas symbol shapes are chosen by values of bulk
properties that identify the different phases. Circles, active rotator crystals identified by hΩi> 0.4 and hψ6i> 0.45; diamonds, frozen phase identified by
hΩi< 10−5; squares, dynamic and disordered liquid-like states that do not satisfy the previous criteria for the crystal and frozen phases.

Movie S1. Examples of different bulk phases and corresponding collective motion for systems with n = 768. The video shows the steady state for simulations
under periodic boundary conditions (Left) and confined to a disk (Right). Three sequences are shown, corresponding to three densities: ϕ = 0.8 (crystal), ϕ = 2.1
(liquid), and ϕ = 4 (jammed). Red arrows show dimer velocities (scaled differently for the different densities).

Movie S1
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Movie S2. Spatiotemporal crystalline order in simulations under periodic boundary conditions with n = 768. Dimers are colored by the angle made with the x
axis, as in Fig. 2C. Two sequences are shown with ϕ = 0.7 and ϕ = 1.3 in the AFM and H crystalline phases, respectively. The systems self-assemble into
polycrystals, with domains separated by grain boundaries, which perturb the perfect synchronized patterns. Within each domain, the expected AFM or H
phase-locked pattern is recovered far from the grain boundaries.

Movie S2

Movie S3. Spatiotemporal crystalline order for monocrystals prepared without defects. Systems are prepared with n = 144 dimers positioned at the sites of a
triangular lattice with 12 rows in a commensurate periodic box. Dimers are colored by the angle made with the x axis, as in Fig. 2C. Two sequences are shown
for systems prepared with ϕ = 0.6 and ϕ = 1.3, illustrating the perfect AFM and H crystalline phases, respectively.

Movie S3
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