





























384 W. M. KANTOR 2 TRANSITIVE DESIGNS 385
On the other hand, there are exactly (v-3)/(k-3) blocks con- ) For the latter designs, G must be M22, Aut M22, M23, or M24. By PERIN's
taining three fixed points of t, of which (£-3)/(k-3) consist ' results (see 3B), if D is PGe(d,q) then G 2 PSL(d+l,q), except perhaps if
entirely of fixed points. Thus, 52+2 =v¢v 20 = £ (mod 3), which : e =1, g=2, and 4 is odd. (The collineation group G =~ A7 of PG(3,2) is,
is impossible. ; in fact, an example of this exceptional situation; see 3A(3).) Similarly,
i
(III) The same type of argument as in (II) shows that each involution 1 3C applies when D is AG_(d,q).
t has exactly f = -2 fixed points. If (x,xt) is a 2-cycle, then
t commutes with some involution u € ny. Here, t and u fix ex- C. EﬁiEE_EEEEEEEESE
actly g < £ common points.
Let A be the set of fixed points of t. Then 4 is a subspace (1) First of all, v 2 Zk.
of the design, and again as in (II), u fixes exactly g = /E-2 W. KNAPP has been kind enough to look into the history of this
points of A. Here g 2 2. There are (v-2)(v-3)/9°8 blocks con- result. That v £ 2k implies the 3-transitivity of G was first proved
taining two points fixed by t and u, of which (£-2)(£-3)/9°8 are by JORDAN [88, Théorame 1] (and not by MARGGRAFF [114], as stated on
fixed pointwise by t and (g-2)(g-3)/9°8 are fixed pointwise by P-34 of WIELANDT [166]). KNAPP found that, in his two inaccessible
both involutions. However, the conditions v = f2+2: £ = 92+2, papers, MARGGRAFF [114,115] proved the impossibility of v < 2k (see
and (v-2) (v-3) = (F-2)(f-3) = (g-2)(g-3) = 0 (mod 9) cannot be WIELANDT [166, pp.34-38] for a proof), and also showed that v > gk if
met. v-k is not a power of 2 (but obtained no characterizations of this
This contradiction proves NAGAO's theorem. Note that, in (II) and exceptional case). Finally, KNAPP noted inaccuracies in the reference
(ITII), the arguments were purely combinatorial, almost not requiring G. to MARGGRAFF in WIELANDT's bibliography.
For the case v < 6k, see 7D{(2).
7. JORDAN GROUPS (2) Jow let L consist of the set of intersections of families of blocks.
Certainly, L s a lattice (this has nothing to do with D). In fact,
A. Situation L 25 a geometric lattice (see 1A for the terminology). Moreover, G is
transitive on bases of L, and, if X € L, then G(X) is transitive on
D is a design, G < Aut ¥ is 2-transitive on points and transitive on S-X (KANTOR [105], using different terminoclogy).

blocks, and G(B) is transitive on S-B. Intuitively, this means that D has

P . " PROOF. Let # # X € L and X ¢ B,C with B and C different blocks.
many "axial automorphisms”. _—

JorpaN [88] (= [89, pp.313-338]) initiated the study of essentially Then |[S-(B u C)| = v-2k+ |B n c| > 0 by (1). Since G(B) is transitive

this situation from the point of view of permutation groups. Almost 100 on S-B and G(C) is transitive on S-C, G(B n C) is transitive on

years later, HALL{58] noticed the geometric content of JORDAN's assumptions. S-(B n C). It follows that G(X) is transitive on S-X. Consequently,

G(X) is transitive on those Y ¢ L in which X is maximal, so that X is

maximal in X V y £ -X. ;. i i
B. Examples y for all y ¢ S-X. This proves that L is a geometric

lattice, and the remaining assertions follow easily. 0O

PG 1 g < a-1. . . : . ;

th be(d’q)' € d (3) There is a great deal of information contained in (2)., For example,
-1 if and 2 < e < d-1 if g=2. ]

2) AGe(d'q)' 1 s esd-lif g2, an 4 G is 3-transitive if and only if lines have just two points, and is
i icti i t liminate the degenerate case =2
(This restriction is needed to elimi g 2 ! 4-transitive if and only if planes have just three points.
e = 1, where lines have only two points.)

(3) The Witt designs w22’ W and w24 (see section 4).

23

*
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(4) If X ¢ L, G(X) induces an automorphism group G(X) on the interval
(x,5] =1{Y el | x<v} G(X) is 2-transitive on those elements of
[x,s] of dimension 1 + dim(X). If dim(X) < dim(G) - 3, then G(X) and
the blocks in [X,5] provide a group and a design satisfying the same
conditions as G and D.

Similarly, suppose for simplicity that G is not 3-transitive.
Let X ¢ L be neither #, a point, nor a line. Then Gi also acts on the

interval [@,X] as in 7A.

(5) By (4) and some classical geometry (or KANTOR [105], or DCYEN & HUBAUT
[43]), if suitable intervals [X,S] or [#,Xx] are of known type, U is
essentially known. (See KANTOR [105, 6.5] for a precise statement.)

This fact provides very nice inductive possibilities.

D. Characterizations

(1Y If x = 3, then D is PGl(d,Z) or AGl(d,3). (This is the HALL-BRUCK
theorem; see 6C(4).)
(2) If v < 6k, then D is a projective or affine space, W W or W

22° 7237 24
(KANTOR (1051). Moreover, in this case, G 73 even known.
If G s 2- A7 - A .a), /2), '
(3) If 5 8 2-transitive on S-B, themn D is PGd_l(d q) AGd—l(d 2) w22

w23, or w24, and G 18 known (KaNTOR [105]).

(4) If G(B) has an abelian subgroup transitive on S-B, the conclusions of
(3) hold.

259953 BY 7C(5), without loss of generality G is not 3-transitive, so
lines have h > 2 points. Fix x ¢ B. Then the given abelian group

A £ G(B) is transitive on the (v-k)/(h-1) < |A| lines on x not in B.

It follows that some a # 1 in A fixes all lines through x. Now a result

of O'NaN [130] (see 5B(2)) completes the proof. [

Special cases of (4) are found in KANTOR [105,106], and MCDONOUGH
(117,1187.

(S) If v-k is a prime power, the conclusions of (3) hold. (KaNTOR [104];
special cases are in KANTOR [105,106], and McDONOUGH [117,118]. Stronger
results are proved in KANTOR [104].)
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PROOF. By 7C(5), without loss of generality A = 1. Let p be the prime
dividing v-k. Let B n C = x. A Sylow p-subgroup P of G(B) is transitive

on S-B. Since |P:P_| = r-1 < v-k, P_ fixes no point of S-B. Since PC

c! c

normalizes a Sylow p-subgroup Q of G(C), it centralizes some q@ # 1 in
the center of Q. Then q fixes the set B of fixed points of PC. Now the
transitivity of Q on S-C implies that g fixes all lines through x.

once again, O'NAN's theorem 5B(2) completes the proof. {J

(6) If G(B) has a subgroup normal in Gy and regular on S-B, then the con-
clusions of (3) hold or U is PG1(3,2) or AG2(4,2). (KanTOR [971;
special cases have already been mentioned in 6C{(4). This result, and
its proof, were motivated by the HERING-KANTOR-SEITZ-SHULT theorem,

already mentioned in 5A.)
E. Applications

(1) KANTOR & MCDONOUGH [106] showed that, ©f G s a permutation group of
degree v = (qn—l)/(q-i) containing the 2-transitive group PSL(n,q),
n 2 3, then either G contains the altermating group or

PSL(n,q) £ G < PI'L(n,q).

PROOF. If G is as much as k = (qn-l—l)/(q-l) transitive, results of
WIELANDT [164] imply that G is alternating or symmetric. If G is not
k-transitive, let D have as blocks [(HY | g ¢ G}, where H is a hyper-

plane. Now use any one of D(3, 4, or 5). 0

Unfortunately, the preceding proof does not apply when n = 2. That
case is far more interesting than the case n 2 3, since

. £
PSL(2,11) < M12 < A12 and PSL(2,23) < M24 < A24 In fact, the study o

groups G satisfying PSL(2,p) < G < Ap+1, with p prime, is precisely what

led MATHIEU to the discovery of M12 and My,

proved that G is necessarily 4-transitive here. For an application of this

NEUMANN [124] has recently

problem to coding theory, see SHAUGHNESSY [144].

(2) Several of the classification theorems concerning Jordan groups can be
interpreted as stating that certain natural attempts at generalizing

M22, M23 and M24 lead to nothing new.

(3) PRAEGER [141] has recently used D{(2) in the course of proving some

general results concerning 2-transitive groups. Another recent appli-
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cation of JORDAN's original situation is made in the beautiful paper
g

of scorT {142].
F. Problem

Besides the obvious problem of determining all designs admitting
Jordan automorphism groups, there is a natural, interesting type of prob-
lem these designs lead to.

First, can G be acting on the set S of points of PG(d,q) or AG(d,q)
without U being PGe(d,q) or AGe(d,q) for some e? The answer is no for
PG(d,q), 9@ > 2, by results of PERIN [139] (see 3B).

Now let's forget the group, and just consider the remaining geometric
situation. Cana design with X = 1 be constructed using all the points, and
some but not all e-spaces, of a projective or affine space? Such designs
are probably rare. There is an obvious generalization of this question in
which a generalization of t-designs is involved.

Next, can a design with A > 1 be constructed using some but not all
e-spaces, in which the lines of the design consist of all the lines of the

underlying geometry? I conjecture that this is impossible.

8. Z—TRANéITIVE SYMMETRIC DESIGNS
A. Situation

D is a symmetric design, and G S Aut D is 2-transitive on points.
2A(2) indicates the group-theoretic interpretation of this situation.

Note that the complementary design D' satisfies the same conditions as D.

B. Examples

There are several very interesting examples of 2-transitive symmetric
designs. It is only necessary to describe one of D,D'. In each case, U has

polarities.

(1) Projective spaces: PGd_l(d,q). of course, Aut U = PIL(d+1,q). In view
of section 3, from this example it should already be clear that there

will be serious obstacles to the study of G.

R
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(2) The unique 1l-point Hadamard design W

(3

(4)

11 Here v = 11, k =5, A = 2

(compare 4B(3)). The only possible G is G = Aut wll = PSL(2,11). Here,
Gy = A acts as A, on B and as PSL(2,5) on S-B. wll has polarities 8,
and G<§> ~ PGL(2,11).

G. HIGMAN's design w176 (see G.HIGMAN [ 73]; Sims [150]; SMITH [152,
153]; Conway [35]). Here, v = 176, k = 50, and X = 14. The only possi-

ble G is G = HS, the sporadic simple group of D.G. HIGMAN & C.C. Sius

2

72]. ~ p =~ A_i i
[72] Gy SU(3,5) has rank 3 on B (and G_j, 5 if x € B), while GE

acts on S-B in its usual 2-transitive representation of degree 53+1.

Also, W has polarities ¢, and G<¢> = Aut HS.

176

w176 has a fascinating property: there is a l-l-correspondence 6

from 2-sets of points to 2-sets of blocks which is preserved by G.
Here, 6 is not induced by a polarity of w176. Moreover, G{x,y} =

= G{x’y}e = Z2 x Aut A6.

The symplectic symmetric designs SE(2m), one for eachm 2 2 and £ = %],
2 - - - -

Here v = 22, k = 2% 1 (2™e), x = 2 12® tee). St(2m) ana ST (2m) are

complementary designs.

€
Set G = Aut S™(2m). Then G has a regular normal elementary abelian

2-subgroup V of order v = 22m, and G = VGx, von Gx = 1, where

G
X

Gg

orthogonal group GOE(Zm,Z).

12

Sp(2m,2) is a symplectic group acting on V in the usual way.

12

Sp(2m,2) is 2-transitive on B and S-B. If x ¢ B, then GxB is the

Moreover, by 2A, the preceding properties of G completely deter-
mine SE(2m). It is remarkable that these properties were implicitly
contained in work of JORDAN 100 years ago (see JORDAN [89, pp.XXI-
XXIII] and {90, pp.229-249]).

Any subgroup of G of the form VT, with T < Gx transitive on
v - {1}, is 2-transitive on S£(2m); for example, T can be Sp(2e,2f)
whenever ef = m. The question of whether every 2-transitive auto-
morphism group necessarily contains V leads to the same difficulties
as in 3C.

In view of the action of Gx on V, there is an involution t € Gx
fixing exactly v points (t is a transvection). If X, and X, are
distinct points, there is a unique conjugate of t interchanging x1
and x2.

€
S7(2m) has interesting combinatorial properties. Let + denote the

symmetric difference of sets of points. If B, C and D are any blocks,
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then B+C+D is either a block or the complement of a block. (This prop-
erty alone does not quite characterize these designs.) If B # C, then
VB+c is transitive on B+C. (This property does characterize S€(2m),
assuming only that V is an automorphismgroup of a symmetric design
regular on points; see KaNTOR [101].)

Here's another description of SI(Zm). Consider the dual of a
completed conic in PG(2,2m). Use the dual of the knot as the line at
infinity of AG(Z,Zm). Let B be the union (in AG(2,2m)) of the remain-
ing 2®+1 lines. Then the translates of B are the blocks of Sl(Zm).

A similar description of 51(4(2e+1)) can be given in terms of the

2(2e+1) (defined in LUNEBURG

LONEBURG-TITS affine planes of order 2
[110,111]): once again, the dual of a suitable oval can be used, in
which the dual of the line at infinity is the knot. I know of no other
planes which yield any designs Sl(zm) in this manner, but such planes
undoubtedly exist (and merit study).

A (-1,1)-incidence matrix of SE(Zm) is a Hadamard matrix known
since the last century: the tensor product of m Hadamard matrices of
size 4. BLock [9] first noticed (using this incidence matrix) that
Aut S—I(Zm) is 2-transitive on points for each m. He pointed this out
to me in 1968. All the properties of SE(Zm) just described were proved
at that time, and eventually appeared in KanNTOR [101]. The designs
were later rediscovered by RUDVALIS (1969, unpublished), HILL [74], and
CAMERON & SEIDEL [30]. The latter paper provides an interesting rela-

tionship between these designs and coding theory.
C. Basic properties

The most famous result concerning 2-transitive symmetric designs is
the beautiful theorem of OSTROM & WAGNER [137]: Zf A =1, then U is a
desarguesian projective plane. Consequently, I will assume A > 1 through-

out this section.

(1) G is 2-transitive on blocks. If B is a block, then Gy 15 transitive on
B and s-B, and dually. Moreover, if (v,k) = 1, then GxB is transitive
on S-B (by 1C(6)), and dually.

(2) If Gy 18 2-transitive on both B and $-B, then the dual statements hold
and Gx has rank 3 on S - {x}. (Moxre generally, in KANTOR [93] it is

proved that, if G is an automorphism group of a design 2-transitive on
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points and transitive on blocks, and if GB tg 2-transitive on both B
and s-B, then the rank p of Gixd

< satisfies p € 5, and even p < 3 if
v # 2k.)

(3y If U <s a Hadamard design, GB 18 necessartly 2-transitive on $-B. This
will be proved in 8C(S) below. Further special transitivity properties

are found in KANTOR [93], especially Lemma 4.2.

(4) In KaNTOR [93], a great deal of attention is paid to the case k|v-1
d_1(d,q) and
Hll)' Assume this condition. Then Gy must be primitive on S-B. (In
view of KANTOR [91, 4.7 and 4.8], the same conclusion holds under much

(which is equivalent to (k,\A) = 1, and which holds in PG

weaker numerical restrictions.) Also, G has a simple normal subgroup
2-transitive on points.

Of course, the example S€(2m) shows that the last assertion does
not hold in general. KANTOR [93] showed that D has the parameters of

€
S (2m) for some m,t if G has a regular normal subgroup.

(5) As an example of the proofs of transitivity properties, I will prove:
if k-1|v-1 (or equivalently, if rl|k), then G, ts 2-transitive on B.
(Note that this implies 8C(2) when D is the complementary design of a

Hadamard design.)

PROCF . G, is transitive on the v-1 points # x, and on the k blocks B
on x. By 1C(6), each orbit of G.yon S - {x} has size divisible by
(v-1)/(v-1,k). But k = A<(v-1)/(k-1) implies that (v-1,k) = (v-1)/(k-1).

Thus, G _, has an orbit on B - {x} of size divisible by k-1. O

In the next section it will be seen how desirable it is to have

sufficiently strong transitivity results.

D. The DEMBOWSKI-WAGNER theorem

This theorem provides the basic characterization of projective spaces

needed for the study of symmetric designs. Namely:

D ig a projective space if any one of the following holds:
(1) every line meets every block;
(ii) every line has at least 1 + (v-1)/k points; or

(iil) G is transitive on ordered triples of non—collinear points.

——_————M
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Slightly stronger combinatorial characterizations are found in
DEMBOWSKI (40, pp.65-67], and KANTOR [92,93]; in particular, the latter

reference describes the relationship with geometric lattices.

PROOF. If L is a line of D (the intersection of the A blocks containing
two points), there are v—X—|L|(k—R) blocks missing L. Since (v-A)/(k-X) =
= 1+(v-1)/k, this implies that (i) and (ii) are equivalent; assume both
of them. If x £ L, and if p blocks contain x and L, then there are
k-p = ]L\(A-o) blocks on x not centaining L. Thus, p is a constant, so
planes can be defined, and each is determined by any triangle in it.
Suppose L and M are distinct lines of a plane E. Then scme block B > L
does not contain E. Since Bmeets M, Ln M=En (Bn M) # §. Thus, E is
a projective plane, so D is a projective space (VEBLEN & YOUNG [1611]).
Now assume (iii). Then GL is transitive on L and S-L. By the Orbit
Theorem 1C(1), GL has just two block-orbits. Since these must be the blocks

containing L and the blocks meeting L once, (i) holds. (I

E. Classification theorems

Many theorems have been proved classifying 2-transitive symmetric

designs under suitable additional conditions. A catalogue of these follows.

(1) If-G(B) # 1, then D is a projective space (ITO [81]). Thus, in the

remainder of this section it may be assumed that G{B) = 1.

PROOF. G is 2-transitive on blocks. G(B) is a non-trivial normal subgroup
of GB. Each non-trivial element of G(B) fixes more than one point, and
hence more than one block (1C(2)). A theorem of O'NaN [132] (see 5B(2))

now applies. (Of course, this wasn't ITO's original proof.) [}

(2) If UV has the same parameters as PGd_l(d,q). then D is PGd—l(d’q)
(KanTOR [981]).

(3) If x s prime, then D is w11 or a projective space (KANTOR [93]1; the
case where v and k are prime is due to ITO [3]). From this it follows

easily that D is Wl or a projective space if (v-1)/2 is prime.

1

(4) If n = k=X 78 prime, D s “’11’ “”11)" or PG(2,n)’' (KANTOR [93]).

(5) If k/2 is prime, then D is a projective space, PG(2,2)', (wll)-, 31(4),
or S"1(4) (Iro & KanTOR [871).
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(6) If n/2 is prime, then D is S'(4) or S '(a).
(7) If k-1 i3 prime and X > 2, then D is <w11>' or PGd—1(d’2)"

PROOF. Write k-1 = p. Then A(v-1) = p(p+1l) and k > A+1 imply plv-l, s0
i<} | !Gl. A Sylow p-subgroup of G fixes a block B and a point x, and is
transitive on B - {x}. Thus, GB is 2-transitive on B. By 8E(10) (see

below), it may be assumed that GB is not 3-transitive on B. Also, by

8E(1), G(B) = 1. BURNSIDE [18, p.341] and classification theorems now
yield the precise structure of GB' from which D = (Wll)‘ is readily
deduced. 0

(8) If k-1 and v are prime, then D is (wll)’ (Ito [83D).

Note that theorems 8E(2)-(8) all assume nothing more than numertcal
restricticns. In theorems 8E(9)-(14), further transitivity conditions will

be imposed.

(9) If D <s a Hadamard design, and Gg s 2-transitive on B, then D is wll
or a projective space (KANTOR [93]).

(10) If GE 18 3-transitive on B and A > 2, then D is PG (@,2)'.

a-1

This is an unpublished result of CAMERON and KANTOR. The idea of the
proof is as follows. As usual, DB consists of the points of B and blocks
# B. Here, DB is a 3-design. If x € B, then DB has the same number k-1

of points # x as blocks on x. Thus, U is a symmetric 3-design, so a

theorem of CAMERON [22] (see 10A,B) y?elds k = 4u+4, A = 2u+2 or
kK = (u+2)(u2+4u+2) + 1, » = u2+3u+2 (compare CAMERON [251).

in the first case, A(v-1) = k(k-1) implies v = 2k-1, and 8E(9)
applies to U'. In the second case, if x ¢ B then G p has rank 3 on the
blocks through x, and the parameter restrictions of HIGMAN [69] yield a

contradiction.
(1) If 6, i8 2-transitive on both B and $-B (compare 8C(2)), A > 2, and
3 points extist lying on no block, then U is PG(4,2)'.

The proof is very similar to that of 8E(10). Note that the desired 3

2 .
points are easily shown to exist if k 2 A“-A+1, except when D is PG(3,A-1).

e ————————————
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(12)

(13)

is quite a different sort of result,

W. M. KANTOR

Ifx=2and Gy 18 2-tpamsitive on s-B, then D is PG(2,2)', w11 or
s71(a) (CameroN [29] and KanTOR [93)).

. -1 .
If Gy is A-transitive on B, thenm D is PG(2,2)', wll or S “(4). (This
easy consequence of 8E(10) and 8E(12) is due to CaMErON [291.)

Further results of these types are found in KANTOR £3]. The following

which (in spite of its technical na-

ture) will be used in 8G.

(14)

(15)

(16)

Suppose kx|v-1, x ¢ B, and G __ has a eyclic subgroup A regular on the

points on B and the blocks on x. Then D 1is wll or a projective space2
if either (i) k has no proper divisor = 1 (mod A}, or (i1) k < (A+1)

(KANTOR [931). (In the projective space case, the given cyclic group

is a Singer cycle of B.)

. € .
Some characterizations are also known for the designs S (2m) and W176.

. . £
If some g # 1 in G fixes at least iv points, then D is S (2m)

(KaNTOR [10113).

. €
If some g # 1 fizes S-(B+C) pointwise for some B # C, then D s S™(2m)

or BG,_,(d,2) (KANTOR f101].

Both 8E(15) and SE(16) rely heavily on FEIT's result 1C(3) and the

DEMBOWSKI-WAGNER theorem 8C. The only possible automorphisms g which

actually occur in 8E(15) and 8E(16) are elations of the underlying classi-

cal geometry.

(17

(18)

If G has a regular normal subgroup, and if G; is 2-transitive on both
B and s-B, then D is S®(2m) (KaNTOR [1011).

Suppose G preserves a 1-1-correspondence from 2-sets of points to
. 1
2-sets of blocks. If n = (A—2)2/4, then D s w176 or S”(4). (KANTCR,

unpublished; this was proved under additional transitivity assumptions

by SMITH [152]).

F. Prime v and linked systems

(1)

One of the main sources of interest in 2-transitive symmetric designs

is permutation groups G of prime degree v. These are necessarily

o
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(2)

(3)

solvable or 2-transitive (BURNSIDE [18, p.341]. Very few 2-transitive
examples are known: PTL(d+1l,q) 2 G 2 PSL(d+l,q) acting on PG(d,q), for
and M

11 23
the first two types yield symmetric designs (see 10A for the sense in

rare pairs d,q; PSL{(2,11) with v = 11; and Av, Sv’ M . Bere,
which M23 produces a generalization of a symmetric design). This
naturally leads to the study of symmetric designs with prime v. The
reader is referred to NEUMANN [123] for an excellent survey of the

general question of 2-transitive groups of prime degree.

If D is a symmetric design, v is prime, and Aut D is transitive, then
D is obviously a difference set design. See HALL [56,61] (and his talk
at this conference)t)MANN {11373, and DEMBOWSKI [40] for the defini-
tions and basic properties of difference set designs.

Of importance in the present context is the well-known fact that,
if A is an abelian automorphism group regular on the points of a sym—
metric design D, and if v is odd, then the map a ~ a_l, a € A, does
not induce an automorphism of D. More generally: an imvolutory auto-
morphism of a design cannot fix just one block (NEUMANN [121]).

also, if D and A are as above, then U admits polarities.

In the case of 2-transitive symmetric designs with v prime, the
only other known way of using the primality of v is through modular

character theory (as in ITO [82,83]).

In 1955, WIELANDT posed the following problem: can a 2-transitive
group of prime degree v have more than two conjugacy classes of sub-
groups of index v? Certainly, two are possible, as has been noted in
8F(1).

Thus, suppose G 1s 2-trangitive on each of the sets Sl,...,Su,
u > 2, |Si| = v for each i, and the stabilizer of a point xi in Si
fixes no point in any Sj, j # i. By 2A(2), each pair (si’sj)' i# 3,
determines a 2-transitive symmetric design. By 8C(1), G, has two
orbits on S,. Thus:

if x; €5 and X € Sj,i#j,thenthenumberothe Sy, h#i,3, in-

(%) cident with both xi and xj, depends only on i,3j,h and whether x

and xj are incident or not.

CAMERON [24] considered this situation from a purely combinatorial
point of view. A system of linked symmetric designs consists of sets

S ""Su’ u > 2, and an incidence relation between each pair of sets

1
turning each pair into a symmetric design, such that (*) holds.

*T This volume. o
*) This volume, pp. 321-346.
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Needless to say, there is a lot of arithmetic information in this
situation. CAMERON rediscovered some such unpublished information due
to WIELANDT and to ITQ, but in the more general combinatorial setting.
The conditions proved there are, however, too technical to reproduce.
Additional numerical information has been obtained by ITO. For example,
very recently, ITO [68] has shown that if v is prime, then for some
design (Si,sj) neither k nor v-k can divide v-1.

Furthermore, NEUMANN [123] used a computer to shcw that WIELANDT's
original situation cannot occur if p < 2,000,000. The proof of this

provided a test for the available numerical data.

WIELANDT has proved that, in the original situation in 8F(3), G can be
the full automorphism group of at most one of the designs. (A proof is

found in CAMERON [24].)

The combinatorial setting is as interesting as WIELANDT's group-

theoretic one: examples exist.

e
(a) Let V be a 2m-dimensional vector space over GF(q), g = 2 . Let

Sp(2m,q) act on V as usual. Then G = V-Sp(2m,q) has exactly q
classes of complements to V (POLLATSEK [140]). Clearly, the scalar
transformations acton this family of g sets, and it is not hard to
see that Aut G is 2-transitive on these g sets. Since each pair of
sets determines an SE(Zme), this is a linked system of designs

2me

having v = 2 and Y = ¢.

(b) A much larger system is possible for a given v = 2 =, Namely,

a system of linked symmetric designs with u = 22m—1 has been
constructed by GOETHALS from the KERDOCK [108] codes (see CAMERON

[24] and CaMERON & SEIDEL [301).

CAMERON [24] notes the following construction for examples (a) and

(c
*
(b} when v = 16. In the notation of 4A(5), S, S . S , S
. Xy Xz vz
(with X,y,2z three points of B ) form example (a) withm =1, e = 2.
* *
S", together with the seven sets Sxy ,y ¢ B - {x}, for a fixed

*
x € B , form example (b) with m = 2.

In each of examples (a)-(c), each symmetric design is isomorphic
€
to S7(22) for some L. No other examples are known of symmetric designs

arising in linked systems.

- ey,
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(&)

If Sl""'su is a linked system, its automorphism group H consists of

those permutations of S, u ... U Su which preserve both the partition

1
and incidence. In example (a), H is 2-transitive on the g systems; the
subgroup of H fixing each set Si is 2-transitive on each Si'

In example (b), H is known only for m = 2. Namely, from (c) it is
clear that H contains (M,,)

24’ xB 7
abelian of order 16. In fact (CAMERON & SEIDEL [30]),

*
% = A_*V, where V = M24(B ) is elementary

, while AB acts as

usual on these 8 sets. The subgroup of H fixing 2 of the 8 sets is

*
H= AB'V ~ SL{4,2)+V, where V fixes S and each Sxy

A6'V, and induces an automorphism group of the resulting design 3_1(4).
Some properties of H for certain types of linked systems (e.g.,

when v is prime) are found in WIELANDT [167] and CAMERON [24].

G. Some difference set designs

In this section, a special class of difference set designs will be

considered. These are of interest for both combinatorial and number-

theoretic reasons (see HALL [61] and ManNN [1137).

(1)

(2)

Let v be an odd prime power, and set F = GF(v). Let 1 < k < v-1 and
klv—l, and let B = B(v,k) be the subgroup of F* of order k. Let D(v,k)
have the elements of F as points and the translates Bt+a, a € F, as
blocks. B is a difference set in F+ if and only if D(v,k) is a sym-
metric design.

The designs D(v, 3(v-1)) are the Hadamard designs of PALEY [138],
where v = 3 (mod 4) can be any prime power.

By DEMBOWSKI [40, p.35] (or an easy Singer cycle argument),
D(v,k) cannot be a projective space if A > 1. If A = 1, the only

desarguesian exceptions are PG(2,2) and PG(2,8).

PROBLEM: what is Aut D{(v,k)?

Clearly, BAut D(v,k) contains the group S(v,k) of all mappings
x > bx0+a, b€ B, a € F, 0 ¢ Aut F. In only three cases is
aut D(v,k) > S(v,k) known, namely, D(11,5) = w11' 0(7,3) = PG(2,2) and
D(73,9) = PG(2,8). These are almost certainly the only possibilities.
This problem can be reformulated in terms of permutation poly-
nomials. Let f£(x),g(x) ¢ F{x], and assume that both pclyncmials act as

permutations of F. If

".-""""""-'-""."'l-""'llllllllllllllllllllllllllllllllllllllllllsi.IIllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
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£(x+b) - g(x) € B ¥x € F, Vb ¢ B,

then the pair (£f,g) determines an automorphism of U(v,k). Conversely,
each automorphism determines such a pair (f,g), where f is the permu-

tation induced on blocks and g the one on points.

(3

Write G = Aut D(v,k), and assume G > S(v,k). If v is prime, then G is
2-transitive on points by BURNSIDE's theorem on groups of prime degree
(see BURNSIDE (18, p.3417). If k = }(v-1), G must also be 2-transitive
(KANTOR [93]; compare CARLITZ [31]; MCCONNEL [116]; BRUEN & LEVINGER
Lloly.

However, it is not known in any other cases that G must be

2-transitive if G > S(v,k).

(4) If 6 > s(v,k) and k = 3(v-1), then U = PG(2,2) or W, (KaNTOR [931;
for some small values of v, this was proved by ToDD [159] and F. HERING
[e7D).

More generally, i1f G s 2-transitive then D = PG(2,2) or w11
provided that either 1 + vk > (v-1)/k or k has no proper divisor
= 1 (med A).

PROOF. SE(14) applies with A = {x > bx | b ¢ B}. O

Further information when G is 2-transitive (but when the above
numerical conditions do not hold) is found in KANTOR [93]. The fact
that, even for these specific designs, it is not known whether Aut ¥
can be 2-transitive, indicates the sad state of affairs concerning

2-transitive symmetric designs!

H. An application to the irreducibility of polynomials

A very unexpected sort of occurrence of 2-transitive symmetric designs
has recently been found by M. FRIED. Let K be a subfield of the complex
field €. If £(x) = K[x] and g(x) ¢ c{x], it is natural to study the irre-
ducibility of £(x) - g(y) in C[x,yl. This question leads to difference set
designs having 2-transitive automorphism groups!

The following discussion is based primarily on FRIED [49,50] (see also
CasseLs [33]). £(x) is called indecomposable over K if it is not possible
to write £(x) = £ (£,(x)) with £ < K{x] and deg £, > 1, i=1,2; assume that

this is the case. Assume further that g(x) cannot be written g(x) = f(ax+b)
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t
for some a,b € C, a # 0. Finally, assume that £(x) - gly) = .T hi(x,y)
with h. (x,y) ¢ Clx,y] irreducible and t > 1. =t
F;IED shows that it may be assumed that deg f = deg g = v, say.
Then g{(x) is indecomposable over C. Moreover, t = 2. Write k = deg hl(x,y).
Then there is a difference set mod v with k elements. The corresponding
symmetric design D admits a 2-transitive automorphism group G. (Here, G can

be interpreted as the Galois group of a suitable extension field of C(x).)

Furthermore, G is generated by permutations sl,...,su, with u £ 3,
such that (i) sl...s is a v-cycle on points, and (ii) Z l(si) = v-1 =
o i
= l(sl...s ). (Here, L(s,) is the smallest integer 2 such that si is the
u i

product of 2 transpositions.)

Of course, PGd—l(d'q) and wll are the only known cyclic difference set
designs D for which Aut D is 2-transitive. (Examples 8B(3) and 8B(4) do not
admit transitive cyclic automorphism groups.) FEIT [50] enumerated all
cases in which these designs can arise in FRIED's situation; each case
produces a pair of polynomials £(x), gix).

Needless to say, conditions (i) and (ii) are weird from a geometric or
group-theoretic point of view. Nevertheless, it should be clear that they
merit further study.

Note that the study of the polynomial f£(x) - g(y) is remarkably remi-
niscent of the situation in 8G(2).

In more recent work of FRIED [51], 2-transitive designs have arisen
in which b = 2v and some element of order v has one v-cycle on points and

two on blocks.

I. 2-transitive suborbits

One recent occurrence of 2-transitive symmetric designs has been in
work of CAMERON [19,20,21,26], on multiply-transitive suborbits (i.e.,
orbits of G ) of primitive permutation groups. Since these will be dis-
cussed in C:MERON'S talk at this conference, the reader is referred to that

talk *) and the above papers.

*) This volume, pp. 419-450.

,
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J. Problems

(1) The case A = 2 should be feasible. The combinatorial structure here is
extremely rich {see HUSSAIN [78,79], HALL [62], and CAaMERON [23,291).
S0, for that matter, is the permutation structure: GB must be 2-tran-
sitive on B; if X,y € B, x # y, then either Gg is 3-transitive on
B, or GxyB has two orbits of length (k-2)/2 on B - {x,y} (KanTOR (3],
CaMERON [23]). CAMERON [23,29] has indicated a possible approach to
this problem.

Note that only three examples are known: PG(2,2)', wll and

s7Hay.

(2) In the situation of 8C(2), there is a natural strongly regular graph
structure on § - {x}. Unfortunately, the parameter restrictions on
this graph and the tactical decomposition relations of DEMBOWSKI [38;
40, pp.60-61] involve too many unknowns. The latter relations were
studied by KANTOR [93,101]; the former, in a purely combinatorial
setting, by CAMERON [25] (using a method of GOETHALS & SEIDEL [54]).

"All the results thus far are very inconclusive.

(3) Prove that D is SE(Zm) 1f G has a regular normal subgroup. As already
mentioned in 8C(4), in this case D has the same parameters as some

SE(Zm).

(4) No satisfactory characterization of W is known. W17 and W

176 6 176)'

are probably the only 2-transitive symmetric designs with A > 2 and
v-2k+A > 2 in which G preserves a correspondence § as in 8E(18);

no numerical restrictions should be needed. (The main reason for the
restriction in 8E(18) is to prevent k from being too large relative

to A.) If such a 8 exists, U can be replaced (if necessary) by D' in
order to obtain {x,y} € X n Y if {x,y}e = {X,Y}. Then 2(v-1)/k is an
integer T (so this situation is similar to the one considered in
KANTOR [93], where k|v-1). If T is odd, G(x,y} is transitive on {x,y}e,

and if x € B, G __, is transitive on the T points y ¢ B - {x} for which

9 B
B e {x,y} .

SMITH [152] has proposed a reasonable axiom one can assume in
addition to the existence of 6 in order to try to characterize w176,
but this is too technical to state.

s m-%

£
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(5) Each of the known 2-transitive symmetric designs has polarities.
Study these, and find some way to use them in the characterization of
self-dual designs.

When v is prime, U automatically has "natural" polarities.

However, no effective use has been found for them.

(6) The proof of 8E(2) in KANTOR [93] indicates that, when n is a power of

a prime not dividing A, D should be wll or a projective space.
(7) Remove the numerical restrictions (i) and (ii) of BE(14) and 8G(4).

(8) Answer WIELANDT's question (see 8F(3)). More generally, decide exactly

what parameters can occur for linked systems (compare 8F(5)).

9. SYMMETRIC 3-DESIGNS

A. CAMERON's theorem

A symmetric 3-design is a 3-design U such that Dx is a symmetric
design for each x. CAMERON [22] proved that the parameters of U must
satisfy one of the following conditions (where u is the number of blocks

on any three points):

(i) v =4u + 4, k = 2y + 2 (Hadamard 3-design);

(i) v = (u+2)(u2+4u+2) + 1= (u+1)(u2+5u+5), k = u2+3u+2;

(iii) v = 112, k = 12, u = 1 {(extension of a projective plane Dx of order
10); or

(iv) v = 496, k = 40, u = 3.

Note that the A for D is given by A = k-1. Case (i) occurs if and
only if there is a vxv Hadamard matrix. The only other case known to occur
is u =1 in (4i), when D is W22.

For a generalization of CAMERON's theorem, see CAMERON [27].

B. 3-transitive automorphism groups

(1) Now suppose G £ Aut D is 3-transitive on points. Then G, is a 2-tran-
sitive automorphism group of the symmetric design Ux (cf£. section 8).
It is not hard to show that cases (iii) and (iv) cannot occur.

Cases (i) and (ii) remain open. Some special values of u have, however,
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been ruled out by CAMERON [19], such as when 2 € 4 < 103 or u+l is a
prime power.
For a remarkable occurrence of case (ii) -which originally led

CAMERON to his theorem- see CAMERON [20,26].

(2y If Gy is 3-transitive on B, then D is AGd_l(d,Z), the unique Hadamard
3-design with 12 points, or wzz' (This follows readily from 8E(9) and
8E(11).)

(3) Suppose next that D is a Hadamard 3-design. NORMAN [127] proved that
v = 12 if u is even. A slight modification of his argument shows that
the same conclusion holds if G is 3-transitive on parallel classes of
blocks. Note that, by 5B(4), the unique Hadamard 3-design having 12
points satisfies these conditions. The case n even —where D should be
AG —l(d’2)— remains open.

¢!

C. Hadamard matrices

An automorphism of a Hadamard matrix H of size n is a pair (P,Q) of
monomial nxn matrices such that PHQ = H. The automorphisms form a group
G = Aut H containing 1 = (I,I) and -1 = (-I,-I) in its center. G = G/<-1>
acts faithfully as a permutation group on the union of the sets of rows
and columns of H.

It may be assumed that the first row r and column ¢ of H consist of
1's. Deleting columns 1 and n+l of (H,-H) produces the (-1,1) incidence
matrix of a Hadamard 3-design D. Then ac is the automorphism group of D.
In view of this, the results in B(2) and B(3) apply to D. These in turn yield
results about H. For example, if G is 4-transitive on rows, then n = 4 or
12. Another characterization of the case n = 12 follows from 6G(4)
(KaNTOR [941).

Suppose n = 12. Then B(2) and the discussion of éc imply that

from which G = M follows easily. However, G £ M X <=1>.

c =M 12 12
At the end of 4B(2) it was noted that lAut MIZI = ZIMgzl’ The resulting

G

outer automorphism can be visualized in the present context as follows.
(P,Q) € G implies that PHQ = H, and hence (since H is symmetric) that

t bt .
QtHPt = H, so (Qt,Pt) € G. Thus, (P,Q) + (@ ,P ) is an automorphism of G,

and induces one of 5; these are both outer automorphisms (see HALL £597).

iy
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10. FURTHER TOPICS AND PROBLEMS

A. Block intersections

Let U be a t-design, t 2 2. According to a generalization of FISHER's

inequality b > v, if v > k+}t then b 2 ( (WILSON & RAY-CHAUDHURI

[Ql])
[168]1). Equality holds only if t = 2s for an integer s, and then U is
called a tight t-design. (This is evidently a generalization of symmetric
designs.) WILSON & RAY-CHAUDHURI also proved that, if U is a 2s-design,
then U is tight if and only if there are at most s different intersection
sizes |B n C|, where B and C run through all pairs of distinct blocks (cf.
CameroN [25]).

It is natural to consider 2s-transitive automorphism groups of tight
2s-designs. Partly motivated by the group-theoretic context, ITO [85] has
just completed a proof that the only tight 4-designs are degenerate

(v = k-2), w23, or its complementary design (W . The case s > 2

)
remains completely open in both the combinatoriil and group-theoretic
contexts.

One way to guarantee that a t-design D has few intersection sizes
|B n CI is to assume that G = Aut D is block-transitive and has small
block-rank p; thus, GB has exactly p block orbits (so there are at most
p-1 different sizes |B n C| with B # C). This was considered by Nopa [126]
when D is a Steiner system S(t,k,v). He assumed t = 3 or 4 and p = 3 or 4,
227 w23' w24
similar to tight design arguments. (In fact, the case t = 4, p = 3 follows

and showed D must be W or AG,(3,2). The proofs are very
from the aforementioned results of WILSON & RAY-CHAUDHURI.)

It should also be possible to handle the case t = 2, A = 1 and p = 3.
Here, GB is transitive on the lines disjoint from B, and Gx is 2-transitive
on the lines through x. Presumably, D must be AG(2,k) or PGl(d,k—l). Nopa
has observed that D is AG(2,k) if G is not line-primitive; moreover, in
unpublished work, he has used an argument of HIGMAN [70] to show that D is
PGl(d,k—l) if v > kz(k—l)z(k—2)2 + k2 -k + 1.

B. Parallel relations

Let D be a design. A parallel relation on U is an equivalence relation
I partitioning the blocks into classes, each of which partitions the points
of D. Each parallel class has v/k blocks, and there are exactly r parallel

classes.

_—_-——_———__-&—-—————-—————-
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Relatively little is known about subgroups G of Aut D which pre-
serve |. If the classical affine space (or plane) case is excluded,
little is known beyond NORMAN's theorem (see 9B(3)) and the following
result of CAMERON [28].

(1) Let D be the degemerate design with x = 2 and A = 1, whose blocks are
just the 2-sets of points. Assume that v > 3, G ig 3-transitive, and G
preserves I|. Then either v = 6 and G = PGL(2,5), or v = 2d fbr some &
and D can be regarded as the design aG, (d,2) with the obvious parallel

relatton.

PROOF. Let x,y,z be any three points. Then nyz fixes the block through z
parallel to {x,y}. Hence, GXYZ fixes k 2> 4 points. If k = v then
ZASSENHAUS [172] can be used to show that v = 6 and G is PGL(2,5). If

k < v, 6D(1) can be applied to yield k = 4. If B and C are two blocks of
this 5(3,4,v), and if |Bnc| =2, then B-BnC, BNC, andC~-BnC
are parallel. Hence, B+C is a block of the S(3,4,v). It follows easily
that the S(3,4,v) is AGz(d,Z) (compare 4C{3)). [l

Actually, CAMERON's proof does not use &D(1). In fact, it was while
I was eliminating one case of CAMERON's situation that 6D(1) and 6E(1)
were born.

More recently, CAMERON has obtained a generalization of 10B(1} to
groups preserving a parallelism of the trivial design of all k-sets of a
v-set (1 < k < v).

The natural extension of 10B(1) to the case of triangle-transitive

automorphism groups of more general designs D (with ) remains open.

(2) If D and | are as before, then b 2 v+r-1i; moreover, b = v+r-1 2f and
only if any two blocks meet in O or kz/v points (see DEMBOWsKI [40,
op.72-731). When b = v+r-1, D is called an affine design. Clearly,
affine designs provide a common generalization of Hadamard 3-designs
and affine spaces. A theorem of DEMBOWSKI (40, p-74] characterizes
affine spaces AGd—l(d'q)' g > 2, among affine designs; this result
is similar to the DEMBOWSKI-WAGNER theorem (see 8C). But relatively
little attention has been paid to automorphism groups, so perhaps a
few additional remarks are worthwhile.

Consider U, I, and G < Aut D preserving il . Let G have tp point-

orbits, t_ block-orbits, and £y parallel-class orbits. If D is an
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affine design, then g+ 1= tp * oty (NorMAN [1271). In general, it

turns out that one can at least say £t 12 tP e Also, if U is
affine and g € G, then fp +1= fb + fu » where fp 'fb and fII are the
numbers of points, blocks and parallel-classes fixed by g. From these
facts, further results can be deduced as in KANTOR [91].

Incidentally, it should be noted that the arguments on pp.113-114
of DEMBOWSKI [40] show that the number of non-isomorphic affine de-
signs having the same parameters as AGd—l(d'q)’ d 2 3, is enormous
(and in fact + =, as & + = or g + ®). However, I conjecture that af-
fine spaces are the only affine designs which are not Hadamard 3-de-

signs and whose automorphism groups are transitive on ordered pairs

of non-parallel blocks.

C. Transitive extensions

Let H be a given group, possibly given together with a specific
transitive permutation representation on a set S'. A transitive extension
of H is a 2-transitive group G on a set S such that, for some x ¢ §,

G = H; if, moreover, H is given as acting éon S', then it is also required
that |s| = |s'|+1 and that G, acts on S-{x} as H does on S'.

A basic open problem concerning 2-transitive groups is: if H is known
as an abstract group, find all transitive extensions of H. Needless to say,
very few groups H have transitive extensions.

Transitive extensions have been studied geometrically by DEMBOWSKI
{391, HUGHES [75,76], and T1Ts [158]. Their approach was to extend designs
associated with groups such as the collineation group of AG(d,q) or
PG(d,q), given as acting 2-transitively on the points of the correspending
atfine or projective space.

Much mcore generally, TITS (unpublished) has shown that a Chevalley
group over GF(g), acting on a class of parabolic subgroups, has no tran-
sitive extensions if q is not very small. Still more generally, SEITZ
(unpublished) has obtained the same conclusion if H is isomorphic to a

Chevalley group over GF(qg) and (q,’Sl—l) = 1.

D. Some maximal subgroups of alternating or symmetric groups

Let H be a transitive permutation group on S, about which a lot is

known. PROBLEM: determine all permutation groups G on S containing H.

|
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Here, I have in mind some "geometric™" group H and set S. The case
H = PSL(n,q), n 2 2, with S the set of points of PG(n-1,q), has been dis-
cussed in 7E(l). In general, if H is chosen "large" enough, and G > H,
then G will presumably have to be 2-transitive. PROBLEM: handle the case
H = PSL(n,q), n 2 4, and S the set of e-spaces of PG(n-1,q), where
1 £ e s n-2.

I have settled the case H = Sp(2m,2), in its 2-transitive represen-
tations of degree Zm_l(zmtl): if G > H then G is alternating and symmetric.
The elementaxry proof uses transvections and the gecmetry of Goi(Zm,Z).

The reader should have no difficulty in listing many other, similar
questions. Perhaps the most intriguing general question of this type con-

cerns a Chevalley group H acting on a set S of parabolic subgroups.

E. Sp(2m,2) and .3

SHULT [148] has obtained some graph-theoretic characterizations of
Sp(2m,2) in its 2-transitive representations of degree 2m—1(2mr1).
However, no characterization is known in terms of designs. The difficulty
is that no really interesting designs seem to have Sp(2m,2) as a 2-transi-
tive automorphism group.

Precisely the same difficulty occurs in the case of CONWAY's smallest
group .3, in its 2-transitive representation of degree 276 (see CONWAY
[351). In both cases, the 2-graph approach seems more relevant than the

design one (cf. SEIDEL [143]).

APPENDIX

The known 2-transitive groups

The following is a list of all the known 2-transitive groups G having
no regular normal subgroup.
(1) 6 =3 ors, [s| =n.
(2) PSL(d+1,q) £ G < PTL(d+1,q); S is the set of points or hyperplanes of
PG(d,q) .
(3) PSU(3,gq) £ G £ PTU(3,q); S is the set of q3+1 points of the corre-

sponding unital.

by
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(4) G has a normal Ree subgroup; S is the set of q3+1 points of
+
the corresponding unital (q = 32e 1). When e = 0, G = PTL(2,8),

acting on the points of D(4) (see 6B(3)).

2e+1 2e+1 2e+1 2

(5) sz(2 ) £ G < Aut Sz(2 ); § is the set of (2 }" + 1 points of

the corresponding inversive plane or ovoid (see LUNEBURG f111]).

6) & =sp(2m,2), |s| = 2" 1), 6 = c0(m,2).
(7) G = PSL(2,11) acting on the 11 points or blocks of wll (see 8B(2)).
(8) G = A7 acting on the 15 points or planes of PG(3,2) (see 4A).

i h M i hei.
(9) The Mathieu groups Mll' MIZ' 122, Aut M22, 23 and M24 in their
usual representations on the points of the corresponding Steiner

systems.

(10) G = M11 acting 3-transitively on the 12 points of a Hadamard 3-design
(see 4B(3), 9B and 9C).

(11) G = HS acting on the 176 points or blocks of W176 (see 8B(4)).

(12) 6 = .3, |s} = 276.
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