Superficially, there are many similarities between gravity and electricity; for example, Newton's law for the gravitational force between two point masses and Coulomb's law for the electric force between two point charges both vary as the inverse square of the separation distance. Yet, in James Clerk Maxwell's theory for electromagnetism, accelerated charges emit signals (electromagnetic radiation) that travel at the speed of light, whereas in Newton's theory of gravitation accelerated masses transmit information (action at a distance) that travels at infinite speed. This dichotomy is repaired by Einstein's theory of gravitation, wherein accelerated masses also produce signals (gravitational waves) that travel only at the speed of light. And, just as electromagnetic waves can make their presence known by the pushing to and fro of electrically charged bodies, so can gravitational waves be detected, in principle, by the tugging to and fro of massive bodies. However, because the coupling of gravitational forces to masses is intrinsically much weaker than the coupling of electromagnetic forces to charges, the generation and detection of gravitational radiation are much more difficult than those of electromagnetic radiation. Indeed, since the time of Einstein's invention of general relativity in 1916, there has yet to be a single instance of the detection of gravitational waves that is direct and undisputed.
There are, however, some indirect pieces of evidence that accelerated astronomical masses do emit gravitational radiation. The most convincing concerns radio-timing observations of a pulsar located in a binary star system with an orbital period of 7.75 hours. This object, discovered in 1974, has a pulse period of about 59 milliseconds that varies by about one part in 1,000 every 7.75 hours. Interpreted as Doppler shifts, these variations imply orbital velocities on the order of 1/1000 the speed of light. The non-sinusoidal shape of the velocity curve with time allows a deduction that the orbit is quite noncircular (indeed, an ellipse of eccentricity 0.62 whose long axis precesses in space by 4.2 per year). It is now believed that the system is composed of two neutron stars, each having a mass of about 1.4 solar masses, with a semimajor axis separation of only 2.8 solar radii. According to Einstein's theory of general relativity, such a system ought to be losing orbital energy through the radiation of gravitational waves at a rate that would cause them to spiral together on a time scale of about 3 108 years. The observed decrease in the orbital period in the years since the discovery of the binary pulsar does indeed indicate that the two stars are spiraling toward one another at exactly the predicted rate.
The implosion of the core of a massive star to form a neutron star prior to a supernova explosion, if it takes place in a nonspherically symmetric way, ought to provide a powerful burst of gravitational radiation. Simple estimates yield the release of a fraction of the mass-energy deficit, roughly 1053 ergs, with the radiation primarily coming out at wave periods between the vibrational period of the neutron star, approximately 0.3 millisecond, and the gravitational-radiation damping time, about 300 milliseconds.
A cosmic background of gravitational waves is a possibility that has sometimes been discussed. Such a background might be generated if the early universe expanded in a chaotic fashion rather than in the smooth homogeneous fashion that it is currently observed to do. The energy density of the gravitational waves produced, however, is unlikely to exceed the energy density of electromagnetic radiation, and each graviton (the gravitational analogue of the photon) would be susceptible to the same cosmological redshift by the expansion of the universe. A roughly thermal distribution of gravitons at a present temperature of about 1 K would be undetectable by foreseeable technological developments in gravitational-wave astronomy.
Excerpt from the Encyclopedia Britannica without permission.