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HERING [65J will imply that the only non-desarguesian planes which 

might arise in (iii) are the exceptional nearfield plane of order 9 or 

a semifield plane of odd order. 

Once again, a method is needed for tying all these subplanes to­

gether. 

(2) In this context, it is natural to recall the standard methods of glu­

ing planes together to form projective or affine spaces: the axioms of 

VEBLEN & YOUNG [161J, and the theorem of BUEKENHOUT [llJ. Groups are 

not needed for these (nor even finiteness). 

Let V be a design with A = 1. If each triangle is contained in a 

subspace which is a projective plane, then V consists of the points 

and lines of a projective space (VEBLEN & YOUNG [161J). 

If each triangle of 0 is contained in an affine plane of order 

> 3, then V consists of the points and lines of an affine space 

(BuEKENHOUT [llJ). This is false if k = 3 (see HALL [58J). But here, 

if Aut V is primitive on points (e.g., if Aut V is 2-transitive), then 

V is an affine space. (This is contained in FISCHER [47J; it is also an 

easy consequence of HALL [58J and GLAUBERMAN [53J). 

J. HALL [55J and TEIRLINCK [157J have also handled the case where 

each triangle of V is in a projective or affine plane (a situation 

which arises in proving 6C(1». 

There are further interesting geometric questions of this sort 

that can be asked, with or without a group present; see BuEKENHOUT & 

DEHERDER [17 J . 

E. Higher transitivity 

It is natural to modify the situation under consideration as follows: 

G is t-transitive on S, and the stabilizer of t points fixes exactly k 

pOints, where 2 < t < k < v. This time, the design V is a Steiner system 

S(t,k,v). If B is a B . . block, G
B 

�~�s� sharply �t�-�t�r�a�n�s�i�t�~�v�e�.� 

(1) Suppose that t = 3. The only known examples of V are: 

�(�~�)� AG
2
(d,2), and (ii) if PGL(2,qi), i �~� 2, is regarded as acting on 

�G�F�(�q�~�)� u {oo}, the blocks of V are the sets (GF(q) u {oo})g, 

g E PGL(2,qi). Note that miquelian inversive planes are special 

cases of (ii). 

1 
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It is not difficult to prove that the designs in (ii) have 

prL(2,qi) as their full automorphism groups. For this reason, it seems 

as if the present situation should be much easier than that of 6A: 

if k > 4, G should be small. 

Unfortunately, nothing is known here other than variations on the 

2-transitive results of 6C and 60. Thus, G
x 

acts on S-{x} as a group 

satisfying the condition 6A. There is a natural definition for sub­

spaces: sets �~� of points such that the block of V through any three 

points of �~� is again contained in �~�.� There is always a subspace which 

is AG
2

(3,2) or is as in (ii) (where k = q+l); see KANToR [105J. 

BuEKENHOUT [12,13J has proved other design versions of results related 

to 6C and 6D. 

(2) According to a remarkable result of NAGAO [120J, the case t �~� 4 does 

not occur. I will outline a proof, using an approach somewhat simpler 

than NAGAO's. 

Suppose G exists; without loss of generality, t = 4. This time, 

G: is sharply 4-transitive. There are thus just three cases (JORDAN 

[89, pp.245-361]; HALL [57, pp.72-73]): 

(I) 

(I) k 

(II) k 

(III) k 

5 

6 G: �~� A
6

; and 

11, G: "'" M11 . 

Here it is straightforward to use arguments of HALL [58] to find 

a subspace which is an extension of AG
2

(3,Z) or the (miquelian) 

inversive plane of order 3 having an involution fixing a block 

pointwise. However, no such extensions exist. (This elementary, 

highly combinatorial approach was not used by NAGAO. In fact, 

case (I) was the hardest for him, requiring a complicated argu­

ment and involving the FEIT-THOMPSON theorem.) 

(II) Let t E G be an involution and let f be its number of fixed 

points. Fix a 2-cycle (x,xt ) of t. If (y,yt) is anyother2-cycle, 

then {x,xt,y,yt} belongs to a unique block B, and t fixes 

B. Since t
B 

is in A
6

, it fixes exactly two points zl,z2 of B. 

Conversely, any two fixed points zl,z2 of t uniquely determine a 

2-cycle (y,yt). Hence, t has exactly! (v-f) - 1 = �~�f�(�f�-�1�)� 
2-cycles other than (x,x

t
). Thus, v = f2+2. In particular, f > 2. 
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On the other hand, there are exactly (v-3)/(k-3) blocks con­

taining three fixed points of t, of which (f-3)/(k-3) consist 

entirely of fixed points. Thus, f2+2 = v = a = f (mod 3), which 

is impossible. 

(III) The same type of argument as in (II) shows that each involution 

t has exactly f = f,7:2 fixed points. If (x,x
t

) is a 2-cycle, then 

t commutes with some involution u E Gxy Here, t and u fix ex­

actly g < f common points. 

Let ~ be the set of fixed points of t. Then ~ is a subspace 

of the design, and again as in (II), u fixes exactly g = ~ 
points of ~. Here g ~ 2. There are (v-2) (v-3)/9'8 blocks con­

taining two points fixed by t and u, of which (f-2) (f-3)/9'8 are 

fixed pointwise by t and (g-2) (g-3)/9'8 are fixed pointwise by 

both involutions. However, the conditions v = f2+2, f = g2+2, 

and (v-2) (v-3) = (f-2) (f-3) = (g-2) (g-3) = a (mod 9) cannot be 

met. 

This contradiction proves NAGAO's theorem. Note that, in (II) and 

(III), the arguments were purely combinatorial, almost not requiring G. 

7. JORDAN GROUPS 

A. Situation 

V is a design, G " Aut D is 2-transitive on points and transitive on 

blocks, and G(B) is transitive on S-B. Intuitively, this means that V has 

many l1axial automorphisms". 

JORDAN [88J (= [89, pp.313-338J) initiated the study of essentially 

this situation from the point of view of permutation groups. Almost 100 

years later, HALL [58J noticed the geometric content of JORDAN's assumptions. 

B. Examples 

(1) PGe (d,q), 

(2) AGe (d,q), 

" e " d-1. 

" e " d-1 if qf2, and 2 " e " d-1 if q=2. 

(This restriction is needed to eliminate the degenerate case q 

e = 1, where lines have only two points.) 

(3) The Witt deSigns W 22' W 23 and W 24 (see section 4). 

2, 

I 
I 

1 
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For the latter designs, G must be M
22

, Aut M
22

, M
23

, or M
24

. By PERIN's 

results (see 3B), if D is PGe(d,q) then G ~ PSL(d+1,q), except perhaps if 

e = 1, q = 2, and d is odd. (The collineation group G ~ A7 of PG(3,2) is, 

in fact, an example of this exceptional situation; see 3A(3).) Similarly, 

3C applies when D is AGe (d,q) . 

C. Basic properties 

(1) First of all, v ~ 2k. 

W. KNAPP has been kind enough to look into the history of this 

result. That v " 2k implies the 3-transitivity of G was first proved 

by JORDAN [88, Theoreme 1J (and not by MARGGRAFF [114J, as stated on 

p.34 of WIELANDT [166J). KNAPP found that, in his two inaccessible 

papers, MARGGRAFF [114,115J proved the impossibility of v < 2k (see 

WIELANDT [166, pp.34-38J for a proof), and also showed that v ~ ~kif 
v-k is not a power of 2 (but obtained no characterizations of this 

exceptional case). Finally, KNAPP noted inaccuracies in the reference 

to MARGGRAFF in WIELANDT's bibliography. 

For the case v " 6k, see 7D(2). 

(2) Now let L consist of the set Of intersections of families Of blocks. 

Certainly~ L is a lattice (this has nothing to do with V). In fact~ 

L is a geometric lattice (see 1A for the terminology). Moreover~ G is 

transitive on bases of L~ and~ if x E L~ then G(X) is transitive on 

S-X (KANToR [105J, using different terminology). 

PROOF. Let 0 f x ELand X C B,C with Band C different blocks. 

Then IS-(B u C) I v-2k+ IB n ci > a by (1). Since G(B) is transitive 

on S-B and G(C) is transitive on S-C, G(B n C) is transitive on 

S-(B n C). It follows that G(X) is transitive on S-X. consequently, 

G(X) is transitive on those Y E L in which X is maxima~ so that X is 

maximal in X v y for all YES-X. This proves that L is a geometric 

lattice, and the remaining assertions follow easily. 0 

(3) There is a great deal of information contained in (2). For example, 

G is 3-transitive if and only if lines have just two points, and is 

4-transitive if and only if planes have just three points. 
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(4) If X E L, G(X) induces an automorphism group G(X) on the interval 

[X,sJ ; {y ELI X 5 y}. G(X) is 2-transitive on those elements of 

eX,S] of dimension + dim(X). If dim(X) 5 dim(G) - 3, then G(X) and 

the blocks in [X,sJ provide a group and a design satisfying the same 

conditions as G and V. 
Similarly, suppose for simplicity that G is not 3-transitive. 

Let X E L be neither 0, a point, nor a line. Then G~ also acts on the 

interval [0,x] as in 7A. 

(5) By (4) and some classical geometry (or KANTOR [105], or DOYEN & HUBAUT 

[43]), if suitable intervals eX,S] or [0,xJ are of known type, V is 

essentially known. (See KANToR [105, 6.5] for a precise statement.) 

This fact provides very nice inductive possibilities. 

D. Characterizations 

(1) If k = 3, then V is PG
1 

(d,2) or AG
1 

(d,3). (This is the HALL-BRUCK 

theorem; see 6C(4).) 

(2) If v 5 6k, then V is a projective or affine space, W
22

, W
23

, or W
24 

(KANTOR [105]). Moreover, in this case, G is even known. 

(3) If G
B 

is 2-transitive on S-B, then V is PG
d

_
1 

(d,q), AG
d

_
1 

(d,2), W
22

, 

W23 , or W24 , and G is known (KANTOR [105]). 

(4) If G(B) has an abe~ian subgroup transitive on S-B, the conc~usions of 

(3) ho~d. 

PROOF. BY 7C(5), without loss of generality G is not 3-transitive, so 

lines have h > 2 points. Fix x E B. Then the given abelian group 

A 5 G(E) is transitive on the (v-k)/(h-1) < IAI lines on x not in B. 

It follows that some a F 1 in A fixes all lines through x. Now a result 

Of. O'NAN [130] (see 5B(2» completes the proof. 0 

Special cases of (4) are found in KANTOR [105,106], and MCDONOUGH 

[117,118J. 

(5) If v-k i.3 a prime power, the conc~usions of (3) ho~d. (KANTOR 1104]; 

special cases are in KANTOR [105,106J, and McDONOUGH [117,118]. Stronger 

results are proved in KANTOR [104].) 
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PROOF. By 7C(5), without loss of generality A ; 1. Let p be the prime 

dividing v-k. Let B n C = x. A Sylow p-subgroup P of G(B) is transitive 

on S-B. Since Ip:pcl = r-1 < v-k, Pc fixes no point of S-B. Since Pc 

normalizes a Sylow p-subgroup Q of G(C), it centralizes some q F 1 in 

the center of Q. Then q fixes the set B of fixed points of PC' Now the 

transitivity of Q on s-c implies that q fixes all lines through x. 

Once again, O'NAN's theorem 5B(2) completes the proof. 0 

(6) If G(B) has a subgroup normal in G
B 

and regu~ on S-B, then the con­

clusions of (3) hold or V is PG
1 

(3,2) or AG
2

(4,2). (KANTOR [97J; 

special cases have already been mentioned in 6C(4). This result, and 

its proof, were motivated by the HERING-KANTOR-SEITZ-SHULT theorem, 

already mentioned in SA.) 

E. Applications 

(1) KANToR & MCDONOUGH [106J showed that, if G is a permutation group of 

degree v ; (qn_ 1)/(q_1) containing the 2-transitive group PSL(n,q), 

n ~ 3, then either G contains the alternating group or 

PSL(n,q) 5 G 5 PfL(n,q) . 

PROOF. If G is as much as k = (qn-1_ 1)/(q_1) transitive, results of 

WIELANDT [164] imply that G is alternating or symmetric. If G is not 

k-transitive, let V have as blocks {H
g 

I g E G}, where H is a hyper­

plane. Now use.any one of D(3, 4, or 5). 0 

Unfortunately, the preceding proof does not apply when n = 2. That 

case is far more interesting than the case n ~ 3, since 

PSL(2,11) < M12 < A12 and PSL(2,23) < M24 < A
24

· In fact, the study of 

groups G satisfying PSL(2,p) < G < A
p

+
1

' with p prime, is precisely what 

led MATHIEU to the discovery of M12 and M
24

. NEUMANN [124] has recently 

proved that G is necessarily 4-transitive here. For an application of this 

problem to coding theory, see SHAUGHNESSY [144J. 

(2) Several of the classification theorems concerning Jordan groups can be 

interpreted as stating that certain natural attempts at generalizing 

M22 , M
23 

and M24 lead to nothing new. 

(3) PRAEGER [141] has recently used D(2) in the course of proving some 

genera~ results concerning 2-transitive groups. Another recent appli-
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cation of JORDAN's original situation is made in the beautiful paper 

of SCOTI' [142J. 

F. Problem 

Besides the obvious problem of determining all designs admitting 

Jordan automorphism groups, there is a natural, interesting type of prob­

lem these designs lead to. 

First, can G be acting on the set S of points of PG(d,q) or AG(d,q) 

without 0 being PGe(d,q) or AGe(d,q) for some e? The answer is no for 

PG(d,q), q > 2, by results of PERIN [139J (see 3B). 

Now let's forget the group, and just consider the remaining geometric 

situation. Can a design with A 1 be constructed using all the points, and 

some but not all e-spaces, of a projective or affine space? Such designs 

are probably rare. There is an obvious generalization of this question in 

which a generalization of t-designs is involved. 

Next, can a design with A > 1 be constructed using SOme but not all 

e-spaces, in which the lines of the design consist of all the lines of the 

underlying geometry? I conjecture that this is impossible. 

8. 2-TRANSITIVE SYMMETRIC DESIGNS 

A. Situation 

o is a symmetric design, and G S Aut 0 is 2-transitive on points. 

2A(2) indicates the group-theoretic interpretation of this situation. 

Note that the complementary design 0' satisfies the same conditions as O. 

B. Examples 

There are several very interesting examples of 2-transitive symmetric 

designs. It is only necessary to describe one of 0,0'. In each case, 0 has 

polarities. 

(1) Projective spaces: PG
d

_
1 

(d,q). Of course, Aut 0 = PfL(d+l,q). In view 

of section 3, from this example it should already be clear that there 

will be serious obstacles to the study of G. 
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(2) The unique II-point Hadamard design W
11

. Here v = 11, k = 5, A = 2 

(compare 4B(3)). The only possible G is G = Aut W
11 

~ PSL(2,11). Here, 

GB ~ AS acts as AS on B and as PSL(2,5) on S-B. W
11 

has polarities 6, 

and G<6> ~ PGL(2,11). 

(3) G. HIGMAN's design W
176 

(see G.HIGMAN [73J; SIMS [150J; SMITH [152, 

153J; CONWAY [35J). Here, v = 176, k = 50, and A 14. The only possi­

ble G is G = HS, the sporadic simple group of D.G. HIGMAN & C.C. Sms 

[72J. G
B 
~ PSU(3,5) has rank 3 on B (and GxB ~ A7 if x E B), while G 

3 B 
acts on S-B in its usual 2-transitive representa~ion of degree 5 +1. 

Also, W
176 

has polarities ~, and G<~> ~ Aut HS. 

W
176 

has a fascinating property: there is a I-I-correspondence 

from 2-sets of points to 2-sets of blocks which is preserved by G. 

Here, 6 is not induced by a polarity of W176 . Moreover, G{x,y} 

= G{x,y}6 ;;;, Z2 x Aut A6 · 

(4) The symplectic symmetric designs SE(2m), one for each m ~ 2 and E = '1. 

Here v = 2 2m, k = 2m-l (2m+E) , A = 2m-1 (2m- 1+E). Sl(2m) and S-l(2m) are 

complementary designs. 

Set G Aut S~(2m). Then G has a regular normal elementary abelian 

2-subgroup V of order v = 22m
, and G = VG , V n G 1, where 

x x 
G

x 
~ Sp(2m,2) is a symplectic group acting on V in the usual way. 

G
B 
~ Sp(2m,2) is 2-transitive on Band S-B. If x E B, then GxB is the 

orthogonal group GQE(2m,2). 

Moreover, by 2A, the preceding properties of G completely deter­

mine SE(2m). It is remarkable that these properties were implicitly 

contained in work of JORDAN 100 years ago (see JORDAN [89, pp.XXI­

XXIII] and [90, pp.229-249J). 

Any subgroup of G of the form VT, with T S G transitive on 
E x f 

V - (I}, is 2-transitive on S (2m); for example, T can be Sp(2e,2 ) 

whenever ef = m. The question of whether every 2-transitive auto­

morphism group necessarily contains V leads to the same difficulties 

as in 3C. 

In view of the action of G on V, there is an involution t E G 
x x 

fixing exactly Iv points (t is a transvection). If Xl and x
2 

are 

distinct points, there is a unique conjugate of t interchanging Xl 

and x
2

' 

SE(2m) has interesting combinatorial properties. Let + denote the 

symmetric difference of sets of points. If B, C and D are any blocks, 
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then B+C+D is either a block or the complement of a block. (This prop­

erty alone does not quite characterize these designs.) If B F C, then 

VB+C is transitive on B+C. (This property does characterize S€(2m), 

assuming only that V is an automorphism group of a symmetric design 

regular on points; see KANTOR [101].) 

Here's another description of Sl(2m). Consider the dual of a 

completed conic in PG(Z,Zm). Use the dual of the knot as the line at 

infinity of AG(Z,2
m

). Let B be the union (in AG(2,2
m

» of the remain­

ing 2m+l lines. Then the translates of B are the blocks of Sl(2m). 

A similar description of Sl(4(2e+l» can be given in terms of the 

LUNEBURG-TITS affine planes of order 2
2

(2e+l) (defined in LUNEBURG 

[110,111]): once again, the dual of a suitable oval can be used, in 

which the dual of the line at infinity is the knot. I know of no other 

planes which yield any designs Sl(2m) in this manner, but such planes 

undoubtedly exist (and merit study). 

A (-l,l)-incidence matrix of S€(2m) is a Hadamard matrix known 

since the last century: the tensor product of m Hadamard matrices of 

size 4. BLOCK [9] first noticed (using this incidence matrix) that 

Aut S-l(2m) is 2-transitive on points for each m. He pointed this out 

to me in 1968. All the properties of S€(2m) just described were proved 

at that time, and eventually appeared in KANToR [101]. The designs 

were later rediscovered by RUDVALIS (1969, unpublished), HILL [74], and 

CAMERON & SEIDEL [30]. The latter paper provides an interesting rela­

tionship between these designs and coding theory. 

C. Basic properties 

The most famous result concerning 2-transitive symmetric designs is 

the beautiful theorem of OSTROM & WAGNER [137]: if A = 1, then V is a 

desarguesian proJ'ective plane. Consequently, I will assume A > 

out this section. 

through-

(1) G is 2-transitive on blocks. If B is a block, then G
B 

is transitive on 

B and S-B, and dually. Moreover, if (v,k) = 1, then G
XB 

is transitive 

on S-B (by lC(6», and duaLLy. 

(2) If G
B 

is 2-transitive on both B and S-B, then the dual statements hold 

and G
x 

has rank 3 on S - {x}. (More generally, in KANTOR [93] it is 

proved that, if G is an automorphism group of a design 2-transitive on 
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points and transitive on blocks, and if G
B 

is 2-transitive on both B 

and S-B, then the rank p of GS-{x} satisfies p $ 5, and even p $ 3 if 
x 

v F 2k.) 

(3) If V is a Hadamard design, G
B 

is necessarily 2-transitive on 5-B. This 

will be proved in 8C(5) below. Further special transitivity properties 

are found in KANTOR [93], especially Lemma 4.2. 

(4) In KANToR [93], a great deal of attention is paid to the case klv-1 

(which is equivalent to (k,A) = 1, and which holds in PG
d

_
l 

(d,q) and 

H
ll

). Assume this condition. Then G
B 

must be primitive on 5-B. (In 

view of KANTOR [91, 4.7 and 4.8], the same conclusion holds under much 

weaker numerical restrictions.) Also, G has a simple normal subgroup 

2-transitive on points. 

Of course, the example S€(2m) shows that the last assertion does 

not hold in general. KANToR [93] showed that V has the parameters of 

S€(2m) for some m,E if G has a regular normal subgroup. 

(5) As an example of the proofs of transitivity properties, I will prove: 

if k-llv-l (or equivalently, if A ik), then G
B 

is Z-transitive on B. 

(Note that this implies 8C(2) when V is the complementary design of a 

Hadamard design.) 

PROOF. G
x 

is transitive on the v-1 points F x, and on the k blocks B 

on x. By lC(6), each orbit of G
XB 

on S - {x} has size divisible by 

(v-l)/(v-l,k). But k A"(v-l)/(k-l) implies that (v-l,k) = (v-l)/(k-l). 

Thus, G
XB 

has an orbit on B - {x} of size divisible by k-l. 0 

In the next section it will be seen how desirable it is to have 

sufficiently strong transitivity results. 

D. The DEMBOWSKI-WAGNER theorem 

This theorem provides the basic characterization of projective spaces 

needed for the study of symmetric designs. Namely: 

V is a projective space if anyone of the fonawing holds: 

(i) every line meets every block; 

(ii) every line has at least 1 + (v-l)/k points; or 

(iii) G is transitive on ordered tripZes of non-collinear points. 
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Slightly stronger combinatorial characterizations are found in 

DEMBOWSKI [40, pp.65-67J, and KANToR [92,93J; in particular, the latter 

reference describes the relationship with geometric lattices. 

PROOF. If L is a line of V (the intersection of the \ blocks containing 

two points), there are v-\-ILI (k-\) blocks missing L. Since (v-\)/(k-\) 

= 1+(v-1)/k, this implies that (i) and (ii) are equivalent; assume both 

of them. If x t L, and if p blocks contain x and L, then there are 

k-p = ILl (\-p) blocks on x not containing L. Thus, p is a constant, so 

planes can be defined, and each is determined by any triangle in it. 

Suppose Land M are distinct lines of a plane E. Then some block B ~ L 

does not contain E. Since B meets M, L n M = E n (B n M) F 0. Thus, E is 

a projective plane, so V is a projective space (VEBLEN & YOUNG [161J). 

Now assume (iii). Then G
L 

is transitive on Land S-L. By the Orbit 

Theorem 1C(l}, G
L 

has just two block-orbits. Since these must be the blocks 

containing L and the blocks meeting L once, (i) holds. 0 

E. Classification theorems 

Many theorems have been proved classifying 2-transitive symmetric 

designs under suitable additional conditions. A catalogue of these follows. 

(1) If G(B} F 1, then V is a projective space (ITO [B1J). Thus, in the 

remainder of this section it may be assumed that G(B} = 1. 

PROOF. G is 2-transitive on blocks. G(B} is a non-trivial normal subgroup 

of G
B

. Each non-trivial element of G(B} fixes more than one point, and 

hence more than one block (lC(2}). A theorem of O'NAN [132J (see 5B(2)} 

now applies. (Of course, this wasn't ITO's original proof.) 0 

(2) If V has the same parameters as PG
d

_
1 

(d,q), then .[) is PG
d

_
1 

(d,q) 

(KANTOR [9BJ). 

(3) If k is prime, then V is W
11 

or a projective space (KANTOR [93J; the 

case where v and k are prime is due to ITO [3J). From this it follows 

easily that V is W
11 

or a projective space if (v-1}/2 is prime. 

(4) If n = k-\ is prime, V is W
ll

, (W
ll

)', or PG(2,n)' (KANTOR [93J). 

(5) If k/2 is prime, then V is a projective space, PG(2,2}', (W
ll

)', Sl(4}, 

or S-1(4) (ITO & KANTOR [B7J). 
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(6) If n/2 is prime, then V is Sl(4} or S-1(4}. 

(7) If k-1 is prime and \ > 2, then V is (W 11 )' or PG
d

_
1 

(d,2) o. 

PROOF. write k-1 = p. Then \(v-1) = p(p+1} and k > \+1 imply plv-1, so 

p I IGI. A Sylow p-subgroup of G fixes a block B and a point x, and is 

transitive on B - {x). Thus, G
B 

is 2-transitive on B. By BE(10} (see 

below), it may be assumed that G
B 

is not 3-transitive on B. Also, by 

BE(l}, G(B} = 1. BURNSIDE [lB, p.341J and classification theorems now 

yield the preCise structure of G
B

, from which V = (W 11 ) 0 is readily 

deduced. 0 

(B) If k-1 and v are prime, then V is (W 11 ) 0 (ITO [B3J). 
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Note that theorems BE(2}-(B} all assume nothing more than numerical 

restricticns. In theorems BE(9}-(14}, further transitivity conditions will 

be imposed. 

(9) If V is a Hadamard design, and G
B 

is 2-transitive on B, then V is W11 
or a projective space (KANTOR [93]). 

(10) If G
B 

is 3-transitive on B and \ > 2, then V is PG
d

_
1 

(d,2) o. 

This is an unpublished result of CAMERON and KANTOR. The idea of the 

proof is as follows. As usual, VB consists of the points of B and blocks 

F B. Here, VB is a 3-design. If x E B, then VB has the same number k-1 

of paints F x as blocks on x. ThUS, VB is a symmetric 3-design, so a 

theorem of CAMERON [22J (see 10A,B) yields k = 4~+4, \ = 2~+2 or 

k = (~+2) (~2+4u+2) + 1, \ = u2+3~+2 (compare CAMERON [25]). 

In the first case, \(v-1) = k(k-1} implies v = 2k-1, and BE(9} 

applies to Vo. In the second case, if x t B then G
XB 

has rank 3 on the 

blocks through x, and the parameter restrictions of HIGMAN [69] yield a 

contradiction. 

(11) If G
B 

is 2-transitive on both Band S-B (compare BC(2}), \ > 2, ar~ 

3 points exist lying on no block, then V is PG(d,2) o. 

The proof is very similar to that of BE(10}. Note that the desired 3 

points are easily shown to exist if k ~ \2_\+1, except when V is PG(3,\-l}. 



394 W.M.KANTOR 

(12) Ii \ = 2 and G
B 

is 2-transitive on S-B, then 0 is PG(Z,Z)', W11 or 

S-l (4) (CAMERON [Z9] and KANTOR [93])_ 

(13) If G
B 

is 4-transitive on B, then 0 is PG(Z,Z)', Wll or S-1(4). (This 

easy consequence of 8E(10) and 8E(lZ) is due to CAMERON [29J.) 

Further results of these types are found in KANTOR [3]. The following 

is quite a different sort of result, which (in spite of its technical na­

ture) will be used in 8G. 

(14) Suppose k!v-1, x i B, and G
XB 

has a cyclic subgroup A regular on the 

points on B and the blocks on x. Then D is W11 or a projective space 

if either (i) k has no proper divisor 1 (mod A), or (ii) k < (\+l)Z 

(KANTOR [93J). (In the projective space case, the given cyclic group 

is a Singer cycle of B.) 

Some characterizations are also known for the designs SS(Zm) and W176 -

(15) If some g ~ 1 in G fixes at least !v points, then 0 is SS(2m) 

(KANTOR [lOlJ). 

(16) If some g ~ 1 fixes S-(B+C) pointwise for some B ~ c, then 0 is SS(Zm) 

or PG
d

_
1 

(d,Z) (KANTOR [101J)_ 

Both 8E(15) and 8E(16) rely heavily on PEIT's result 1C(3) and the 

DEMBOWSKI-WAGNER theorem 8C. The only possible automorphisms g which 

actually occur in 8E(15) and 8E(16) are elations of the underlying classi­

cal geometry. 

(17) If G has a regular normal subgroup, and if GB is 2-transitive on both 

Band S-B, then V is SS(Zm) (KANTOR [101J). 

(18) Suppose G preserves a 1-1-correspondence from 2-sets of points to 

2-setsofblocks.If n = (\_2)2/ 4 , then V is W176 or Sl(4). (KANTOR, 

unpublished; this was proved under additional transitivity assumptions 

by SMITH [152J). 

F. Prime v and linked systems 

(1) One of the main sources of interest in Z-transitive symmetric designs 

is permutation groups G of prime degree v. These are necessarily 
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solvable or 2-transitive (BuRNSIDE [18, p_341]_ Very few 2-transitive 

examples are known: PfL(d+1,q) ~ G ~ PSL(d+1,q) acting on PG(d,q), for 

rare pairs d,q; PSL(2,11) with v 11; and A , S ,M and M Here 
the first v v 11 23' , 

two types yield symmetric designs (see lOA for the sense in 

which MZ3 produces a generalization of a symmetric design). This 

naturally leads to the study of symmetric designs with prime v. The 

reader is referred to NEUMANN [lZ3J for an excellent survey of the 

general question of Z-transitive groups of prime degree. 

(Z) If 0 is a symmetric design, v is prime, and Aut 0 is transitive, then 

o is obviously a difference set design. See HALL [56,61J (and his talk 
. *) 

at th~s conference), MANN [113J, and DEMBOWSKI [40] for the defini-

tions and basic properties of difference set designs. 

Of importance in the present context is the well-known fact that, 

if A is an abelian automorphism group regular on the pOints of a sym­

metric design 0, and if v is odd, then the map a ~ a-
1

, a E A, does 

not induce an automorphism of V. More generally: an involutory auto­

morphism of a design cannot fix just one block (NEUMANN [lZ1J). 

Also, if 0 and A are as above, then V admits polarities. 

In the case of 2-transitive symmetric deSigns with v prime, the 

only other known way of using the primality of v is through modular 

character theory (as in ITO [82,83]). 

(3) In 1955, WIELANDT posed the following problem: can a 2-transitive 

group of prime degree v have more than two conjugacy classes of sub­

groups of index v? Certainly, two are pOSSible, as has been noted in 

8F( 1). 

Thus, suppose G is 2-transitive on each of the set S S s 1'"'' >l' 

\..l > 2, Is. I = v for each i, 
~ 

fixes no point in any S" 

and the stabilizer of a point Xi in Si 

~ i. By 2A(Z), each pair (S. ,S.), i ~ j, 
1. J J 

determines a 2-transitive symmetric design. By 8C(1), Gx . has two 

orbits on S .. Thus: 1. 
J 

{

if Xi E Si and Xj E Sj,i;06j,thenthenumberOf~ESh,h~i,j, in-

(*) cident with both Xi and x
j

' depends only on i,j,h and whether Xi 

and Xj are incident or not. 

CAMERON [24J considered this situation from a purely combinatorial 

point of view. A system of linked symmetr':c designs consists of sets 

sl' ... 's~, ~ ~ 2, and an incidence relation between each pair of sets 

turning each pair into a symmetric design, such that (*) holds. 

*1 This volume, pp. 3Z1-346. 



396 w. M. KANTOR 

Needless to say, there is a lot of arithmetic information in this 

situation. CAMERON rediscovered sorr.e such unpublished information due 

to WIELANDT and to ITO, but in the more general combinatorial setting. 

The conditions proved there are, however, too technical to reproduce. 

Additional numerical information has been obtained by ITO. For example, 

very recently, ITO [6S] has shown that if v is prime, then for some 

design (S. ,S.) neither k nor v-k can divide v-1. 
~ J 

Furthermore, NEUMANN [123] used a computer to show that WIELANDT's 

original situation cannot occur if p < 2,000,000. The proof of this 

provided a test for the available numerical data. 

(4) WIELANDT has proved that, in the original situation in SF(3), G can be 

the full automorphism group of at most one of the designs. (A proof is 

found in CAMERON [24].) 

(5) The combinatorial setting is as interesting as WIELANDT's group­

theoretic one: examples exist. 

(a) Let V be a 2m-dimensional vector space over GF(q) , q = 2e. Let 

Sp(2m,q) act on V as usual. Then G = V'Sp(2m,q) has exactly q 

classes of complements to V (POLLATSEK [140]). Clearly, the scalar 

transformations acton this family of q sets, and it is not hard to 

see that Aut G is 2-transitive on these q sets. Since each pair of 

sets determines an SE(2me), this is a linked system of designs 

having v = 22me and ~ = q. 

(b) A much larger system is possible for a g~ven v = 22m Namely, 

a system of linked symmetric designs with ~ = 22m-1 has been 

constructed by GoETHALS from the KERDOCK [lOS] codes (see CAMERON 

[24] and CAMERON & SEIDEL [30]). 

(c) CAMERON [24] notes the following construction for examples (a) and 

* (b) when v = 16. In the notat;on of 4A(5), S , Sxy , Sxz ' Syz 

(with x,y,z three pOints of B ) form example (a) with m 1, e = 2. 

* * S , together with the seven sets S ,y € B - {x}, for a fixed 
* xy 

x E B , form example (b) with m = 2. 

In each of examples (a)-(c), each symmetric design is isomorphic 

to SE(2£) for some 2. No other examples are known of symmetric designs 

arising in linked systems. 
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(6) If Sl" .. ,S~ is a linked system, its automorphism group H consists of 

those permutations of Sl u •.• u S~ which preserve both the partition 

and incidence. In example (a), H is 2-transitive on the q systems; the 

subgroup of H fixing each set S. is 2-transitive on each S .. 
~ ~ 

In example (b), H is known only for m = 2. Namely, from (c) it is 

clear that H contains (M
24

)xB* ~ A
7

'V, where V = M
24

(B*) is elementary 

abelian of order 16. In fact (CAMERON & SEIDEL [30]), 

* H ~ AS'V ~ SL(4,2) 'V, where V fixes S and each Sxy' while AS acts as 

usual on these S sets. The subgroup of H fixing 2 of the S sets is 

A6'V' and induces an automorphism group of the resulting design S-1(4). 

Some properties of H for certain types of linked systems (e.g., 

when v is prime) are found in WIELANDT [167J and CAMERON [24J. 

G. Some difference set designs 

In this section, a special class of difference set designs will be 

considered. These are of interest for both combinatorial and number­

theoretic reasons (see HALL [61] and MANN [113]). 

(1) Let v be an odd prime power, and set F = GF(v). Let 1 < k < v-1 and 

klv-1, and let B = B(v,k) be the subgroup of F* of order k. Let O(v,k) 

have the elements of F as points and the translates B+a, a E F, as 

blocks. B is a difference set in F+ if and only if O(v,k) is a sym­

metric deSign. 

The designs O(v, ~(v-l)) are the Hadamard designs of PALEY [138], 

where v = 3 (mod 4) can be any prime power. 

By DEMBOWSKI [40, p.35] (or an easy Singer cycle argument), 

O(v,k) cannot be a projective space if \ > 1. If \ = 1, the only 

desarguesian exceptions are PG(2,2) and PG(2,S). 

(2) PROBLEM: what is Aut O(v,k)? 

Clearly, Aut O(v,k) contains the group S(v,k) of all mappings 

x + bxO+a, b E B, a E F, a E Aut F. In only three cases is 

Aut O(v,k) > S(v,k) known, namely, 0(11,5) = W
11

, 0(7,3) = PG(2,2) and 

0(73,9) = PG(2,8). These are almost certainly the only possibilities. 

This problem can be reformulated in terms of permutation poly­

nomials. Let f(x),g(x) E F[x], and assume that both polynomials act as 

permutations of F. If 
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f(x+b) - g(x) E B 'r/X E F, 'Vb E B, 

then the pair (f,g) determines an automorphism of V(v,k). Conversely, 

each automorphism determines such a pair (f,g), where f is the permu­

tation induced on blocks and g the one on points. 

(3) Write G = Aut V(v,k), and assume G > S(v,k). If v is prime, then G is 

2-transitive on points by BURNSIDE's theorem on groups of prime degree 

(see BURNSIDE [18, p.341J). If k = ~(v-1), G must also be 2-transitive 

(KANTOR [93J; compare CARLITZ [31J; McCONNEL [116J; BRUEN & LEv INGER 

[10J) . 

However, it is not known in any other cases that G must be 

2-transitive if G > S(v,k). 

(4) If G > S(v,k) and k ~(v-1), then V = PG(2,2) or W
11 

(KANTeR [93J; 

for some small values of v, this was proved by TODD [159J and F. HERING 

[67]) . 

More generally, if G is 2-transitive then V = PG(2,2) or W
11 

provided that either 1 + /:k> (v-1)/k or k has no proper divisor 

" 1 (mod A). 

PROOF. SE(14) applies with A = {x'" bx .1 b E B}. 0 

Further information when G is 2-transitive (but when the above 

numerical conditions do not hold) is found in KANTeR [93J. The fact 

that, even for these specific designs, it is not known whether Aut V 
can be 2-transitive, indicates the sad state of affairs concerning 

2-transitive symmetric designs~ 

H. An application to the irreducibility of polynomials 

A very unexpected sort of occurrence of Z-transitive symmetric designs 

has recently been found by M. FRIED. Let K be a subfield of the complex 

field C. If f(x) , K[xJ and g(x) E C[xJ, it is natural to study the irre­

ducibility of f(x) - g(y) in c[x,yJ. This question leads to difference set 

designs having 2-transitive automorphism groups! 

The following discussion is based primarily on FRIED [49,50J (see also 

CASSELS [33J). f(x) is called indecomposabZe over K if it is not possible 

to write f(x) = f1 (fZ(x)) with fi ' K[xJ and deg fi > 1, i=1,2; assume L~at 

this is the case. Assume further that g(x) cannot be written g(x) = f(ax+b) 
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for some a,b E C, a ~ O. Finally, assume that f(x) - g(y) 

with hi (x,y) E c[x,yJ irreducible and t > 1. 

t 

n 
i=l 

h. (x,y) 
~ 

FRIED shows that it may be assumed that deg f = deg g v, say. 
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Then g(x) is indecomposable over C. Moreover, t = 2. Write k = deg h1 (x,y). 

Then there is a difference set mod v with k elements. The corresponding 

symmetric design V admits a 2-transitive automorphism group G. (Here, G can 

be interpreted as the Galois group of a suitable extension field of C(x).) 

Furthermore, G is generated by permutations sl'···'s~, with j.l ~ 3, 

h th t (') s is a v-cycle on points, and (ii) L i(si) suc a ~ sl··· ~ i 
v-1 

= i (sl ... s~). (Here, i (si) is 

product of i transpositions.) 

the smallest integer i such that si is the 

Of course, PG
d

_
1 

(d,q) and W
11 

are the only known cyclic difference set 

designs V for which Aut V is 2-transitive. (Examples 8B(3) and 8B(4) do not 

admit transitive cyclic automorphism groups.) FElT [50J enumerated all 

cases in which these designs can arise in FRIED's Situation; each case 

produces a pair of polynomials f(x), g(x). 

Needless to say, conditions (i) and (ii) are weird from a geometric or 

of V 'ew. Nevertheless, it should be clear that they group-theoretic point ~ 

merit further study. 

Note that the study of the polynomial f(x) - g(y) is remarkably remi-

niscent of the situation in 8G(Z). 

In more recent work of FRIED [51J, 2-transitive designs have arisen 

in which b = 2v and some element of order v has one v-cycle on pOints and 

two on blocks. 

I. 2-transitive suborbits 

One recent occurrence of 2-transitive symmetriC designs has been in 

work of CAMERON [19,20,21,26J, on multiply-transitive suborbits (i.e., 

orbits of G ) of primitive permutation groups. Since these will be dis-

x th dr's referred to that cussed in CAMERON'S talk at this conference, e rea e ~ 

talk *) and the above papers. 

*) This volume, pp. 419-450. 
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J. Problems 

(1) The case \ = 2 should be feasible. The combinatorial structure here is 

extremely rich (see HUSSAIN [7S,79J, HALL [62J, and CAMERON [23,29J).· 

So, for that matter, is the permutation structure: G
B 

must be 2-tran­

sitive on B; if x,y E B, x F y, then either GB is 3-transitive on 

B, or G has two orbits of length (k-2)/2 on B - {x,y} (KANTOR [3J, xyB 
CAMERON [23J). CAMERON [23,29J has indicated a possible approach to 

this problem. 

Note that only three examples are known: PG(2,2)', W11 and 

S-l (4). 

(2) In the situation of SC(2), there is a natural strongly regular graph 

structure on 5 - {x}. Unfortunately, the parameter restrictions on 

this graph and the tactical decomposition relations of DEMBOWSKI [3S; 

40, pp.60-61J involve too many unknowns. The latter relations were 

studied by KANTOR [93,101J; the former, in a purely combinatorial 

setting, by CAMERON [25J (using a method of GoETHALS & SEIDEL [54J). 

All the results thus far are very inconclusive. 

(3) Prove that V is SE(2m) if G has a regular normal subgroup. As already 

mentioned in SC(4), in this case V has the same parameters as some 

SE (2m). 

(4) No satisfactory characterization of ~176 is known. W
176 

and (W176) ' 

are probably the only 2-transitive symmetric designs with \ > 2 and 

v-2k+\ > 2 in which G preserves a correspondence 6 as in SE(lS); 

no numerical restrictions should be needed. (The main reason for the 

restriction in SE(lS) is to prevent k from being too large relative 

to \.) If such a 6 eXists, V can be replaced (if necessary) by V, in 

order to obtain {x,y} c X n Y if {x,y}6 = {X,Y}. Then 2(v-l)/k is an 

integer T (so this situation is similar to the one considered in 

KANTOR [93J, where 

and if x E S, G
XB 

S E (x,y}6. 

kl v-l) . If T is 

is transitive on 

odd, 

the T 

G{x,y} 

points 

is transitive on (x,y}6, 

y E B - {x} for which 

SMITH [152] has proposed a reasonable axiom one can assume in 

addition to the existence of 6 in order to try to characterize W
176

' 

but this is too technical to state. 
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(5) Each of the known 2-transitive symmetric designs has polarities. 

Study ~,ese, and find some way to use G,em in the characterization of 

self-dual designs. 

When v is prime, V automatically has II natural" polarities. 

However, no effective use has been found for them. 

(6) The proof of SE(2) in KANToR [93J indicates that, when n is a power of 

a prime not dividing \, V should be W
11 

or a projective space. 

(7) Remove the numerical restrictions (i) and (ii) of SE(14) and SG(4)_ 

(S) Answer WIELANDT's question (see SF(3)). More generally, decide exactly 

what parameters can occur for linked systems (compare SF(5)). 

9. SYMMETRIC 3-DESIGNS 

A. CAMERON's theorem 

A symmetric 3-design is a 3-design V such that Vx is a symmetric 

design for each x. CAMERON [22J proved that the parameters of V must 

satisfy one of the following conditions (where ~ is the number of blocks 

on any three points) : 

(i) v 

(ii) v 

(iii) v 

4~ + 4, k = 2~ + 2 (Hadamard 3-design); 

(~+2) (~2+4~+2) + = (~+1) (~2+5~+5), k = ~2+3~+2; 
112, k = 12, ~ (extension of a projective plane Vx of order 

10), or 

(iv) v = 496, k = 40, ~ 3. 

Note that the \ for V is given by \ = k-l_ Case (i) occurs if and 

only if there is a vxv Hadamard matrix. The only other case known to occur 

is ~ = 1 in (1i) , when V is W
22

. 

For a generalization of CAMERON's theorem, see CAMERON [27J. 

B. 3-transitive automorphism groups 

(1) Now suppose G ~ Aut V is 3-transitive on points. Then G
x 

is a 2-tran­

sitive automorphism group of the symmetric design Vx (cf_ section 8). 

It is not hard to show that cases (iii) and (iv) cannot occur. 

Cases (i) and (ii) remain open. Some special values of ~ have, however, 
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been ruled out by CAMERON [19J, such as when 2 ~ ~ < 103 or ~+1 is a 

prime power. 

For a remarkable occurrence of case (ii) -which originally led 

CAMERON to his theorem- see CAMERON [20,26J. 

(2) If G
B 

is 3-transitive on B, then V is AG
d

_ 1 (d,2), the unique Hadamard 

3-design with 12 points, or W22 . (This follows readily from 8E(9) and 

8E (11) . ) 

(3) Suppose next that V is a Hadamard 3-design. NORMAN [127] proved that 

v = 12 if ~ is even. A slight modification of his argument shows that 

the same conclusion holds if G is 3-transitive on parallel classes of 

blocks. Note that, by 5B(4), the unique Hadamard 3-design having 12 

points satisfies these conditions. The case n even -where V should be 

AG
d

_
1 

(d,2)- remains open. 

C. Hadamard matrices 

An automorphism of a Hadamard matrix H of size n is a pair (P,Q) of 

monomial nxn matrices such that PHQ = H. The automorphisms form a group 

G = Aut H containing 1 = (I,I) and -1 = (-I,-I) in its center. G = G/<-l> 

acts faithfully as a permutation group on the union of the sets of rows 

and columns of H. 

It may be assumed that the first row r and column c of H consist of 

l's. Deleting columns 1 and n+1 of (H,-H) produces the (-1,1) incidence 

matrix of a Hadamard 3-design V. Then G
c 

is the automorphism group of V. 
In view of this, the results in B(2) and B(3) apply to V. These in turn yield 

results about H. For example, if G is 4-transitive on rows, then n = 4 or 

12. Another characterization of the case n = 12 follows from 6G(4) 

(KANToR [94 J) . 

Suppose n = 12. Then B(2) and the discussion of Gc imply that 

G
c 
~ M

11
, from which G ~ M12 follows easily. However, G ~ M12 x <-1>. 

At the end of 4B(2) it was noted that IAut M121 = 21M121. The resulting 

outer automorphism can be visualized in the present context as follows. 

(P,Q) 

QtHPt 

G implies that PHQ = H, and hence (since H is symmetric) that 

H, so (Qt,p t ) E G. Thus, (P,Q) + (Qt,p
t

) is an automorphism of G, 

and induces one of G; these are both outer automorphisms (see HALL [59J). 

; 

2·TRANSITIVE DESIGNS 403 

10. FURTHER TOPICS AND PROBLEMS 

A. Block intersections 

Let V be at-design, t 2: 2. According to a generalization of FISHER's 

inequality b 2: v, if v 2: k+~t then b 2: ([~VtJ) (WILSON & RAY-CHAUDHURI 

[168J). Equality holds only if t = 2s for an integer s, and then V is 

called a tight t-design. (This is evidently a generalization of symmetric 

designs.) WILSON & RAY-CHAUDHURI also proved that, if V is a 2s-design, 

then V is tight if and only if there are at most s different intersection 

sizes IB n cl, where Band C run through all pairs of distinct blocks (cf. 

CAMERON [25 J) . 

It is natural to consider 2s-transitive auto~orphism groups of tight 

2s-designs. Partly motivated by the group-theoretic context, ITO [85J has 

just completed a proof that the only tight 4-designs are degenerate 

(v = k-2), W23 ' or its complementary design (W 23 )'. The case s > 2 

remains completely open in both the combinatorial and group-theoretic 

contexts. 

One way to guarantee that a t-design V has few intersection sizes 

IB n cl is to assume that G = Aut V is block-transitive and has small 

block-rank p; thus, G
B 

has exactly p block orbits (so there are at most 

p-1 different sizes IB n cl with B F C). This was considered by NODA [126J 

when V is a Steiner system S(t,k,v). He assumed t = 3 or 4 and P = 3 or 4, 

and showed V must be W22 , W23 , W24 or AG
2

(3,2). The proofs are very 

similar to tight design arguments. (In fact, the case t = 4, p = 3 follows 

from the aforementioned results of WILSON & RAY-CHAUDHURI.) 

It should also be possible to handle the case t = 2, A = 1 and p = 3. 

Here, G
B 

is transitive on the lines diSjoint from B, and G
x 

is 2-transitive 

on the lines through x. Presumably, V must be AG(2,k) or PG
1 

(d,k-1). NODA 

has observed that V is AG(2,k) if G is not line-primitive; moreover, in 

unpublished work, he has used an argument of HIGMAN [70J to show that V is 

PG
1 

(d,k-1) if v > k 2 (k_1)2(k_2)2 + k 2 - k + 1. 

B. Parallel relations 

Let V be a design. A parallel relation on V is an equivalence relation 

partitioning the blocks into classes, each of which partitions the pOints 

of V. Each parallel class has v/k blocks, and there are exactly r parallel 

classes. 
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Relatively little is known about subgroups G of Aut V which pre­

serve II. If the classical affine space (or plane) case is excluded, 

little is known beyond NORMAN's theorem (see 9B(3» and the following 

result of CAMERON [28J. 

(1) Let V be the degenerate design with k = 2 and A = 1, whose blocks are 

just the 2-sets of points. Assume that v > 3, G is 3-transitive, and G 

preserves II. Then either v = 6 and G ~ PGL(2,S), or v = 2d for some d 

and V can be regarded as the design AG
1 

(d,2) with the obvious parallel 

relation. 

PROOF. Let x,y,z be any three points. Then Gxyz fixes the block through z 

parallel to {x,y}. Hence, G fixes k ~ 4 points. If k = v then 
xyz 

ZASSENHAUS [172J can be used to show that v = 6 and G is PGL(2,5). If 

k < v, 60(1) can be applied to yield k = 4. If Band C are two blocks of 

this S(3,4,v), and if IB n ci ; 2, then B - B n C, B n C, and C - B n C 

are parallel. Hence, B+C is a block of the S (3,4, v). It follows easily 

that the S(3,4,v) is AG
2

(d,2) (compare 4C(3». 0 

Actually, CAMERON's proof does not use 60(1). In fact, it was while 

I was eliminating one case of CAMERON'S situation that 60(1) and 6E(1) 

were born. 

More recently, CAMERON has obtained a generalization of 10B(1) to 

groups preserving a parallelism of the trivial design of all k-sets of a 

v-set (1 < k < v). 

The natural extension of 10B(1) to the case of triangle-transitive 

automorphism groups of more general designs V (with II) remains open. 

(2) If V and II are as before, then b ~ v+r-l; moreover, b = v+r-l if and 

only if any two blocks meet in 0 or k
2
/v points (see DEMBOWSKI [40, 

pp.72-73J). When b = v+r-l, V is called an affine design. Clearly, 

affine designs provide a common generalization of Hadamard 3-designs 

and affine spaces. A theorem of DEMBOWSKI [40, p.74J characterizes 

affine spaces AG
d

_
1 

(d,q), q > 2, among affine designs; this result 

is similar to the DEMBOWSKI-WAGNER theorem (see 8C). But relatively 

little attention has been paid to automorphism groups, so perhaps a 

few additional remarks are worthwhile. 

Consider V, II, and G " Aut V preserving II. Let G have tp pOint­

orbits, ~ block-orbits, and til parallel-class orbits. If V is an 
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affine design, then tb + 1 = tp + til (NORMAN [127J). In general, it 

turns out that one can at least say tb + 1 ~ tp + til. Also, if V is 

affine and g E G, then f + 1 f + f where f f and f th P b II ' p' b II are e 
numbers of points, blocks and parallel-classes fixed by g. From these 

facts, further results can be deduced as in KANTOR [91J. 

Incidentally, it should be noted that the arguments on pp.113-114 

of DEMBOWSKI [40J show that the number of non-isomorphic affine de­

signs having the same parameters as AG
d

_
1 

(d,q), d ~ 3, is enormous 

(and in fact +~, as d + ~ or q + ~). However, I conjecture that af­

fine spaces are the only affine designs which are not Hadamard 3-de­

signs and whose automorphism groups are transitive on ordered pairs 

of non-parallel blocks. 

c. Transitive extensions 

Let H be a given group, possibly given together with a specific 

transitive permutation representation on a set S'. A transitive extension 

of H is a 2-transitive group G on a set S such that, for some XES, 

G
x 
~ H; if, moreover, H is given as acting on S', then it is also required 

that lsi = Is' 1+1 and that G acts on s-{x} as H does on S'. 
x 

A basic open problem concerning 2-transitive groups is: if H is known 

as an abstract group, find all transitive extensions of H. Needless to say, 

very few groups H have transitive extensions. 

Transitive extensions have been studied geometrically by DEMBOWSKI 

[39J, HUGHES [75,76J, and TITS [158J. Their approach was to extend designs 

associated with groups such as the collineation group of AG(d,q) or 

PG(d,q), given as acting 2-transitively on the points of the corresponding 

affine or projective space. 

Much more generally, TITS (unpublished) has shown that a Cheval ley 

group over GF(q), acting on a class of parabolic subgroups, has no tran­

sitive extensions if q is not very small. Still more generally, SEITZ 

(unpublished) has obtained the same conclusion if H is isomorphic to a 

Chevalley group over GF(q) and (q,lsl-l) = 1. 

o. Some maximal subgroups of alternating or symmetriC groups 

Let H be a transitive permutation group on S, about which a lot is 

known. PROBLEM: determine all permutation groups G on S containing H. 
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Here, I have in mind some "geometric" group H and set S. The case 

H = PSL(n,q), n ~ 2, with S the set of points of PG(n-1,q), has been dis­

cussed in 7E(1). In general, if H is chosen "large" enough, and G > H, 

then G will presumably have to be 2-transitive. PROBLEM: handle the case 

H PSL(n,q), n ~ 4, and S the set of e-spaces of PG(n-1,q), where 

~ e ,; n-2. 

I have settled the case H = Sp(2m,2), in its 2-transitive represen­

tations of degree 2
m

-
1

(2
m

±1): if G > H then G is alternating and symmetric. 

The elementary proof uses transvections and the geometry of GQ±(2m,2). 

The reader should have no difficulty in listing many other, similar 

questions. Perhaps the most intriguing general question of this type con­

cerns a Chevalley group H acting on a set S of parabolic subgroups. 

E. Sp(2m,2) and .3 

SauLT [148] has obtained some graph-theoretic characterizations of 

Sp(2m,2) in its 2-transitive representations of degree 2m- 1 (2m±1). 

However, no characterization is known in terms of designs. The difficulty 

is that no really interesting designs seem to have Sp(2m,2) as a 2-transi­

tive automorphism group. 

Precisely the same difficulty occurs in the case of CONWAY's smallest 

group .3, in its 2-transitive representation of degree 276 (see CONWAY 

[35]). In both cases, the 2-graph approach seems more relevant than the 

design one (cf. SEIDEL [143]). 

APPENDIX 

The known 2-transitive groups 

The following is a list of all the known 2-transitive groups G having 

no regular normal subgroup. 

(1) G = An or Sn' lsi = n. 

(2) PSL(d+l,q) ,; G ~ PfL(d+1,q); S is the set of pOints or hyperplanes of 

PG(d,q) . 

(3) PSU(3,q) ~ G ,; pfU(3,q); S is the set of q3+ 1 points of the corre­

sponding unital. 
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(4) G has a normal Ree subgroup; S is the set of q3+ 1 points of 

the corresponding unital (q = 3
2e

+
1
). When e 0, G ~ prL(2,8), 

acting on the points of V(4) (see 6B(3)). 

407 

(5) SZ(2 2e+ 1 ) ,; G ~ Aut Sz(22e+ 1 ); S is the set of (22e+1)2 + 1 points of 

(6) 

(7) 

(8)" 

(9) 

the corresponding inversive plane or ovoid (see LUNEBURG [111]). 

Sp(2m,2), lsi = 2
m

-
1

(2
m

±1), G 
x 

G 

G PSL(2,11) acting on the 11 pOints or blocks of W11 (see 8B(2)). 

G A7 acting on the 15 points or planes of PG(3,2) (see 4A). 

The Mathieu groups M
11

, M
12

, ~22' Aut M22 , M23 and M24 in their 

usual representations on the points of the corresponding Steiner 

systems. 

(10) G = Mil acting 3-transitively on the 12 points of a Hadamard 3-design 

(see 4B(3), 9B and 9C). 

(11) G 

(12) G 

HS acting on the 176 points or blocks of W176 (see 8B(4)). 

.3, lsi = 276. 
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