On Incidence Matrices of Finite Projective and Affine Spaces

Willam M. Kantor

It is well-known that the rank of each incidence matrix of all points $v s$. all e-spaces of a finite d-dimensional projective or affine space is the number of points of the geometry, where $1 \leqq e \leqq d-1$ (see [1], p. 20). In this note we shall generalize this fact:

Theorem. Let $0 \leqq e<f \leqq d-e-1$, and let $M_{e, f}$ be an incidence matrix of all e-spaces vs. all f-spaces of $P G(d, q)$ or $A G(d, q)$. Then the rank of $M_{e, g}$ is the number of e-spaces of the geometry.

We shall only prove the theorem in the case of $A G(d, q)$. The projective case is similar and simpler. We note that the same proof shows that, if $1 \leqq e<f$ $\leqq d-e$, an incidence matrix of all e-sets $v s$. all f-sets of a set of d points has rank $\binom{d}{e}$.

The relevant definitions are found in [1], $\S 1.3$ and 1.4. The dimension of a subspace X of a projective space will be denoted $\operatorname{dim}(X)$. The empty subspace has dimension -1 .

Proof. Let E and F denote any e-space and f-space, respectively. Set

$$
(E, F)= \begin{cases}1 & \text { if } E \subset F \\ 0 & \text { if } E \not \subset F\end{cases}
$$

For a suitable ordering of e-spaces and f-spaces we have $M_{e, f}=((E, F)$). Let $R(E)$ denote the row of $M_{e, f}$ corresponding to the e-space E.

Assume that there is a nontrivial dependence relation among the rows of $M_{e, f}$. This may be assumed to have the form

$$
\begin{equation*}
R\left(E^{*}\right)=\sum_{E \neq E^{*}} a(E) R(E) \tag{1}
\end{equation*}
$$

for some e-space E^{*}, where each $a(E)$ is a real number. Let Γ be the group of all collineations of $A G(d, q)$ taking E^{*} to itself. If $\alpha \in \Gamma$ then $\left(E^{\alpha}, F^{*}\right)=(E, F)$.

Then (1) implies that, for all F,

$$
\begin{aligned}
\left(E^{*}, F\right)=\left(E^{*}, F^{\alpha}\right) & =\sum_{E} a\left(E^{\alpha}\right)\left(E^{\alpha}, F^{\alpha}\right) \\
& =\sum_{E} a\left(E^{\alpha}\right)(E, F)
\end{aligned}
$$

so that $R\left(E^{*}\right)=\sum_{E \neq E^{*}} a\left(E^{\alpha}\right) R(E)$. Thus,

$$
\begin{align*}
|\Gamma| R\left(E^{*}\right) & =\sum_{\Gamma} \sum_{E \neq E^{*}} a\left(E^{\alpha}\right) R(E) \\
& =\sum_{E \neq E^{*}} R(E) \sum_{\Gamma} a\left(E^{\alpha}\right) . \tag{2}
\end{align*}
$$

Let \mathbb{S} be the set of all ordered pairs (i, j) of integers satisfying the conditions $-1 \leqq i, j \leqq e-1$ and $j=i$ or $i+1$. Order \subseteq lexicographically: $\left(i_{1}, j_{1}\right)<\left(i_{2}, j_{2}\right)$ if either $i_{1}<i_{2}$ or $i_{1}=i_{2}$ and $j_{1}<j_{2}$.

We now embed $A G(d, q)$ in $P G(d, q)$. Let H_{∞} be the hyperplane at infinity. If $(i, j) \in \mathbb{E}$, let $\mathscr{E}(i, j)$ be the set of e-spaces $E \nsubseteq H_{\infty}$ such that $\operatorname{dim}\left(E \cap E^{*} \cap H_{\infty}\right)=i$ and $\operatorname{dim}\left(E \cap E^{*}\right)=j$. The $\mathscr{E}(i, j)$ are precisely the orbits of Γ of e-spaces other than E^{*}. Fix $E_{i j} \in \mathscr{E}(i, j)$. Then (2) implies that

$$
\begin{aligned}
|\Gamma| R\left(E^{*}\right) & =\sum_{\mathfrak{S}} \sum_{\mathscr{E}(i, j)} R(E) \sum_{\Gamma} a\left(E^{\alpha}\right) \\
& =\sum_{\mathbb{S}} \sum_{\mathscr{E}(i, j)} R(E)|\mathscr{E}(i, j)| \sum_{\Gamma} a\left(E_{i j}^{\alpha}\right) \\
& =\sum_{\mathbb{S}}\left[|\mathscr{E}(i, j)| \sum_{T} a\left(E_{i j}^{\alpha}\right)\right] \sum_{\delta(i, j)} R(E) .
\end{aligned}
$$

There is thus a dependence relation of the form
with $b_{i j}$ real.

$$
\begin{equation*}
R\left(E^{*}\right)=\sum_{\epsilon} b_{i j} \sum_{\mathbb{E}(i, j)} R(E) \tag{3}
\end{equation*}
$$

Let $(m, n) \in \mathbb{G}$. Since $e+f \leqq d-1$ there is an f-space $F_{m n}$ such that

$$
\operatorname{dim}\left(F_{m n} \cap E^{*} \cap H_{\infty}\right)=m \quad \text { and } \quad \operatorname{dim}\left(F_{m n} \cap E^{*}\right)=n .
$$

As $n \leqq e-1, F_{m n} \not E^{*}$. By (3),
whenever $(m, n) \in \mathbb{S}$.

$$
\begin{equation*}
0=\sum_{\mathfrak{S}} b_{i j} \sum_{\mathscr{E}(i, j)}\left(E, F_{m n}\right) \tag{4}
\end{equation*}
$$

Let $(i, j),(m, n) \in \Xi$. If $\left(E, F_{m n}\right)=1$ for some $E \in \mathscr{E}(i, j)$ then $E \subset F_{m n}$ implies that $i \leqq m, j \leqq n$. In particular, if $(i, j)>(m, n)$ then

$$
\begin{equation*}
\sum_{\delta(i, j)}\left(E, F_{m n}\right)=0 \tag{5}
\end{equation*}
$$

Also, there is an e-space $E \subset F_{i j}$ such that $E \cap E^{*} \cap H_{\infty}=F_{i j} \cap E^{*} \cap H_{\infty}$ and $E \cap E^{*}=F_{i j} \cap E^{*}$. Thus,

$$
\begin{equation*}
\sum_{\mathscr{\delta}(i, j)}\left(E, F_{i j}\right) \neq 0 . \tag{6}
\end{equation*}
$$

By (4) and (5),

$$
\begin{equation*}
0=\sum_{(i, j) \leqq(m, n)} b_{i j} \sum_{\mathscr{E}(i, j)}\left(E, F_{m n}\right) \tag{7}
\end{equation*}
$$

for all $(m, n) \in \mathbb{S}$. This is a system of $|\mathbb{S}|$ equations in the $|\mathbb{S}|$ unknowns $b_{i j}(i, j) \in \mathbb{S}$. If we use the ordering of \mathcal{S}, the coefficient matrix is triangular, with nonzero diagonal entries by (6). It follows that $b_{i j}=0$ for all $(i, j) \in \mathbb{S}$, contradicting (3). This completes the proof.

We note incidentally that the matrices $M_{e, f}$ have the following property: if

$$
0 \leqq e<f<g \leqq d-1
$$

then $M_{e, f} M_{f, g}=c_{e, f, g} M_{e, g}$, where $c_{e, f, g}$ is the number of f-spaces contained in a g-space G and containing an e-space contained in G.

Corollary 1. If $0 \leqq e \leqq d-e-1$, then a collineation of $P G(d, q)$ induces similar permutations on the sets of e-spaces and $(d-e-1)$-spaces.

Proof. [1], p. 22.
Corollary 2. Let Γ be a collineation group of $P G(d, q)$ or $A G(d, q)$. If

$$
0 \leqq e<f \leqq d-e-1
$$

then Γ has at least as many orbits of f-spaces as e-spaces. Moreover, these quantities are equal in the projective case if $f=d-e-1$.

Proof. [1], pp. 20-22.
Corollary 3. Let Γ be a collineation group of $P G(d, q)$ or $A G(d, q)$ transitive on f-spaces. If $0 \leqq e<f \leqq d-e-1$ then Γ is transitive on e-spaces, and its rank on f-spaces is at least as large as that on e-spaces. Moreover, these ranks are equal in the projective case if $f=d-e-1$.

Proof. See the proof of [2], Theorem 4.4.
We remark that, by using [1], p.21, together with the analogue of our theorem for incidence matrices of subsets of a finite set, we also obtain an elementary proof of Theorem 1 of Livingstone and Wagner [3].

Parts of these corollaries are due to Wagner [5] in the projective case.
Added in Proofs. The corollaries can also be easily deduced from the following facts. Let θ_{e} be the permutation character obtained from the action of the full collineation group of $P G(d, q)$ or $A G(d, q)$ on the e-spaces of the geometry, where $0 \leqq e \leqq d-1$. If $0 \leqq e \leqq d / 2$, then $\theta_{e-1} \subset \theta_{e}=\theta_{d-1-e}$ for $P G(d, q)$, and $\theta_{e-1} \subset \theta_{d-e} \subset \theta_{e}$ for $A G(d, q)$. These inclusions can be proved by calculating (θ_{e}, θ_{f}) whenever $0 \leqq e \leqq f \leqq d-1$. In the projective case, this result and this calculation are essentially contained in [4], pp. 276-278.

References

1. Dembowski, P.: Finite geometries. Berlin-Heidelberg-New York: Springer 1968.
2. Kantor, W. M.: Automorphism groups of designs. Math. Z. 109, 246-252 (1969).
3. Livingstone, D., Wagner, A.: Transitivity of finite permutation groups on unordered sets. Math. Z. 90, 393-403 (1965).
4. Steinberg: R.: A geometric approach to the representations of the full linear group over a Galois field. Trans. Amer. Math. Soc. 71, 274-282 (1951).
5. Wagner, A.: Collineations of finite projective spaces as permutations on the sets of dual subspaces. Math. Z. 111, 249-254 (1969).

Prof. William M. Kantor
Department of Mathematics
University of Oregon
Eugene, Oregon 97403
USA

(Received September 30, 1970)

