A p-adic Integral by Combinatorics

JOE WEBSTER
UNIVERSITY OF OREGON

INTRODUCTION

For an integer $N \geq 2$, an algebraic number field K, and a prime ideal \mathfrak{p} in the ring of integers \mathcal{O}_K, let ζ_K be the derivative function for the nonarchimedean absolute value defined by $|r|_K = \zeta_K(r)$. Let X be the completion of K with respect to $|r|_K$. Denote the unit balls in X by $B(x) = \{r \in X : |r|_K < \delta(x)\}$, and let $\delta(x)$ be the additive Haar measure on X which satisfies $\delta(x) = 1$. Writing μ_K for the N-fold Cartesian product of X and \mathbb{R} for Lobachevskii integration against the N-fold product measure, we have

$$\int_X \mu_K \, d\delta(x) = \delta(0).$$

As an \mathfrak{a}_0-isogenuous zeta function

Given a compactly supported locally constant function $\mathfrak{a}_0 : X \to \mathbb{C}$, a continuous homogeneous $\mathfrak{a}_N : X^N \to \mathbb{C}$, and a nonzero polynomial $\mathfrak{a}_s : X \to \mathbb{C}$, we associate the (gauge) zeta function defined by

$$Z_{\mathfrak{a}_0}(s; \mathfrak{a},\mathfrak{a}_N,\mathfrak{a}_s) = \int_X \mathfrak{a}_0 \prod_{i=1}^N |r_i|_K^{s-1} \mu_K \, d\delta(x).$$

Here \mathfrak{a}_0 is not to be confused with \mathfrak{a} which is the group of fractional ideals of K. Each solution $s \in \mathfrak{a}$ is a polynomial and for every $s \in \mathfrak{a}$ we have an isomorphism of abelian groups $\mathfrak{a}_N \to \mathfrak{a}_N$ by

$$(\mathfrak{a}_N)(x_1,\ldots,x_N) \mapsto (s(x_1),\ldots,s(x_N)).$$

Every ball in X is open, compact, and of the form $B(x) = \{r \in X : |r-x|_K < \delta(x)\}$. The measure of each ball is given by $\mu_K \, d\delta(x) = e^{-\delta(x)}$. The measure of each semicircle $r \to |r-x|_K$ is 2π. If $N = 1$, the measure of each half-circle $r \to |r-x|_K$ is π. If $N = 2$, the measure of each half-circle $r \to |r-x_1, r-x_2|_K$ is 2π. If $N = 3$, the measure of each half-circle $r \to |r-x_1, r-x_2, r-x_3|_K$ is 3π. If $N = 4$, the measure of each half-circle $r \to |r-x_1, r-x_2, r-x_3, r-x_4|_K$ is 4π.

What is a splitting sequence?

Definition 2. A splitting sequence η of N is a tuple $\eta = (\eta_1, \eta_2, \ldots, \eta_N)$ of compositions $\eta_i : \mathfrak{a}_i \to \mathfrak{a}_i$ such that $\tau_{\eta_i} \preceq \tau_{\eta_i+1}$ for all $\eta_i \in \mathfrak{a}_i$. Writing $\mathfrak{a}_i(\mathfrak{d})$ for the integrand of ζ_K, we may express the sum over all of \mathfrak{a}_i of the “alphabet” \mathfrak{d}. Note that each $\mathfrak{d} \in \mathfrak{a}_i$ can be visualized as a path down an ordered elementary tree, in which case $\mathfrak{d} \notin \mathfrak{d}$ and only if the path is $\eta_{\mathfrak{d}}$ (eventually) to the left of the path for $\eta_{\mathfrak{d}}$.

The theorem follows by summing over all \mathcal{C} and \mathfrak{d} and returning to $\eta_{\mathfrak{d}}$.

THE MAIN RESULT

Theorem 4 (Main Theorem). Define the open sets

$$\Omega_{\eta} = \{ (x_1, x_2) \in \mathbb{R}^2 : \mathfrak{a}_0(\mathfrak{d}) \geq 0 \}$$

and

$$\Omega_{\eta}^c = \{ (x_1, x_2) \in \mathbb{R}^2 : \mathfrak{a}_0(\mathfrak{d}) < 0 \}$$

for all $\mathfrak{d} \in \mathcal{C}$.

RECURSIVE CONSTRUCTION OF SPLITTING SEQUENCES

For a particular $N \geq 2$, we need all $\mathfrak{a}_i \in \mathfrak{a}$ explicitly in order to compute ζ_K. For Theorem 4, they can be constructed recursively as follows. Given $\mathfrak{c}_0, \mathfrak{c}_1$, let $\mathfrak{c}_n = \mathfrak{c}_0 \cup \mathfrak{c}_1$ and construct a family of splitting sequences $\eta_{\mathfrak{n}} (N \geq 1)$ with two types of modifications:

1. [Add a row] A composition $\mathfrak{c} = \{\mathfrak{d}_1, \mathfrak{d}_2, \ldots, \mathfrak{d}_N\}$ having N parts must be composed of $N-1$ parts and a single \mathfrak{d}_N.

2. [Add a node] The last composition in \mathfrak{c} has the form $\mathfrak{c}_N = \{\mathfrak{d}_1, \mathfrak{d}_2, \ldots, \mathfrak{d}_N\}$ and may be constructed from \mathfrak{c}_{N-1},

 - by increasing one of the parts \mathfrak{d}_i by \mathfrak{d}_{N-1}, which yields a splitting sequence $\mathfrak{c}_{N-1} = \{\mathfrak{d}_1, \mathfrak{d}_2, \ldots, \mathfrak{d}_N\}$,

 - or by replacing one of the parts \mathfrak{d}_i by \mathfrak{d}_{N-1}.

Theorem 4 implies that \mathfrak{c}_N is a N-adic smooth cover of \mathfrak{c}_N^c in the sense of \mathfrak{c}_N.

A PROOF OUTLINE

Here fix a total order \prec on \mathfrak{d} such that 0 is the last element. By identifying each \mathfrak{d} with its coefficient word $(\tau_{\mathfrak{d}}, \mathfrak{d})$, we define a total (lexicographic) order \prec on all of \mathfrak{a}_i using the “alphabet” \mathfrak{d}. Note that each $\mathfrak{d} \in \mathfrak{a}_i$ can be visualized as a path down an ordered elementary tree, in which case $\mathfrak{d} \notin \mathfrak{d}$ and only if the path for \mathfrak{d} (eventually) to the left of the path for \mathfrak{d}.

EXAMPLE: $N = 3$, $\mathfrak{d}_1 = 2$, $\mathfrak{d}_2 = 5$, $\mathfrak{d}_3 = 3$. Recall $\mathfrak{d} = \{\mathfrak{d}_1, \mathfrak{d}_2, \mathfrak{d}_3\}$ and \mathfrak{a}_i is prime. Given $\mathfrak{c}_0, \mathfrak{c}_1$, Definition 3 implies $\mathfrak{a}_N(\mathfrak{d}) = \mathfrak{a}_N(\mathfrak{d}_0) = \mathfrak{a}_N(\mathfrak{d}_1, \mathfrak{d}_2, \mathfrak{d}_3)$. Moreover, since $\mathfrak{c}_0 \cup \mathfrak{c}_1 = \mathfrak{c}_N$, the class $\mathfrak{c}_N(\mathfrak{d})$ is nonempty.

REFERENCES

