Finite semifields

William M. Kantor

Abstract. This note surveys the known finite semifields and discusses the question:
How many finite semifields of a given order are there up to isotopism?

1. Introduction

A familiar topic in finite geometry is that of finite semifields (division algebras
that are not necessarily associative) and their planes. This paper is intended as a
survey of some aspects of this subject. See [CW] for a more thorough discussion
of additional topics.

2. Wedderburn’s Theorem?

Every finite division algebra is commutative. This familiar and now-elementary
theorem is attributed to Wedderburn. This is discussed with great care in [Par]
(together with the related development of Veblen- Wedderburn systems—which we
now call “quasifields”—in [VW]). Wedderburn was the first to publish the theo-
rem in 1905, with three proofs in a four-page paper [Wed]. His first proof has
a nontrivial hole; this was noticed more than 20 years later by Artin [Art]. The
second and third proofs in Wedderburn’s short paper used an idea in Dickson’s
1905 paper [Dil, p. 379]: primitive prime divisors. If this happened nowadays
the theorem would probably be called the “Wedderburn-Dickson Theorem?”.

2000 Mathematics Subject Classification: Primary 51A40, 17A35; Secondary 05B25, 51A35,
51A50.
IEarlier in 1905 Dickson [Di2] rediscovered Zsigmondy’s Theorem [Zs] (cf. [Dil, p. 379]).
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3. Albert and Knuth

3.1. Isotopy.

A presemifield P = (F,+, *) consists of an additive group (F,+) together with a
binary operation * that satisfies both distributive laws together with the require-
ment that xxy =0 < x =0or y = 0. It is a semifield if it has an identity
element 1. A translation plane 2(P) is obtained in the usual way: F? is the set
of points, and lines are the sets x = c and y = x *m + b.

An isotopism between two presemifields P = (F,+,*) and P’ = (F/,+,0) is a
triple (o, 8,7) of additive bijections F' — F’ such that

(x*xy)y=zaoyp Vu,y,z€F. (3.1)

Any presemifield P = (F,+,*) is isotopic to a semifield: fix any 0 # e € F and
define o by (zxe)o(exy) =z *y for all z,y € F. Then (F,+,0) is a semifield
with identity e % e, and is obviously isotopic to P. If (F, 4+, *) is commutative then
so is each such semifield (F,+, o).

The notion of isotopy was introduced by Albert for purely algebraic reasons
[All]. However, it enters geometry in view of the following fundamental but ele-
mentary result of his:

Theorem 3.1. [Al2] Two semifields coordinatize isomorphic planes if and only if
they are isotopic.

3.2. Knuth’s cubical arrays.

Let P = (K™, +, 0) be a presemifield, with associated translation plane 24(P); here
K is any finite field. We assume that © — z oy and © — y o x are K-linear maps
for each y € K™. This is certainly the case if K is a prime field.

If v1,...,v, is the standard basis of K", then multiplication in P is determined
by equations of the form

v;ovj = Zaijkvk (3.2)
k

for some a;;, € K. The cubical array (a;;,) was introduced and studied by Knuth
[Knl]. He observed that, if (a;;;) determines a presemifield, then so does each
such array obtained by applying any permutation in S3 to the subscripts of the
array. Thus, each presemifield produces as many as six presemifields. We will
describe this from a somewhat different perspective [BB, Ka5] than in [Knl].

The affine plane A = A(P) determines a projective plane, whose dual is in
fact a semifield plane 2" defined over the opposite presemifield (K™, +, o), where
ro*y=yox Vr,ye K"

The spread for 2 [De, Section 5.1], consisting of the subspaces of V = K" ® K"
that are the lines of 2 through 0, produces a dual spread in the dual space of V,
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ar:id hence also another translation plane which is, once again, a semifield plane
A,
The involutory maps 2 — 2* and 2 — A¢ generate Knuth’s S5 [BB, Kaj].
Knuth had already noticed by 1965 that there is a nice interpretation for his
map A — A that extends to quasifields other than semifields: use the transposes
of the right multiplications x — x % m. This is just another way to describe the
dual spread indicated above.

Symplectic spreads. A spread X of V is called symplectic if there is a non-
degenerate alternating bilinear form ( , ) on V such that (X, X) = 0 for each
X € X. Symplectic spreads have been studied in [Dil, Dy, Kal, Ka3, Ka4, Ka5,
BKL, CCKS, BB, KW1, KW2, Ma, BBP]. There are surprisingly few different
types of constructions of symplectic spreads presently known in odd characteristic
[BKL, Kab, BBP]. The most interesting and original research presently being done
with symplectic spreads in characteristic 2 is that of Maschietti [Ma], who relates
such spreads to very special types of line ovals in the corresponding affine planes.

The relevance of this notion to semifields is the following elementary observa-
tion:

Proposition 3.2. [Ka5, Proposition 3.8] For a semifield plane 2, some presemi-
field for 2 is commutative if and only if some spread for A% is symplectic.

We will call a presemifield or a semifield plane symplectic if the corresponding
spread is symplectic.

3.3. Albert’s twisted fields.

Albert [Al4, Al5] defined a (generalized) twisted field as a semifield associated to
the presemifield (F,+,*), where F' is a finite field and
rxy =xy — jay” (3.3)

for some nontrivial «, 8 € Aut(F). He obtained the precise conditions for two
twisted fields to be isotopic (cf. [BJJ]).

The twisted field planes with 8 = o2 and j = —1, where ¢ is odd and « has order
3, have a property in common with desarguesian planes: they are simultaneously
commutative semifield planes and symplectic planes. No other known planes share
both of these properties.

3.4. Dickson and Knuth semifields.

Assume that ¢ is odd, let k be a nonsquare in K = GF(q), and let 1 # 0 € Aut(K).
The commutative Dickson semifield (K2, +, %) [Dil] has

(a,b) * (¢,d) = (ac+ kb°d?, ad + bc). (3.4)

Different choices k produce isotopic semifields and hence isomorphic planes.
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In his 1963 Ph. D. research under Marshall Hall, Jr., Knuth introduced the cubi-
cal arrays mentioned earlier, together with two very different families of semifields
[Knl]. The first of these generalized Dickson’s construction as follows. Let «, 3, T
be automorphisms of K, at least one of which is nontrivial; let 1 # o € Aut(K); let
k€ K — (Kot K7™t1KP~1) if possible; and let the polynomial t°+! + gt — f have
no root in K, where f,g € K. Then each of the following rules for (a,b) * (¢, d)
produces a semifield (K2, +, *):

1. (ac+ kb*d’,a™d + be)

2. (ac+ fb7d° " bc+ a®d + gb"d )
3. (ac+ fb7d,be+ ad + gb?d)

4. (ac+ fb° d° " b+ a®d + gbd® )
5. (ac+ fb° 'd,bc+ a®d + gbd).

The planes determined by the semifields 1, with & = 7 of order 2 and g = 1,
were studied in [HuK]. They have the following in common with the specific
twisted field planes mentioned at the end of Section 3.3: they have exactly one
“image” under the action of Knuth’s S3. However, these planes do not arise from
commutative semifields, and hence also not from symplectic semifields. (There is
a subtle difference between a plane being self-dual and being coordinatized by a
commutative semifield.)

3.5. Knuth’s “binary” semifields [Kn2]|.

Knuth’s second [Kn2], very different type of presemifield (F, +, *) uses F = GF(q")
with ¢ even and n > 1 odd, together with the trace map T: F — GF(q):

zxy=azy+ (T(x)y+ T(y)z)*. (3.5)

We will generalize these in Section 5.3. For now we comment on how Knuth dis-
covered these semifields. In the early 1960’s, Walker [Wa| and Knuth (cf. [HaK])
independently enumerated all isotopism types of semifields of order 32 using com-
puter calculations. (Note that the computers used were extraordinarily weak by
present-day standards—and not simple to program.) Knuth examined the results
and managed to see that one of the semifields could be constructed in the manner
just indicated.
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4. More commutative or symplectic semifields

4.1. Cohen—Ganley commutative semifields [CG].

These are defined as (K2, +, x) where
(a,) * (¢, d) = (ac + jbd + j°(bd)?, ad + be + j(bd)*),

with ¢ > 9 a power of 3 and j € K = GF(¢) a nonsquare. Different choices j
produce isotopic semifields.

4.2. Thas—Payne semifields [TP].

These symplectic semifields (K2, +, %) are obtained from the preceding ones using
Proposition 3.2, where

(a,b) * (¢,d) = (ac+ jbd + /36" + j/3pd" /3 ad + be)
with ¢ > 9 a power of 3 and j € K = GF(q) a nonsquare.

4.3. Ganley semifields [Gal.

These are defined as (K2, +, %) using
(a,b) * (¢,d) = (ac — b°d — bd®, ad + be + b*d?), (4.1)

with K = GF(q), ¢ = 3", and r > 3 odd. This time Proposition 3.2 produces a
symplectic semifield with multiplication

(a,b) * (¢,d) = (ac+ bc'/® —bY/°d" — v2d, ad + be). (4.2)

4.4. Coulter-Matthews semifields [CoM].
These are defined using a commutative presemifield (F, 4+, *) with
rxy =2y +xy’ + 23y — zy, (4.3)

where F' = GF(3¢) and e > 3 is odd; these are not isotopic to any previously known
commutative semifields [CoH]. Proposition 3.2 produces the related symplectic
presemifield with multiplication

vxy =2y + (xy)"? + wy'’® —y.

A few weeks after the Pingree Conference, Coulter informed me that Ding and
Yuan [DiY] have observed a variation (F,+, ) on (4.3), using

x*y=x9y+xy9—x3y3—xy

and F' as before. Coulter and Henderson have determined that these commutative
presemifields are not isotopic to any other known ones [CoH].
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4.5. Johnson-Jha presemifields [JJ].

These are a beautifully simple generalization of previously known examples of
semifields (cf. [Sa]). Consider a (right) d-dimensional vector space V over a finite
field F, and let T be an irreducible semilinear transformation of V' (that is, T
leaves invariant no proper subspace of V; in particular, T is invertible).

Theorem 4.1. S = gil FT' consists of |S| = |V| elements, with all nonzero
ones invertible, and hence S determines a presemifield (V,+, %) via u*v =u(vf)
for any additive isomorphism f:V — S.

Proof. If at least one of the scalars a; is not 0, we need to show that 23—1 a;T?
is invertible. If some such transformation is not invertible then there is some
nonzero vector v such that ngl va;T* = 0. Then there is some k such that

1<k<dand0# vapTF = — Zg_l va; T*. Since all powers of T are semilinear,
(WTF'F)T = vay TFF C Y0 0a, TIF C (0T | 0 <i < k — 1), so the latter is a
proper T-invariant subspace, which is a contradiction. a

Different choices for f produce isotopic presemifields. For more about isotopy
of these presemifields, see Section 6.2.

Note that the transpose of S has the same form, so that the map A — A4 in
Section 3.2 preserves this class of semifield planes.

If T is a linear transformation then this construction produces a field.

4.6. The HMO construction [HMO].

Hiramine, Matsumoto and Oyama magically produce planes of order ¢* from ones
of order ¢?: Suppose that

(a,b) * (z,y) = (a,b) <g(;, y) h(ﬂi/, y)>

defines a semifield on K? = GF(q)? for some g,h: K? — K. If L = GF(¢?) and
A € L — K with A2 + )\ € K, then the equations

flx+yA) = h(x,y) —g(z,y) + h(z,y) A (z,y € K)

(s,8) ® (u,0) = (5,1) (fzbu) Z)

define a semifield on L2. (This process is not just about semifields: it also trans-
forms quasifields of order ¢* to quasifields of order ¢*. Also see [Jo].)

Note that isotopic semifields of order ¢? will, in general, produce non-isotopic
ones of order ¢*.
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5. Recent semifields

5.1. Penttila—Williams sporadic symplectic semifield of
order 3° [PW].

This arose in the discovery of a sporadic ovoid of Q(4,3%). The corresponding
spread (under the Klein correspondence) is symplectic, determined by the semifield
(K2, +, %) with

(a,b) * (c,d) = (ad + bd® + bc*", ac + bd),

where K = GF(3°). Proposition 3.2 then produces a commutative semifield
(K?,+,%) (cf. [BLP, p. 60]) given by

(a,b) * (¢,d) = (ac+ (bd)°, ad + be + (bd)*7).

5.2. Kantor—Williams symplectic presemifields [KW2].

Let F = GF(¢™) for ¢ even and m > 1 odd. Then (F,+,x*) is a symplectic
presemifield, where

zry=ay’+ ) (T (Cx)y + GT; (wy)),
=1

associated with the following data:

fields F=FyDF, D> -DF, 2K =GF(¢q),n>1

trace maps T;: F' — F;

any sequence ((1,...,(,) of elements (; € F*.

All of these presemifields were obtained by starting with a desarguesian plane
and applying an algorithm that produces precisely these examples. The algorithm
involves the use of high-dimensional orthogonal spreads, with coding theory as one
of the motivations. The presemifields with F} = K were first observed in [Kal].

5.3. Associated commutative presemifields [Ka5|.

Applying Proposition 3.2 to the preceding examples produces a lot of commutative
presemifields in characteristic 2 associated with the same data as above:

ey =ay+ (23 TGw) +u Y TiGa)
1 1

generalizing Knuth’s examples in Section 3.5 (where n = 1 and F,, = K).
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5.4. That’s all.

We have now surveyed almost all of the known finite semifields, up to isotopism.
Up to Knuth’s S3, the only further semifield planes in the literature are among six
of order 64 constructed in [HulJ].

It is perhaps worth noting that there are other semifields that have appeared
in the literature. For example, the ones in [Ze, Co, Pr| all describe isotopes of
Dickson semifields (3.4); while the ones in [Ka2, Theorem 7.1] turn out to be (up
to o* in Section 3.2) examples of some of Knuth’s semifields 3. in Section 3.4 (with
o=2).

Excluding fields, there are 2 isotopy classes of semifields of order 16 [KI] and 5
of order 32 [Wa, HaK]. These computer-assisted results used very weak computers
by modern standards; it is surprising that there has not yet been an enumeration
of all semifields of order at most 256 since the resulting data might be useful for
finding new general constructions. All semifields of order p?® are twisted fields (for
p an odd prime), and their number is known [Mel, Me2].

6. How many?

Conjecture: The number of pairwise non-isomorphic semifield planes of order N
is not bounded above by a polynomial in N.

Equivalently: The number of pairwise non-isotopic presemifields of order N is
not bounded above by a polynomial in V.

Better but not quite as “likely”: there is an exponential number of pairwise
non-isotopic presemifields of order N.

6.1. General results.

Several of the older constructions give the appearance of producing many planes.
However, Albert’s twisted fields produce fewer than N planes of order N [Al4,
Al5, BJJ], while Knuth and similar constructions using GF(g)? (Sections 3.4, 4.1,
4.2, 4.3, 4.4, 5.1) yield much fewer than N = ¢? planes of order N. Moreover:

e For N odd the number known is less than N3.

e For N even the conjecture is true: the semifields defined in Section 5.2 do the
job. The isomorphism problem for the corresponding planes is settled in [KW2]
when restricted to the case [F': Fy| > 3. While further cases are also dealt with
in [KW2, Kab], the general case remains open. These isotopism questions are
difficult, involving disgusting calculations together with properties of orthogonal
geometries and affine planes as well as elementary group theory. The isomorphism
problem for the planes arising in Section 5.3 is settled under the same restrictions
[Kab].
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More precisely: if S(N) denotes the number of presently known semifield planes
of order at most N, and S3(/N) denotes the corresponding number for planes of
even order, then A}Enoo S2(N)/S(N) =1.

On the other hand, there are more types of constructions of semifields known in
odd characteristic than in characteristic 2. Constructions are needed that produce
significantly larger numbers of planes than described earlier: the above (time-
dependent!) limit should be 0.

A similar conjecture can be made concerning symplectic translation planes in
odd characteristic (cf. Section 3.2). In fact, almost all known odd characteris-
tic symplectic spreads were already seen earlier in this paper (possibly after an

application of Proposition 3.2). The only exceptions are some very new ones in
[BBP].

6.2. Two upper bounds.

The HMO construction in Section 4.6 appears to provide quite a lot of semifields.
However:

Theorem 6.1. (Kantor, unpublished) The number of pairwise nonisomorphic
planes of order ¢* obtained via the HMO construction from a plane of order ¢* is
less than ¢'°.

Consequently, the number of planes of order q2k obtained by iterated use of the
HMO construction is not bounded above by polynomial in q2’v only if the number
of planes of order ¢ is not bounded above by polynomial in ¢>.

There also appear to be a lot of semifields obtained using the Jha-Johnson
construction (Section 4.5). Recall that S = Zg_l FT* determines a presemifield
if T is an irreducible semilinear transformation on a vector space V. Clearly,
conjugates of T in T'L(V) produce isomorphic presemifields (but not conversely, as
is easily seen using GF(¢?)). Therefore, we need an upper bound on the number
of TL(V)-conjugacy classes of irreducible semilinear transformations on V:

Theorem 6.2. (Kantor-Liebler, unpublished) The number of conjugacy classes is
less than d?q®.

This number probably is less than ¢?. In any event, the number of these
semifields of order N = ¢ is much less than N3.

Examples of irreducible T':
L. Suitable T € Nrpz(v)(Singer cycle). Versions of these are provided in [JJ].
2. Let F = GF(q), 1 # a € Aut(F), and t ¢ F**1. Then T: F? — F?, defined
by

(z,9)T = (ty*, %),

is a semilinear transformation that fixes no 1-space, so F' + FT determines a
presemifield (it produces one of Knuth’s semifields; cf. Section 3.4).
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3. In general (T) transitively permutes the summands in a decomposition
V=Vi&- - &V, where T" is irreducible and linear on each V.

[All]
[A12]

[A13]
[Al4]
[Al5]
[Art]
[BB]
[BBP)
[BJJ]
[BKL]
[BLP]

[CCKS]

[De]
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