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ON POINT-TRANSITIVE AFFINE PLANES 

BY 

WILLIAM M. KANTOW 

ABSTRACT 

Finite attine planes are constructed admitting nonabelian sharply point- 
transitive collineation groups. These planes are of two sorts: dual translation 
planes, and planes of type II.1 derived from them. 

1. Introduction 

In [5], Ostrom used the dual Tits-Liineburg planes in order to construct affine 

planes of type II.1. In this note, we will construct translation planes, point- 

transitive (affine) dual translation planes, and point-transitive affine planes of 

type II.1. The derivation process involved in the construction of the last of these 

planes is a standard, straightforward imitation of Ostrom's approach. On the 

other hand, the translation planes we use behave differently from those used by 

Ostrom. In w a construction is given for translation planes of order q2 having 

kernel GF(q) and admitting an abelian group of order q 2 which has an orbit of 

length q2 at infinity but contains only q elations. This abelian group is 

elementary abelian if and only if q is odd. Our construction was motivated by 

examples in [3, (4.5)]; these and other examples are presented in w167 5. 

The corresponding dual translation planes and derived dual translation planes 

of type II.1 appear in w One plane of each sort is obtained whenever q > 2 and 

q -- 2 (mod 3), and one more whenever q = 5" > 5. The full collineation group of 

each of these planes is determined. This group is transitive on the q4 points but 

has no line-orbit of length q' .  In particular, the corresponding projective planes are 

not self-dual, and none is isomorphic to the dual of any other. Consequently, still 

further planes of type II.1 arise by duality. (The same proofs apply to the derived 

dual Tits-Liineburg planes, the determination of whose collineation groups was 
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left open in Ostrom [5]. Since these groups again act differently on the planes 

and their duals, duality produces still further planes of type II.1.) 

The planes studied in w are point-transitive aftine planes which are not 

translation planes. Finite planes with these properties seem to be rare (cf. 

Dembowski  [1, pp. 183-184, 214-215]). Moreover, each of these planes admits a 

sharply point-transitive group. 

I am grateful to Jill Yaqub for directing my attention to Johnson and Piper [2]. 

Those authors obtained planes of type II.1 by deriving the duals of translation 

planes of order q2 constructed by Walker [6] whenever q -~ 5 (mod 6). It is easy 

to check that the planes constructed in those papers are precisely the planes ~t(l) 

and M(l) '  considered here for which q is odd and l = 0. 

All of our proofs are straightforward except, perhaps, at the end of w Most of 

the prerequisites can be found on pp. 132, 226 and 249-251 of Dembowski  [1]. 

2. The planes ,d(l)  

Set K = GF(q), where q > 3  and q = p e  is a power of a prime p ~  3. 

DEFINmON. A function l : K  ~ K is likeable if it satisfies the conditions: 

(i) l ( t + u ) = l ( t ) + l ( u )  for all t ,u E K ,  and 

(ii) if u ~= t : u - ~ t ' + t l ( t )  then t = u =0 .  

Throughout this section, l will denote a likeable function. Property (i) and a 

calculation yield the following result. 

LEMMA 2.1. Let f(t,  u)  = tu -~ t  3 + l(t). Then the q2 matrices 

M(t,  u)  = 1 t u 

0 1 t 

0 0 1 

with t, u E K form an abelian group P(l) .  I f  q is odd then P( l )  is elementary 

abeli'an. I f  p = 2 then P( l )  is the direct product of e cyclic groups of order 4. 

DE,NInON. Let ~(l)  consist of the following 2-dimensional subspaces of K' :  

0 x 0 •  

(K x K x 0 x 0)M, M E e ( l ) .  

PROVOSmON 2.2. ~(I) is a spread. 
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PROOF. It SUffices to check that (K • K • 0 • 0) (q (K • K • 0 • O)M(t, u)  = 0 

when t or u is nonzero. But this requires that the equations 

xu + y t  = 0  

xf(t, u)  + yu = 0 

have only the trivial solution x = y = 0, and hence that u" - tf(t, u)  # O. This is 

guaranteed by the definition of likeability. 

PROPOSITION 2.3. (i) P(l)  has an orbit of length q2 on the line L~ at infinity. 

(ii) The elations in P( l )  are the matrices of the form M(O, u). 

PROOF. The first assertion is obvious, and the second is easily checked. (In 

fact, if t #  0 then M(t, u)  fixes only q vectors.) 

THEOREM 2.4. E(I) determines a nondesarguesian translation plane M(l) .  

PROOF. This is clear by (2.3). 

CO~OLLARY 2.5. The group N(1) = GL(4, q)x,~ fixes the point oo common to 

L~ and 0 • 2 1 5  

LEMMA 2.6. P(l)  is a Sylow p-subgroup of N( l ) .  

PROOF. Some Sylow p-subgroup of N( l )  has the form P(I)B,  where B fixes 

both 0 x 0 x K • K and K • K • 0 x 0. Then B consists of matrices of the form 

1 0 

0 1 

0 0 

and a simple calculation completes the proof. 

THEOREM 2.7. The planes M(1) and M(l ' )  are isomorphic if and only if 

l '(t) = l(t ~ ly-~-,)~y3 or p = 2 and l '(t) = l(t ~ ,y-~-,)~y3 + tfl2 + t2fl for some 

cr ~ Aut K, some y E K*,  some [3 E K, and all t E K. 

PROOF. Let  S EFL(4 ,  q) send E(l) to E(l'). We may assume that S fixes 

0 x 0 x K x K and K • K • 0 x 0 (by (2.3i)) and conjugates P(1) to P(l ' )  (by 

(2.6)). Then S has the form vS = v~S' for some o- E Aut K and some matrix S' 

of the form 

S , =  f !1 3' 0 
0 or' 
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with a, /3, y, a', /3', y 'C K. 
Define l ~ by l~(t) = l(t ~ ')~. Since P(l)  ~ = P(l~), we can replace l by l" in 

order to have S = S'. 

Since S sends elations of M(l)  to elations of sg(l'), (2.3ii) and a simple 

calculation yield that 

c ( o  Y y , )  for some c C K*. 

By replacing T by a-~T we may assume that a = 1. Computing S-~M(t, u)S, we 

find that t3, =ct3 ,-~, c ( u - t 3 ) ' - ~ ) = c ( u  +t/37 -t) and f'(tT, cu +ct/37-~) = 

c{f(t, u ) - t f l 2 7  '} for all t, u. The theorem now follows easily. 

COROLLARY 2.8. NN,)(P(I) ) /P(I)K* is isomorphic to the group of all matrices 

0 

0 

such that l(t)  = l(ty-~)3~ 3 and/3 = 0, or 

all t E K. 

o 

72 2 ~  

o 

l(t) = l(t3,-')y 3 + t# 2 + t2~ and p = 2, for 

LEMMA 2.9. (i) P(I)  fixes each line 0 x 0 x K  x K + ( 0 , 0 , 0 ,  d) of the desar- 

guesian Baer subplane Mo = 0 x K x 0 x K. 

(ii) Mo has q images under P(1). 

(iii) The group P(1)K* generated by P(l)  and the dilatations with center 0 has 

3 orbits of lines parallel to 0 x 0 x K x K, of lengths 1, q - 1 and q2 _ q. 

PROOF. The required calculations are straightforward. 

3. Example of likeable functions 

In this section we will present two examples of likeable functions. 

LEMMA 3.1. A n  additive function l : K ~ K is likeable if and only if the 

equation 

x 2 - x  + ~ -  l (a) /a  3 = 0 

has no solution for x ~ K and a E K*.  In particular, if q is odd then I is likeable if 

and only if l (a)a  -3 - 1/12 is a nonsquare for all a ~ K* 

PROOF. Set a --- t and x = u/a 2 in the definition of iikeability. 
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EXAMPLE I. The constant function 1 = 0 is likeable if and only if q---2 

(mod 3). In w we will see that ~ ( l )  arose in [3]. Note that (by (2.8) or a simple 

calculation) diag(1, r, r 2, r 3) E Aut ~ ( l )  for each r E K*. 

EXAMPLE II. Let q =5" > 5  and fix a nonsquare k @K. Then l(t) = 
kt 5 + k-i t  is likeable (since l(t)t -3-  1/12 = k-lt-2(kt 2 + 1) 2 and t 2 ~ - k-l). 

Different nonsquares produce isomorphic planes. By (2.7), these planes are 

different from those of Example I. 

REMARKS. (1) If q is even and q - 2 (mod 3), let T : K ~ GF(2) be the trace 

map. Then Ker T = {y E K I Y = x2 + x for some x E K} and T(1) = 1. Thus,.l(t) 

is likeable if and only if T(l(t)/t 3) = 0 for all t ~  0. Consequently, the set of 

likeable functions is closed under addition. 

(2) If q - 1  (mod 3) then x 2 + x  +~ = 0 has a root, and hence Ker l  = 0. 

4. Dual and derived dual planes 

Let M(l) be as in w Let V be the translation group of M(l) (so V ~ K4), and 

let V(oo) consist of those translations whose center oo is the parallel class of 

0 x 0 x K x K. Note that I.VP(I)I = q6 and I V(oo)P(1)I = q4. Since P(1) is transi- 

tive on L= - {~}, while V(~) is transitive on the affine lines through each point of 

L=-{oo}, V(oo)P(l) is transitive on the lines not containing ~. 

Let M(l)* denote the projective plane dual to the projective closure of M(l). 

We will use L* = o0 as its line at infinity in order to regard ~( l )*  as an affine 

plane. 

PROPOSITION 4.1. P(l)V(oo) is a nonabelian group sharply transitive on the 
affine points of M(l)*; it contains exactly q3 translations. Moreover, M(1)* is not a 
translation plane. 

PROOF. This is straightforward. (Note that the center of P(I)V(~) is 

(M(0,.)] u eK}.)  

Let ~r be as in (2.9), and let ~ consist of L~ and the lines in (2.9 0. Then ~( I )*  

is derivable (Ostrom [4, theorem 9]), and ~ *  is a derivation set. The derived 

plane sO(1)' has the same points as the afline plane ~(I )* ;  its lines are those of 

~( I )*  not meeting ~ * ,  together with all Baer subplanes of ~r containing ~* .  

THEOREM 4.2. The plane ~( l ) '  has type II.1. It admits a.nonabelian sharply 
point-transitive group containing exactly q3 translations. 

PROOF. Clearly, P(I)V(~) acts sharply transitively, and its q3 translations 
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appearing in (4.1) constitute all translations of M(l)'. The q2 translations fixing 

M* produce one (c, L )-transitivity (where L = L" is the new line at infinity, 

while c is the parallel class ~' of the new line ~g*). As in Ostrom [5], we must 

assume that ~(1)' is a dual translation plane and derive a contradiction. 

There are q2 elations with center to' of the (alleged) dual translation plane 

M(l)' fixing a Baer subplane of M(I)' which used to be a point of M(l) on L| 

Only q of these elations are translations, but all are inherited by the derived 

plane M(l)* of M(l)'. Thus, there is a group of q collineations of M(l)* fixing a 

Baer subplane pointwise. By (2.6), no such group exists. 

THEOREM 4.3. (i) AutM(I) '  is inherited from AutM(l)*. 

(ii) If ~(l~)'--- ~(12)' then ~t(ll) = ~(12). 

(iii) M(l)' is not isomorphic to a derived dual Tits-Liineburg plane or a derived 
Hughes plane. 

PROOF. Clearly, (i) implies (iii). Also, if (i) holds then Aut M(l)' has a unique 

orbit on L" of length q (by (2.9)), which together with oo' is a derivation set 

producing M(l)*. Thus, (i) also implies (ii), and we only need to verify (i). 

By (2.6) a Sylow p-subgroup of Aut M(I)* has order q6e' with e ' l e ;  and this 

has a subgroup Q1 of order qSe' acting on M(I)'. Clearly, Q, >= P(l)V(oo)B, 
where B is a group of q elations of M(1)* which fix both 0 and ,~*. The axis L of 

B becomes a Baer subplane (also called L) of M(I)', and B is a group of 
collineations of M(l)' fixing this subplane pointwise. 

Any collineation of M(1)' fixing L must fix its set of points at infinity. The 

latter points form the derivation set D for M(l)' such that the corresponding 

derived plane is M(l)*. Thus, (AutM(I)')L _-<AutM(l)*. In particular, the 
centralizer of B lies in Aut M(l)*. 

If Aut M(I)' fixes D then (4.3) holds, so assume that D is moved. By (2.9), we 

already know orbits of lengths 1, q, q2_q on L ' .  Thus, AutM(l) '  is transitive 

on L~-{~}.  Its Sylow p-subgroups then have order >=q6e'. If B <  
Q E Syl, (Aut ~r then IQf>-_q2e '. 

Let l ~ z  E Z ( Q ) .  If z E B  then Q <Aut~/( t )* .  Thus, z~.B,  and (z,B)<= 
Aut M(I)*.. Then z fixes the line L of M(l)* and centralizes the q elations in B. 

Since (z ,B) fixes 0 and ~r it cannot be faithful on Mo*. By (2.6), ( z , B ) =  B, 
which is ridiculous. 

REMARK. The same argument settles a question left open in Ostrom [5]: the 
automorphism group of a derived Tits-Liineburg plane is precisely the inherited 
group. 
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5. The planes with l = 0  

In this section we will show that  the planes M( l )  with 1 identically 0 are the 

same as those appear ing  in [3, (4.5)]. 

Let  q ~ 2 (rood 3). Set F = GF(q2), K = GF(q ) ,  6 = a q and T ( a )  = a + 6 for  

a ~ F. Form the K - s p a c e  

V = { ( a ,  fl + K, y,b,c)jo~,fl ,  y EF ,  T ( y ) = O ; b ,  c E  K}. 

Equip  V with the quadra t ic  fo rm 

O(a,  fl + K, % b , c ) =  a2 + a6  A7 ~2-~- T ( f l y )+  bc. 

Then  V is an IY(6,  q)  space.  A spread  in K 4 cor responds  (under  the Klein 

co r respondence )  to a set ~ of q 2 +  1 singular  points  of V, no two of which are 

perpendicular .  The  set f l  in [3, (4.5)] consists of the points  

(0 ,0 ,0 ,0 ,  1) 

(p, p6 + K, tr, l , pfi ) 

where  T( t r )  = 0 = T ( p ) +  o'6". 

PROPOSITION 5.1. The translation plane determined by 1) is M (1) where I = O. 

PROOF. Let  w E F  and oJ - ~ = l / t o .  Set 0 = l + 2 w ,  so T(O)=O. Write  

(a, fl + K, y , b , c ) = ( x w  + ~ u ~ , - y w  + K, �89 

with x, u, y, a, d, e E K. Note  that  

O(xoJ + ~u~3, -y~o + K, ~aO, ~e, c ) =  ~xu + ~ya + ~ce. 

Let  o-, 0 E F with T ( o ' ) =  0 = T ( p ) +  or6". Write  cr = ~aO and p = xw + ~u~5, so 

0 = - x - ~u + ~a 2 and p~  ~- ~a (x + �89 (mod K).  Then  f~ consists of the points  

(0 ,0 ,0 ,0 ,  1) 

((~a 2 - ~u)w + ~u~, ~a ~w + K, ~aO, 1 , 6 a  2 - u)2 _ (~a 2 _ u )u  + u 2) 

for  a, u E K. 
Now identify (xw + ~ u ~ , -  yw + K, ~aO, ~e, c ) w i t h  the vector  (e, a, u, x, y, c ) i n  

K 6, and replace Q by 3Q. Then  Q ( e , a , u , x , y , c ) = e c + a y + u x ,  while l-I 

consists of the points  

( 0 ,0 ,0 ,0 ,0 ,  1) 
3 u 2 a2u.+~a4). 

( l , a ,u ,  a 2 - u , - ~ a  , - 

U n d e r  the Klein co r respondence ,  (1, a, u, x, y , -  x u -  y a )  cor responds  to the 

2-space ( ( 1 , 0 , -  x, y), (0, 1, a, u)). This  comple t e s  the p roof  of (5.1). 
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Appendix: Coordinates 

Coordinates for sO(l)' were not needed in our arguments. However, in this 

section we will briefly describe a coordinatization of these planes. 

Define the following products on K2: 

(~, [3)* (t, u) = (a(u  - tz)+ f t ,  o~(-~t3 + l(t))+ flu) 

( c t , ~ ) o ( t , u ) = t ( ~ t ,  f u )  if ot = 0  

I. (au + t" + a Ift, ct '( - ~t ~ + l(t)) + a - ' f  (flu + t ~ + a ' f t ) )  

if a ~ 0 .  

Write ( a , b , c , d ) =  ( (a ,b ) , (c ,d ) )  = [(a,c),(b,d)].  Then the lines of sO(l) are the 

set of points (X, Y) E (K2) 2 of the form X = C or Y = X * M + B, while those of 

d ( l )*  have the form X = C or Y = M * X + B. The lines of d ( l ) '  are the sets of 

points [X, Y] of the form X = C  or Y = M o X + C .  

The product M o X  has been normalized so that (m, n)o(0, y ) =  (my, ny) for 

all m,n,y.  Note that M o ( X  + (0, y)) = M o X +  M o(0, y). It follows that the 

group T of q~ translations of d ( l ) '  consists of all mappings [X, Y ] ~  [X, Y] + 

[(0, a), C]. Such a translation has direction M if and only if C = M o(O,a), in 

which case we will call it ":[M;a ]. Let r (C)  : [X, Y] ~ [X, Y] + [0, C], so r (K  2) 

is the group of (~', L')-elations. 

Let M E  M'. If a + a ' ~  0 then 

r[M; a]r[M'; a'] = TIM + (a + a') ' a ' ( M ' -  M); a + a'], 

while ~'[M; a ]~-[M'; - a] = r ( a ( M  - M')). Thus, (~'[M; K], T[M'; K]) contains 

the q groups z[M + A ( M ' -  M); K], A E K, along with r ( K ( M  - M')). Conse- 

quently, each orbit of this group consists of the q2 points of a Baer subplane of 

M(l)' .  
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