ON POINT-TRANSITIVE AFFINE PLANES

BY
WILLIAM M. KANTOR ${ }^{+}$

Abstract

Finite affine planes are constructed admitting nonabelian sharply pointtransitive collineation groups. These planes are of two sorts: dual translation planes, and planes of type II. 1 derived from them.

1. Introduction

In [5], Ostrom used the dual Tits-Lüneburg planes in order to construct affine planes of type II.1. In this note, we will construct translation planes, pointtransitive (affine) dual translation planes, and point-transitive affine planes of type II.1. The derivation process involved in the construction of the last of these planes is a standard, straightforward imitation of Ostrom's approach. On the other hand, the translation planes we use behave differently from those used by Ostrom. In §2, a construction is given for translation planes of order q^{2} having kernel $\operatorname{GF}(q)$ and admitting an abelian group of order q^{2} which has an orbit of length q^{2} at infinity but contains only q elations. This abelian group is elementary abelian if and only if q is odd. Our construction was motivated by examples in [3, (4.5)]; these and other examples are presented in §§3, 5.

The corresponding dual translation planes and derived dual translation planes of type II. 1 appear in §4. One plane of each sort is obtained whenever $q>2$ and $q \equiv 2(\bmod 3)$, and one more whenever $q=5^{e}>5$. The full collineation group of each of these planes is determined. This group is transitive on the q^{4} points but has no line-orbit of length q^{4}. In particular, the corresponding projective planes are not self-dual, and none is isomorphic to the dual of any other. Consequently, still further planes of type II. 1 arise by duality. (The same proofs apply to the derived dual Tits-Lüneburg planes, the determination of whose collineation groups was

[^0]left open in Ostrom [5]. Since these groups again act differently on the planes and their duals, duality produces still further planes of type II.1.)

The planes studied in $\S 4$ are point-transitive affine planes which are not translation planes. Finite planes with these properties seem to be rare (cf. Dembowski [1, pp. 183-184, 214-215]). Moreover, each of these planes admits a sharply point-transitive group.

I am grateful to Jill Yaqub for directing my attention to Johnson and Piper [2]. Those authors obtained planes of type II. 1 by deriving the duals of translation planes of order q^{2} constructed by Walker [6] whenever $q \equiv 5(\bmod 6)$. It is easy to check that the planes constructed in those papers are precisely the planes $\mathscr{A}(l)$ and $\mathscr{A}(l)^{\prime}$ considered here for which q is odd and $l=0$.

All of our proofs are straightforward except, perhaps, at the end of §4. Most of the prerequisites can be found on pp. 132, 226 and 249-251 of Dembowski [1].

2. The planes $\mathscr{A}(l)$

Set $K=\mathrm{GF}(q)$, where $q>3$ and $q=p^{e}$ is a power of a prime $p \neq 3$.
Definition. A function $l: K \rightarrow K$ is likeable if it satisfies the conditions:
(i) $l(t+u)=l(t)+l(u)$ for all $t, u \in K$, and
(ii) if $u^{2}=t^{2} u-\frac{1}{3} t^{4}+t l(t)$ then $t=u=0$.

Throughout this section, l will denote a likeable function. Property (i) and a calculation yield the following result.

Lemma 2.1. Let $f(t, u)=t u-\frac{1}{3} t^{3}+l(t)$. Then the q^{2} matrices

$$
M(t, u)=\left(\begin{array}{llll}
1 & t & u & f(t, u) \\
0 & 1 & t & u \\
0 & 0 & 1 & t \\
0 & 0 & 0 & 1
\end{array}\right)
$$

with $t, u \in K$ form an abelian group $P(l)$. If q is odd then $P(l)$ is elementary abelian. If $p=2$ then $P(l)$ is the direct product of e cyclic groups of order 4.

Definition. Let $\Sigma(l)$ consist of the following 2-dimensional subspaces of K^{4} :

$$
\begin{aligned}
& 0 \times 0 \times K \times K \\
& (K \times K \times 0 \times 0) M, \quad M \in P(l) .
\end{aligned}
$$

Proposition 2.2. $\Sigma(l)$ is a spread.

Proof. It suffices to check that $(K \times K \times 0 \times 0) \cap(K \times K \times 0 \times 0) M(t, u)=0$ when t or u is nonzero. But this requires that the equations

$$
\begin{aligned}
& x u+y t=0 \\
& x f(t, u)+y u=0
\end{aligned}
$$

have only the triviai solution $x=y=0$, and hence that $u^{2}-t f(t, u) \neq 0$. This is guaranteed by the definition of likeability.

Proposition 2.3. (i) $P(l)$ has an orbit of length q^{2} on the line L_{x} at infinity.
(ii) The elations in $P(l)$ are the matrices of the form $M(0, u)$.

Proof. The first assertion is obvious, and the second is easily checked. (In fact, if $t \neq 0$ then $M(t, u)$ fixes only q vectors.)

Theorem 2.4. $\Sigma(l)$ determines a nondesarguesian translation plane $\mathscr{A}(l)$.
Proof. This is clear by (2.3).
Corollary 2.5. The group $N(l)=G L(4, q)_{\mathrm{\Sigma}(l)}$ fixes the point ∞ common to L_{∞} and $0 \times 0 \times K \times K$.

Lemma 2.6. $\quad P(l)$ is a Sylow p-subgroup of $N(l)$.
Proof. Some Sylow p-subgroup of $N(l)$ has the form $P(l) B$, where B fixes both $0 \times 0 \times K \times K$ and $K \times K \times 0 \times 0$. Then B consists of matrices of the form

$$
\left(\begin{array}{llll}
1 & a & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & b \\
0 & 0 & 0 & 1
\end{array}\right)
$$

and a simple calculation completes the proof.
Theorem 2.7. The planes $\mathscr{A}(l)$ and $\mathscr{A}\left(l^{\prime}\right)$ are isomorphic if and only if $l^{\prime}(t)=l\left(t^{\sigma^{-1}} \gamma^{-\sigma^{-1}}\right)^{\sigma} \gamma^{3}$ or $p=2$ and $l^{\prime}(t)=l\left(t^{\sigma-1} \gamma^{-\sigma^{-1}}\right)^{\sigma} \gamma^{3}+t \beta^{2}+t^{2} \beta$ for some $\sigma \in$ Aut K, some $\gamma \in K^{*}$, some $\beta \in K$, and all $t \in K$.

Proof. Let $S \in \Gamma L(4, q)$ send $\Sigma(l)$ to $\Sigma\left(l^{\prime}\right)$. We may assume that S fixes $0 \times 0 \times K \times K$ and $K \times K \times 0 \times 0$ (by (2.3i)) and conjugates $P(l)$ to $P\left(l^{\prime}\right)$ (by (2.6)). Then S has the form $v S=v^{\circ} S^{\prime}$ for some $\sigma \in$ Aut K and some matrix S^{\prime} of the form

$$
S^{\prime}=\left(\begin{array}{llll}
\alpha & \beta & 0 & 0 \\
0 & \gamma & 0 & 0 \\
0 & 0 & \alpha^{\prime} & \beta^{\prime} \\
0 & 0 & 0 & \gamma^{\prime}
\end{array}\right)
$$

with $\alpha, \beta, \gamma, \alpha^{\prime}, \beta^{\prime}, \gamma^{\prime} \in K$.
Define l^{σ} by $l^{\sigma}(t)=l\left(t^{\sigma-1}\right)^{\sigma}$. Since $P(l)^{\sigma}=P\left(l^{\sigma}\right)$, we can replace l by l^{σ} in order to have $S=S^{\prime}$.

Since S sends elations of $\mathscr{A}(l)$ to elations of $\mathscr{A}\left(l^{\prime}\right)$, (2.3ii) and a simple calculation yield that

$$
c\left(\begin{array}{cc}
\alpha & \beta \\
0 & \gamma
\end{array}\right)=\left(\begin{array}{cc}
\alpha^{\prime} & \beta^{\prime} \\
0 & \gamma^{\prime}
\end{array}\right) \quad \text { for some } c \in K^{*}
$$

By replacing T by $\alpha^{-1} T$ we may assume that $\alpha=1$. Computing $S^{-1} M(t, u) S$, we find that $t \gamma=c t \gamma^{-1}, \quad c\left(u-t \beta \gamma^{-1}\right)=c\left(u+t \beta \gamma^{-1}\right)$ and $f^{\prime}\left(t \gamma, c u+c t \beta \gamma^{-1}\right)=$ $c\left\{f(t, u)-t \beta^{2} \gamma^{-1}\right\}$ for all t, u. The theorem now follows easily.

COROLLARY 2.8. $\quad N_{N(l)}(P(l)) / P(l) K^{*}$ is isomorphic to the group of all matrices

$$
\left(\begin{array}{llll}
1 & \beta & 0 & 0 \\
0 & \gamma & 0 & 0 \\
0 & 0 & \gamma^{2} & \gamma^{2} \beta \\
0 & 0 & 0 & \gamma^{3}
\end{array}\right)
$$

such that $l(t)=l\left(t \gamma^{-1}\right) \gamma^{3}$ and $\beta=0$, or $l(t)=l\left(t \gamma^{-1}\right) \gamma^{3}+t \beta^{2}+t^{2} \beta$ and $p=2$, for all $t \in K$.

Lemma 2.9. (i) $P(l)$ fixes each line $0 \times 0 \times K \times K+(0,0,0, d)$ of the desarguesian Baer subplane $\mathscr{A}_{0}=0 \times K \times 0 \times K$.
(ii) \mathscr{A}_{0} has q images under $P(l)$.
(iii) The group $P(l) K^{*}$ generated by $P(l)$ and the dilatations with center 0 has 3 orbits of lines parallel to $0 \times 0 \times K \times K$, of lengths $1, q-1$ and $q^{2}-q$.

Proof. The required calculations are straightforward.

3. Example of likeable functions

In this section we will present two examples of likeable functions.
Lemma 3.1. An additive function $l: K \rightarrow K$ is likeable if and only if the equation

$$
x^{2}-x+\frac{1}{3}-l(a) / a^{3}=0
$$

has no solution for $x \in K$ and $a \in K^{*}$. In particular, if q is odd then l is likeable if and only if $l(a) a^{-3}-1 / 12$ is a nonsquare for all $a \in K^{*}$.

Proof. Set $a=t$ and $x=u / a^{2}$ in the definition of likeability.

Example I. The constant function $l=0$ is likeable if and only if $q \equiv 2$ $(\bmod 3)$. In $\S 5$ we will see that $\mathscr{A}(l)$ arose in [3]. Note that (by (2.8) or a simple calculation) $\operatorname{diag}\left(1, r, r^{2}, r^{3}\right) \in$ Aut $\mathscr{A}(l)$ for each $r \in K^{*}$.

Example II. Let $q=5^{e}>5$ and fix a nonsquare $k \in K$. Then $l(t)=$ $k t^{5}+k^{-1} t$ is likeable (since $l(t) t^{-3}-1 / 12=k^{-1} t^{-2}\left(k t^{2}+1\right)^{2}$ and $\left.t^{2} \neq-k^{-1}\right)$. Different nonsquares produce isomorphic planes. By (2.7), these planes are different from those of Example I.

Remarks. (1) If q is even and $q \equiv 2(\bmod 3)$, let $T: K \rightarrow G F(2)$ be the trace map. Then Ker $T=\left\{y \in K \mid y=x^{2}+x\right.$ for some $\left.x \in K\right\}$ and $T(1)=1$. Thus, $l(t)$ is likeable if and only if $T\left(l(t) / t^{3}\right)=0$ for all $t \neq 0$. Consequently, the set of likeable functions is closed under addition.
(2) If $q \equiv 1(\bmod 3)$ then $x^{2}+x+\frac{1}{3}=0$ has a root, and hence Ker $l=0$.

4. Dual and derived dual planes

Let $\mathscr{A}(l)$ be as in $\S 2$. Let V be the translation group of $\mathscr{A}(l)$ (so $V \cong K^{4}$), and let $V(\infty)$ consist of those translations whose center ∞ is the parallel class of $0 \times 0 \times K \times K$. Note that $|V P(l)|=q^{6}$ and $|V(\infty) P(l)|=q^{4}$. Since $P(l)$ is transitive on $L_{\infty}-\{\infty\}$, while $V(\infty)$ is transitive on the affine lines through each point of $L_{\infty}-\{\infty\}, V(\infty) P(l)$ is transitive on the lines not containing ∞.

Let $\mathscr{A}(l)^{*}$ denote the projective plane dual to the projective closure of $\mathscr{A}(l)$. We will use $L_{\infty}^{*}=\infty$ as its line at infinity in order to regard $\mathscr{A}(l)^{*}$ as an affine plane.

Proposition 4.1. $P(l) V(\infty)$ is a nonabelian group sharply transitive on the affine points of $\mathscr{A}(l)^{*}$; it contains exactly q^{3} translations. Moreover, $\mathscr{A}(l)^{*}$ is not a translation plane.

Proof. This is straightforward. (Note that the center of $P(l) V(\infty)$ is $\{M(0, u) \mid u \in K\}$.)

Let \mathscr{A}_{0} be as in (2.9), and let \mathscr{L} consist of L_{∞} and the lines in (2.9i). Then $\mathscr{A}(l)^{*}$ is derivable (Ostrom [4, theorem 9]), and \mathscr{L}^{*} is a derivation set. The derived plane $\mathscr{A}(l)^{\prime}$ has the same points as the affine plane $\mathscr{A}(l)^{*}$; its lines are those of $\mathscr{A}(l)^{*}$ not meeting \mathscr{L}^{*}, together with all Baer subplanes of $\mathscr{A}(l)^{*}$ containing \mathscr{L}^{*}.

Theorem 4.2. The plane $\mathscr{A}(l)^{\prime}$ has type II.1. It admits a nonabelian sharply point-transitive group containing exactly q^{3} translations.

Proof. Clearly, $P(l) V(\infty)$ acts sharply transitively, and its q^{3} translations
appearing in (4.1) constitute all translations of $\mathscr{A}(l)^{\prime}$. The q^{2} translations fixing \mathscr{A}_{0}^{*} produce one (c, L)-transitivity (where $L=L_{\infty}^{\prime}$ is the new line at infinity, while c is the parallel class ∞^{\prime} of the new line \mathscr{A}_{0}^{*}). As in Ostrom [5], we must assume that $\mathscr{A}(l)^{\prime}$ is a dual translation plane and derive a contradiction.

There are q^{2} elations with center ∞^{\prime} of the (alleged) dual translation plane $\mathscr{A}(l)^{\prime}$ fixing a Baer subplane of $\mathscr{A}(l)^{\prime}$ which used to be a point of $\mathscr{A}(l)$ on L_{∞}. Only q of these elations are translations, but all are inherited by the derived plane $\mathscr{A}(l)^{*}$ of $\mathscr{A}(l)^{\prime}$. Thus, there is a group of q collineations of $\mathscr{A}(l)^{*}$ fixing a Baer subplane pointwise. By (2.6), no such group exists.

Theorem 4.3. (i) Aut $\mathscr{A}(l)^{\prime}$ is inherited from Aut $\mathscr{A}(l)^{*}$.
(ii) If $\mathscr{A}\left(l_{1}\right)^{\prime} \cong \mathscr{A}\left(l_{2}\right)^{\prime}$ then $\mathscr{A}\left(l_{1}\right) \cong \mathscr{A}\left(l_{2}\right)$.
(iii) $\mathscr{A}(l)^{\prime}$ is not isomorphic to a derived dual Tits-Lüneburg plane or a derived Hughes plane.

Proof. Clearly, (i) implies (iii). Also, if (i) holds then Aut $\mathscr{A}(l)^{\prime}$ has a unique orbit on L_{x}^{\prime} of length q (by (2.9)), which together with ∞^{\prime} is a derivation set producing $\mathscr{A}(l)^{*}$. Thus, (i) also implies (ii), and we only need to verify (i).

By (2.6) a Sylow p-subgroup of Aut $\mathscr{A}(l)^{*}$ has order $q^{6} e^{\prime}$ with $e^{\prime} \mid e$; and this has a subgroup Q_{1} of order $q^{5} e^{\prime}$ acting on $\mathscr{A}(l)^{\prime}$. Clearly, $Q_{1} \geqq P(l) V(\infty) B$, where B is a group of q elations of $\mathscr{A}(l)^{*}$ which fix both 0 and \mathscr{A}_{0}^{*}. The axis L of B becomes a Baer subplane (also called L) of $\mathscr{A}(l)^{\prime}$, and B is a group of collineations of $\mathscr{A}(l)^{\prime}$ fixing this subplane pointwise.

Any collineation of $\mathscr{A}(l)^{\prime}$ fixing L must fix its set of points at infinity. The latter points form the derivation set D for $\mathscr{A}(l)^{\prime}$ such that the corresponding derived plane is $\mathscr{A}(l)^{*}$. Thus, (Aut $\left.\mathscr{A}(l)^{\prime}\right)_{L} \leqq$ Aut $\mathscr{A}(l)^{*}$. In particular, the centralizer of B lies in Aut $\mathscr{A}(l)^{*}$.

If Aut $\mathscr{A}(l)^{\prime}$ fixes D then (4.3) holds, so assume that D is moved. By (2.9), we already know orbits of lengths $1, q, q^{2}-q$ on L_{∞}^{\prime}. Thus, Aut $\mathscr{A}(l)^{\prime}$ is transitive on $L_{\infty}^{\prime}-\{\infty\}$. Its Sylow p-subgroups then have order $\geqq q^{6} e^{\prime}$. If $B<$ $Q \in \operatorname{Syl}_{p}\left(\text { Aut } \mathscr{A}(l)^{\prime}\right)_{0}$ then $|Q| \geqq q^{2} e^{\prime}$.

Let $1 \neq z \in Z(Q)$. If $z \in B$ then $Q \leqq$ Aut $\mathscr{A}(t)^{*}$. Thus, $z \notin B$, and $\langle z, B\rangle \leqq$ Aut $\mathscr{A}(l)^{*}$. Then z fixes the line L of $\mathscr{A}(l)^{*}$ and centralizes the q elations in B. Since $\langle z, B\rangle$ fixes 0 and \mathscr{A}_{0}^{*} it cannot be faithful on \mathscr{A}_{0}^{*}. By (2.6), $\langle z, B\rangle=B$, which is ridiculous.

Remark. The same argument settles a question left open in Ostrom [5]: the automorphism group of a derived Tits-Lüneburg plane is precisely the inherited group.

5. The planes with $l=0$

In this section we will show that the planes $\mathscr{A}(l)$ with l identically 0 are the same as those appearing in [3, (4.5)].

Let $q \equiv 2(\bmod 3)$. Set $F=\operatorname{GF}\left(q^{2}\right), K=\operatorname{GF}(q), \bar{\alpha}=\alpha^{q}$ and $T(\alpha)=\alpha+\bar{\alpha}$ for $\alpha \in F$. Form the K-space

$$
V=\{(\alpha, \beta+K, \gamma, b, c) \mid \alpha, \beta, \gamma \in F, T(\gamma)=0 ; b, c \in K\}
$$

Equip V with the quadratic form

$$
Q(\alpha, \beta+K, \gamma, b, c)=\alpha^{2}+\alpha \bar{\alpha}+\bar{\alpha}^{2}+T(\beta \gamma)+b c .
$$

Then V is an $\Omega^{+}(6, q)$ space. A spread in K^{4} corresponds (under the Klein correspondence) to a set Ω of $q^{2}+1$ singular points of V, no two of which are perpendicular. The set Ω in $[3,(4.5)]$ consists of the points

$$
\begin{gathered}
\langle 0,0,0,0,1\rangle \\
\langle\rho, \rho \bar{\alpha}+K, \sigma, 1, \rho \bar{\rho}\rangle
\end{gathered}
$$

where $T(\sigma)=0=T(\rho)+\sigma \bar{\sigma}$.
Proposition 5.1. The translation plane determined by Ω is $\mathscr{A}(l)$ where $l=0$.
Proof. Let $\omega \in F$ and $\omega^{3}=1 \neq \omega$. Set $\theta=1+2 \omega$, so $T(\theta)=0$. Write

$$
(\alpha, \beta+K, \gamma, b, c)=\left(x \omega+\frac{1}{3} u \bar{\omega},-y \omega+K, \frac{1}{3} a \theta, \frac{1}{3} e, c\right)
$$

with $x, u, y, a, d, e \in K$. Note that

$$
Q\left(x \omega+\frac{1}{3} u \bar{\omega},-y \omega+K, \frac{1}{3} a \theta, \frac{1}{3} e, c\right)=\frac{1}{3} x u+\frac{1}{3} y a+\frac{1}{3} c e .
$$

Let $\sigma, \rho \in F$ with $T(\sigma)=0=T(\rho)+\sigma \bar{\sigma}$. Write $\sigma=\frac{1}{3} a \theta$ and $\rho=x \omega+\frac{1}{3} u \bar{\omega}$, so $0=-x-\frac{1}{3} u+\frac{1}{3} a^{2}$ and $\rho \bar{\sigma} \equiv \frac{1}{3} a\left(x+\frac{1}{3} u\right)(\bmod K)$. Then Ω consists of the points

$$
\begin{gathered}
\langle 0,0,0,0,1\rangle \\
\left\langle\left(\frac{1}{3} a^{2}-\frac{1}{3} u\right) \omega+\frac{1}{3} u \bar{\omega}, \frac{1}{9} a^{3} \omega+K, \frac{1}{3} a \theta, 1,\left(\frac{1}{3} a^{2}-u\right)^{2}-\left(\frac{1}{3} a^{2}-u\right) u+u^{2}\right\rangle
\end{gathered}
$$

for $a, u \in K$.
Now identify $\left(x \omega+\frac{1}{3} u \bar{\omega},-y \omega+K, \frac{1}{3} a \theta, \frac{1}{3} e, c\right)$ with the vector (e, a, u, x, y, c) in K^{6}, and replace Q by $3 Q$. Then $Q(e, a, u, x, y, c)=e c+a y+u x$, while Ω consists of the points

$$
\begin{gathered}
\langle 0,0,0,0,0,1\rangle \\
\left\langle 1, a, u, a^{2}-u,-\frac{1}{3} a^{3}, u^{2}-a^{2} u \cdot+\frac{1}{3} a^{4}\right\rangle .
\end{gathered}
$$

Under the Klein correspondence, $\langle 1, a, u, x, y,-x u-y a\rangle$ corresponds to the 2 -space $\langle(1,0,-x, y),(0,1, a, u)\rangle$. This completes the proof of (5.1).

Appendix: Coordinates

Coordinates for $\mathscr{A}(l)^{\prime}$ were not needed in our arguments. However, in this section we will briefly describe a coordinatization of these planes.

Define the following products on K^{2} :

$$
\begin{aligned}
&(\alpha, \beta) *(t, u)=\left(\alpha\left(u-t^{2}\right)+\beta t, \alpha\left(-\frac{1}{3} t^{3}+l(t)\right)+\beta u\right) \\
&(\alpha, \beta) \circ(t, u)=\left\{\begin{array}{r}
(\beta t, \beta u) \quad \text { if } \alpha=0 \\
\left(\alpha u+t^{2}+\alpha^{-1} \beta t, \alpha^{-1}\left(-\frac{1}{3} t^{3}+l(t)\right)+\alpha^{-1} \beta\left(\beta u+t^{2}+\alpha^{-1} \beta t\right)\right) \\
\text { if } \alpha \neq 0 .
\end{array}\right.
\end{aligned}
$$

Write $(a, b, c, d)=((a, b),(c, d))=[(a, c),(b, d)]$. Then the lines of $\mathscr{A}(l)$ are the set of points $(X, Y) \in\left(K^{2}\right)^{2}$ of the form $X=C$ or $Y=X * M+B$, while those of $\mathscr{A}(l)^{*}$ have the form $X=C$ or $Y=M * X+B$. The lines of $\mathscr{A}(l)^{\prime}$ are the sets of points $[X, Y]$ of the form $X=C$ or $Y=M \circ X+C$.

The product $M \circ X$ has been normalized so that $(m, n) \circ(0, y)=(m y, n y)$ for all m, n, y. Note that $M \circ(X+(0, y))=M \circ X+M \circ(0, y)$. It follows that the group T of q^{3} translations of $\mathscr{A}(l)^{\prime}$ consists of all mappings $[X, Y] \rightarrow[X, Y]+$ $[(0, a), C]$. Such a translation has direction M if and only if $C=M \circ(0, a)$, in which case we will call it $\tau[M ; a]$. Let $\tau(C):[X, Y] \rightarrow[X, Y]+[0, C]$, so $\tau\left(K^{2}\right)$ is the group of $\left(x^{\prime}, L_{x}^{\prime}\right)$-elations.

Let $M \neq M^{\prime}$. If $a+a^{\prime} \neq 0$ then

$$
\tau[M ; a] \tau\left[M^{\prime} ; a^{\prime}\right]=\tau\left[M+\left(a+a^{\prime}\right)^{-1} a^{\prime}\left(M^{\prime}-M\right) ; a+a^{\prime}\right]
$$

while $\tau[M ; a] \tau\left[M^{\prime} ;-a\right]=\tau\left(a\left(M-M^{\prime}\right)\right)$. Thus, $\left\langle\tau[M ; K], \tau\left[M^{\prime} ; K\right]\right\rangle$ contains the q groups $\tau\left[M+\lambda\left(M^{\prime}-M\right) ; K\right], \lambda \in K$, along with $\tau\left(K\left(M-M^{\prime}\right)\right)$. Consequently, each orbit of this group consists of the q^{2} points of a Baer subplane of $\mathscr{A}(l)^{\prime}$.

References

1. P. Dembowski, Finite Geometries, Springer, Berlin-Heidelberg-New York, 1968.
2. N. L. Johnṣon and F. C. Piper, On planes of Lenz-Barlotti class II-1, Bull. Lond. Math. Soc. 6 (1974), 152-154.
3. W. M. Kantor, Ovoids and translation planes, Canad. J. Math., to appear.
4. T. G. Ostrom, Semi-translation planes, Trans. Am. Math. Soc. 111 (1964), 1-18.
5. T. G. Ostrom, The dual Lüneburg planes, Math. Z. 92 (1966), 201-209.
6. M. Walker, A class of translation planes, Geom. Dedic. 5 (1976), 135-146.

[^0]: ${ }^{+}$This research was supported in part by National Science Foundation Grant MCS-7903130. Received September 25, 1981

