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ABSTRACT" \rVe st.lldy nonlinear hinary error-coITect.ing codes closely re­

lat.ed t.o finit.e geornet.l-ies and qlladrat.ic fon-nfl, and having lin.ks wit.h ex­
t.remal Bilclidean line-set.s and wit.h recent.ly int.rodllced codes " 011.1' 

emphasis is on geornet.l-ic and cornhinat.OI-ial propert.ies of high ly st.mct.llred 

families of codes" 

The following diagram gives an indicat.ion of t.he main t.opics and int.er­
con.nections ai-ising in t.his papeL 
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1. Introduction 

A hinary crr01"-corrcctillg code C of length N is just a suhset of the vector 
space , the most standard ones heing linear codes: suhspaccs of . The 
Hamming distance dll hetween two vectors is the numher of places they differ: 

One of the ha,;;ic prohlems in the theory of err01'~correcting codes is to construct 
and stndy codes G of length ]V and large size IGI snhject to the condition that 
the minimum of the distances hetween any two different \;codewords" in C is 
some given integer d, the minimum distance of the code. Of particular interest 
are those codes that are extremal suhject to such a condition. Evidently, such 
qucstions are highly comhinatorial. Our purpose is to discuss a,;;pects that are 
also within finite geometry and algehra. vVe will only touch on one type of con~ 
nection of coding theory with finite geometry, one rich in a numher of additional 
directions (projective planes, quadratic forms, Euclidean geometry, and groups). 
rvlany other connections with finite geometry are provided in [MS]. 

Another way to view a code of length N is as a set of su hsets of an N ~element 
set. The transition hetween these views is elementary, just using an ordering 
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of the N~set to associate an N~tnple (i.e., vector) with each snbset. Addition 
becomes symmetric difference, and the Hamming distance is just the size of the 
symmetric difference of the corresponding subsets. The size of a subset is the 
weight of the corresponding word: the Humber of nonzero coordinates. 

One way to search for families of subsets of a set is to impose additional 
structure 011 the set. vVc will &,;;511111C throughout that the underlying set is itself 
a vector space , so that N = 2tl. The most obviolls family of subsets consists 
of all affine hyperplanes: al1 n - 1~di111ensional suhspaccs and their translates. 
It is ca,;;y to sec that, if the empty set and the whole space arc also included, 
th e resnlt is a snbspace of , called the first order Reed~Mulier code RM( 1,11). 
Note that RM( 1, 11) is closely tied to the binary affine space ,10(11 , 2) based on 

the analogue, in this binary setting, of real affine space based on a real 
vector space. Thus, we will never be far from this binary affine space. 

Forms other than linear ones can be used. An especially rich source of (;good" 
codes is the second order Reed~Mulier code RM(2,11), consisting of all of the 
zero~sets of all binary polynomials of degree at most 2 in n variables. That is, 
R1H(2 j n) has subcodes that behave in interesting manners, and in particular, 
extremal subcodes; historically, this has been the reason for the time devoted 
to subcodes of RM(2, 11) by numerous authors. We will focus on some of those 
arising from unions of cosets of RM( 1, 11) in RM(2,11). 

These Reed~rtIllller codes can be written a,;; follows in terms of coordinates 
(where some ordering is chosen for 

RM(I,11)= {(8'V+ jf E ) 

RM(2, 11) = {( Q( V)+8'V +f)"EZ; I Q is a quadratic form on . s E jf E 

where quadratic forms will be defined in the next section. Quadratic forms 
will then be used to construct (nonlinear) subcodes of RM(2,11) called Kerdock 
codes. In §§3,4 we will sre entirely different views of these codes in terms of 
orthogonal geometries and projective planes, which will lead us to structural 
properties and n011lmiqueness results for the codes and for the various geometric 
objects a,;;sociated with them. 

The codes we fOCllS on are nonlinear: they are not su bgroups of . Histori~ 
cally, linear codes have been th e most important codes, since they are ea,;;ier to 
discover, describe, encode and decode. On the other hand, the nonlinear codes 
studied here have the advantage of being superior from a combinatorial point of 
view: they have at least twice a,;; many codewords as any linear code with same 
length and minimum distance. A surprising breakthrough in coding theory is 
that some of these nonlinear codes can be viewed a,;; linear codes over rather 
thau [CHKSS], and heuce have the best of both worlds: superior description 
and implementation, and yet combinatorial optimality. 

rtluch of this paper can be viewed a,;; an introduction to Kerdock and other 
interesting subcodes of RM(2,11) described in detail in [MS], codes which have 
just been investigated anew in [CHKSS] aud [CCKS] from the vantage point 
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of (cf §6), The smallest example is the Nordstrom<Robinson code, described 
in Calderbank's paper in these Proceedings, Snbcodes of RM(2, 11) also arose 
in the stndy, by Cameron and Seidel res], of extremal lin~sets in Enclidean 
spaces (cf §§5,6), 

vVc will describe large numbers of codes by means of projective planes and 
nona,;;sociativc \;algcbras". This will lead to a better understanding of some of 
the mathcmaticalulldcrpiuuillgs of the newly~discovercd aspects of codes over 

bcsidffi producing new connections with other area,;; of mathematics. 

2. Quadratic forills and Kerdock codes 

Quadratic forms arc standard in algebra and geometry. Care is needed when 
dealing with characteristic 2, but is wen worth the effort: large numbers of 
important geometric and combinatorial objects (as well a,;; groups) arise from 
them (cf [MS] for many examples), 

Quadratic and alternating forills. A quadratic form 011 a bin aty vector 
space V is a map Q: V ~ 2':2 such that 

(2.1 ) (u, v): = Q(1I + v) - Q(1I) - Q(v) 

is a symmetric bilinear f01"m 011 V. In terms of coordinates, if V = 
looks like 

Q(;r,J, , " j ;rn) = L aipriif,j 

i5:j 

then Q 

for some scalars aij, and ({;T;) , (Yi)) = Lij bij;T,irCj, where bij = bji = aij for 
i < j and bi ; = O. The rank of Q, or of its associated bilinear f01"m, is just 
the rank of the matrix B = (bij ) representing the bilinear form; this is also the 
codimcllsioll of the subspace consisting of all of the vectors 11 sllch that (11, V) = O. 
Also, Q and the bilinear form arc called nonsingular if B is (equivalently, if 
((v, V) = 0 ~ v = 0), 

The matrix B is skcw~symmctric (symmetric with 0 diagonal); its rank neces~ 
sarily is even. The a,;;sociatcd bilinear f01"m is called an alternating bilinear form 

(, ): (11, v) = (v, 11) aud (v,v) = 0 for all 11, v, 
A vector space equipped with a l1011sillgular alternating bilinear f01"m ( j ) is 

called a symplectic space. By a linear change of variables, any sllch form on 

can be transformed into the form L~=l (;1;iYi+r - ;Ti+ryd (i.e., any nonsingular 
alternating bilinear form is equivalent to the indicated one). An isomctry, or a 
symplectic transformation, is a nonsingular linear transformation [J of the vector 
space that preserves the form: (1Ig, vg) = (11, v) for all vectors 11, v, 

Singular vectors of quadratic forills. It is easy to count the Humber of 
zeros (singular vectors) of quadratic forms over finite fields. Here we will only 
deal with the field 

Let Q2r denote the quadratic form on defined by Q2r(,r, y) = ,r,'y for all 
;T) Y E (ordinary dot product). Any quadratic form on can be transformed, 



using an affine change of coordinates (i.e., a transformation 1; I-- 1;,.,1 +c for some 
invertihle n x n matrix A and some c E to one of the following: 

where z is a variahle not among those used for Q2r (\;Dickson's Theorem" 
[Die, p. 197], d. [MS p. 438]). This makes it very easy to determine the 
numher of zeros (singular vectors) of Q: an easy calculation shows th at 

Q2r and Q2r + f ha1;e) respecti1;ciy) cractly 
(2.2) 

+ -r and zeros in 

It is straightforward to dednce that any easel (Q(1'))" + RM(I, 11), where Q haB 
rank has weight distrihution as follows: 

weight 

+ 

# of veclors of Ihal weight 

22r 

2n+1 _ 22r+1 

22r 

(Kote that the complements of the vectors of weight + are those of 
weight .) 

vVe will he interested in the largest possihle weights, and hence will restrict 
to the ca,;;e in which n = 21'. Then any quadratic form of rank n in n variahles 
can he transformed, a,;; ahove, to either Qn or Qn + f, in which ca,;;e our coset 
hecomes (Qn (v))" + RM( 1,11). Moreover, the ahove weight distrihntion is then 
even simpler (there are no vectors of weight 2n - 1). 

coscts. Since our characteristic is 2, unlike the familiar situation with real 
quadratic forms it is not possihle to recover Q from the hilinear form (11) 1;): 
many different quadratic forms determine the same symmetric hilinear form. 
For any qnadratic form Q on ,Ihe easel (Q(1'))" + RM(I,11) "conlains" all 

quadralic forms Q' delermining Ihe same bilincar form as Q. l'iamcly, if Q and 
Q' determine the same hilinear form, then 

(11, v) = Q(1I + v) - Q(1I) - Q(1') = Q'(1I + v) - Q'(1I) - Q'(1') 

for all 11, v E , and then Q - Q' is clearly a linear functional this 
argument can he reversed. 

We now turn to the hehavior of a union of cosets (Q( v ))" + RM( 1,11), where 
Q is allowed to run over a family :F of quadratic forms on each of which 
has rank n. However, we require even more: we want the distance hetween the 
zero sets of any two different forms Q) Q' E :F to he large, which means that 
Q - Q' should he another quadratic form of rank n. This condition is ea,;;ier to 
understand in terms of the corresponding hilinear forms-or, hetter yet, in terms 
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of the skCW~sY111111ctric matrices B j H' determined hy these hilinear forms: Ollr 
requirement is that B - H' is l1011sillgular. Thus, we arc led to consider a set K of 
skCW~sY111111ctric 11 x 11 matrices the difference of any two of which is l1011sillgular. 
Then any two of these matrices have different first rows, so that there can he at 
most sllch matrices. The extremal case is the one of special interest here. 

Kerdoek sets and Kerdock codes. Kcrdock sets and their a,;;sociatcd 

codes and geometries arc the principal suhject of this paper. 
A Kcrdock set of 11 x 11 hinary matrices is a family K of skCW~sY111111ctric 

11 x 11 hinary matrices, containing 0, sllch that the difference of any two is 
l1011sillgular. (Kote that 11 is even since we arc dealing with skew~symmetric 
matrices.) For the reason indicated ahove, this numher is extremaL In 
comhinatorial settings, extremal configurations frequently have rich structures. 
This is very much the ca,;;e with Kerdock sets. vVe will construct such sets very 
soon, hut first we construct codes using them. 

Each Kerdock set K determines a lIerdock code e(K) = UREd(QR(1'))" + 
RM( 1,11)], where QR denotes any qnadratic form whose aBsociated hilinear form 
is UB1/. Thus, if B = (bij ) and ifU denotes the upper triangular matrixohtained 
from B hy replacing all entries helow the diagonal hy 0 (so that U + U' = B), 
then we may a,;;sume that Q R (1;) = l;U 1;1. Explicitly, in terms of vectors we then 
have 

(2.3) C(K): = {(QR(1') +.9. V + } . 

C(K) is a code of length N = 2n (where 11 is even), consisting of = 22n 
codewords (i.e., vectors). Any c E e(K) partitions e(K) in terms of distances, 
aB follows: 

distance from c 

o 

2" 

# of lUords at that distance 
1 
2"(2,,-1 - I) 
2n +1 _ 2 
2"(2,,-1 - I) 
1 

rvlinimum distance: 

comments 
c 

c + (the all-I vector) 

The property that the distrihution of distances is independent of the choice 
of c is called distance~invariance. It a,;; an approximation to the linearity of a 
code, this property heing trivial for such codes. (That if C is a linear code 
then the translations 1; I-- 1; + c form a group of automorphisms transitive on the 
set of codewords, so that distanc~invariance is ohvious.) a,;; we will sec helow 
(Theorem 5.1), e(K) is nonlinear. 
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Recovering K from C(K). RM( I, n) is the set of codewords of weight 0, 2,,-1 
or 2". C(K) is a union of cosets of RM( I, n), each of which corresponds to a 
unique skCW~sY111111ctric matrix. These matrices comprise K. 

Exa.mples of Kerdock sets. 

Here is an example of a set of quadratic forms when n = 4: 
{OJ ;r};r:2 + ;T,3;T,4, ;r};r:3 + ;r:];r:4 + ;r:2;r:3 + ;T,2;"f,4, 

if} ;r:3 +;r:2;r:4 +;r:3;"f,4 j if} ;r:2 + if, 1 ;r:3 +;r:l ;Tt! + ;r:2;r:4 j ;r:};r:4 +;r:2;r3 + ;r: 2;r: 4 + ;r3if,4 j 

;T-] if2 + ;T-I ;T4 + ;r:2;r:3) ;T-I ;r:2 + ;T} ;r3 + ;r:2if,3 + ;r:2;r4}' 

This description is opaque. It is not motivated (nor will Ollr other examples be 
WCll~111otivatcd 11 lltil later, when we get to projective planes), and it is tediolls 
to verify that all differences of these quadratic forms arc nonsingular (cf. [LilJ. 

All remaining examples discussed here will be obtained from the field GF(2m), 
where m is odd (this will be "n-I" in our previous notation). Let T: GF(2m) ~ 

GF(2) be the trace map: T(.r) = 2:::01 
.r,2'. This determines an inner product 

T(.ry) on GF(2m). There is an orthonormal basis that lets us identify GF(2m) 
equipped with this inller product and equipped with its llsual dot product. 

vVc arc searching for Kcrdock sets, which require even~di111ensional spaces 
whereaB m is odd. Hence, we boost the dimension by I, and consider GF(2m) (j) 

equipped with the inner product ((.r" a), (y, b)): = T(.ry) + ab. In place 
of skew~sY111111etric 111atric('s we will use linear operators Af: G F(2m) 8) 

GF(2m) (j) such that ((.r, a), (.r, a)M) = 0 for all (.r, a) E GF(2m) (j) We 
wil1 construct fa111ili('s of such linear operators It[ by llsing suitable binary oper~ 
ations on GF(2m). 

EXAMI'U; 2.4. Consider the set K of 2m linear operators M,: GF(2m) 
GF(2m) (j) given by 

(.r" a)M, = (.r,8
2 + 8T(8.r) + a8, T(8.r)). 

This definition haB been pulled out of the blue, and will be motivated later in 
terms of projective planes (§4). For now, we note that these matrices M, form 
a J(crdock set K. First, Afl! is skew~sY111111etric: 

since T(.r,.r,8 2 ) = T(.r,8)" = T(.r,8T(8.r,)). Next, 
l' # 8: if 

- It[l! is nonsingular whenever 

(.r,r2 + rT(r.r) + ar, T(r.r,)) = (.r,8
2 + 8T(8.r,) + a8, T(8.r,)), 

then T(r.r) = T(8.r,) and .r,r2 + rT(8.r) + ar = .r,82 + 8T(8.r,) + a8, so that 

.r(r + 8)" + (1' + 8)T(8.r,) + a(r + 8) = 0, 

r.r + 8.r + T(8.r,) + a = 0, 

T(r.r,) + T(8.r,) + T(8.r,) + a = 0 
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(this uses the fact that m is odd, so that T(I) = I), and hence 

Thus, Afr - Afll is l1011sillgular, as required. 

By (2,3), this Kerdock set produces a Kerdock code e(K), This is the origi< 
nal code discovered by Kerdock [Ke] in 1972 (in rather different language); cf 
[Di;MS;Kan When m = 3 this is the Nordstrom~Robinson code of length 16, 
:Moreover, we now see that a J(crdock code of length 2n cxisis for every even n. 

Kerdock set equivalence. Kerdock sets Kl and K'J of 11 x 11 matrices are 
equivalent if there is an invertible 11 x 11 matrix A and a skew~sY111111ctric matrix 
it[ sllch that At Ku1 + Af = K2. One of Ollr goals is to describe large numbers 
of inequivalent Kcrdock sets (and corresponding codes) by means of projective 
planes and nonassociativc ';algcbra,;;~' . 

Example 2A used field multiplication (the term ,r,8 2), As we will seen in §4, 
important types of projective planes arc described llsing more general types of 
binary operations. Hence, we are led to introduce those operations important in 
our coding~theoretic context. These have the advantage of being the quickest 
way to write down what amount to a.ll Kerdock sets (cL Theorem 4,2)" 

Binary operations. Consider a binary operation * on GF(2m) related to 
field multiplication by the following conditions (for all ,r" y, z E GF(2m)): 

(i) (,r, + y) * z = ,r, * z + y * z (left distributivity), 

(ii) ,r, * y = ,r, * z =* ,r, = 0 or y = z, 
(iii) T(,r,(,r, * V)) = T(,r,y), and 

(iv) ,r,*y= 0 = ,r, = 0 or y= 0, 
Also, (iii) implies 

(v) T(,r,(y * z)) = T(y(,r, * z)) 
(namely, in (iii) replace ,r, by ,r, + z, ,r, and z, and subtract), This condition is 
more useful for our purposes; but if (v) holds and (iii) does not, it is easy to 
modify * insignificantly so that (iii) will hold, 

A fundamental aspect of the subject matter in this paper is that (i) and (ii) 
are familiar in the theory of projective planes (cf. §4). Th03e amount to some 
distorted versions of fields; for example, if both distributive laws hold then we 
are dealing with a special type of (nolla,;;sociative) division algebra (except for 
the lack of an identity element), It is just such field~like algebras that arise in 
the coordinatization of projective plan03. Thus, one can expect that there wil1 
be further interactions between coding theory and planes, with a great deal to 
be learned in each discipline from the other one. 

In Example 2A, ,r, * y = ,r,y2 (note that T(,r,(,r, * y) = T(,r,2y2) = T(,r,y) , which 
explains the use of ;r;y2 instead of the more natural~looking ;r;y). The argument 
used in that example essentially shows that 
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form. a. lIerdock se/. 

Kamely, proceed exactly as hefore in order to ohtain the equation ;r*r+;r*$ = 
(I' + s)[T(s.r) + aJ. If (.r, a) also satisfies T(s.r) + a = 0 then. hy (v) •• r = O. It 
follows that the dimension of the kernel of - JUI! is at most f, and hence is 
o since m + f is even and - JUI! is skCW~sY111111ctric. 

EXA,\1I'U; 2.6. Let TI denote the trace map from GF(2m) to some proper 
sn hfield F Ie Then 

satisfies (i-v). (l'i.B.-Ifwe allowed F = here. then the Kerdock set ohtained 
in this manner would he the same as the one ohtained in Example 2.4.) 

Once again, these maps appear to have come fro111 nowhere, hut will turn out 
to he motivated hy projective planes. 

EXA.\1PL.E: 2.7. Let Tl again denote the trace map fro111 GF(2m) to some 

proper snhfield F Ie let 0 E F - and write 

.r * s: = .rs2 + osTI(.rs). 

Then this operation satisfies (i-v), hut this time only one distrihutive law is 
satisfied. Once again a Kcrdock set is ohtained llsing the preceding proposition. 

It might appear that the ahove conditions (i-v) arc so strong a,;; to prevent 
the existence of many examples. This is not the ca,;;e. Every Kerdock set 111 

a suitahle sense, equivalent to one of those in Proposition 2.5 (sec the Remark 
following Proposition 3.6). One can, of course, ask whether K determines the 
\;algehra" (GF(2m)j +j *) uniquely up to something like isomorphism. However, 
this also is not the case if m 2:: 5: there is a strong version of non~uniqueness, 
which is essentially the content of Theorem 4.4. rvloreover, there arc large m1111~ 
hers of ineqnivalent Kerdock sets (ef. Theorem 3.5). 

3. Finite orthogonal geolnetries 1 

Quadratic forms arise for us in two different ways. On the one hand, we have 
used them in order to construct codes (second order Reed~rvluller codes and 
Kerdock codes). On the other hand, we will usc them in order to construct a 
very different~looking type of configuration in larger vector spaces (\;orthogonal 
spreads"). vVe will also sec that the two ways to usc quadratic forms arc nicely 
linked, alheit in a somewhat indirect manner. 

1 ::V1llch of t.his section only Ilses t.he fact t.hat. t.he field is fi.nit.e of charad.el-ist.ic 2, 

rat.her t.han k<~" The except.ion is t.he part. of Theorem :JA t.hat. concel-ns codes" 
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An orthogonal geolnetry. In order to have a more geometric view of skcw~ 

symmetric matrices, we will douhle the dimension and consider one concrete type 
of orthogonal geometry. Let V = = X $ Y for snhspaces X and Y hoth of 
which arc identified with . Eqnip V with the qnadratic form Q = Q2n (so that 
Q(,r, y) = ,r'Y), with associated hilinearform (, ). The notion ofperpendicnlarity 
is as llsuaL However, note that every vector is perpendicular to itself (since 
(11,11) = 0). If W is any snhspace of V then W.L:= {v E V I (v, W) = OJ is a 
511 hspacc of dimension dim V - dimlV. For example, = X and y..L = Y. 

Totally singular subspaces. A suhspace W is totally singular if Q(W) = 0, in 
which caBe it also is perpendicular to itself (i.e., W <;; W.L since (W, W) = 0), 
and hence dim W:S 11 (since 211 = dim W + dim W.L 2: 2 dim W). Thus, X and 
Y arc examples of totally singular n~spaccs.2 

Orthogonal spreads. By (2.2), V has (2n - I )(2n- 1 + I) nonzero singular 
vectors. Each totally singular n~spacc consists of singular vectors, and contains 
2n _ f nonzero ones. This Humher divides the Humher of singular vectors and 
suggests that there might he families .'E of totally singular n~spaccs that partition 
the set of all l1011zcro singular vectors. Such a family of + f suhspaccs is 
called an orthogonal sprcad. vVe will sec soon that such a family cannot exist 
unless 11 is even, and that there is always at lca,;;t one such family when 11 is even. 

Isometrics. An isometry of V is a nonsingular linear transformation preserv~ 
ing Q = Q2n (i.e., a nonsingular linear transformation T such that Q( vT) = Q( v) 
for all v E V); these form a group, the orthogonal group 0+(211,2) of V. (Here, 
the (;+" refers to the fact that V ha,;; totally singular 11~spaces.) This group 
is transitive on the ordered pairs of totally singular 11~spaces having only 0 in 
common: from the point of view of this orthogonal geometry of V, the pair Y 
we started with is indistinguishahle from any other such pair. 

Fix a ha,;;is ;TI j , , , j ;Tn of X and let VI j , " j Vn he the dual ha,;;is of Y: 
(;T; j Vi) = . vVritc matrices with respect to the hasis ;TI j , , , j ;Tn j VI j , , , j Vn. 

LK\1'\1A :3.1. 

(i) The isomelries of V that fix every veclor ofY arc just those linear trans­

formations whosc matriccs arc (~ J~) for somc binary skcw~symmetric 
11 x 11 matrix :H. 

(ii) These isomelries form a group isomorphic to the additive group of all 

binary skcw~symmetric 11 x 11 matriccs. 

(iii) Thc isometrics fixing Y arc just thosc lincar transformations whosc ma­

trices arc (A;' ~) (~ '~), where A runs through the group GI(11, 2) of 
all nonsingular 11 x 11 binary matriccs and :H is as in (i). 

2 Similarly, in t.he case of a 2rh-dimensional symplectic space, a sllhspace liV is lolnlly 

iso!Topi() ifliV ~ liV..L, in which case dimliV::; flL 
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PRom'. 

(i) Any such isometry must look like (b i~) for some 11 x 11 matric03 it[ 

and B. Then Q is preserved if and only if ,e' (,dJ + VB) = ,e' y for all 
,e, y, which is the case if and only if M is skew~symmetric (nse y = 0) 
and B = I. 

(ii) (b 'Y)(b n=(b MiN) 
(iii) Any such isometry [J induces a linear transformation on Y, with matrix 

A, say. The matrix (~ Ac?"I) arises from an isometry h of V, and h-1[J 

is as in (ii). 0 

LK\1MA :3.2. 

(i) Every totally singular 11~space Z of V such that Y n Z = 0 has the form 

X (b ijf) for a unique skew~symmctric matrix it[. Conversely! if it[ 

. k . , . h v (I M) . II IS a s 'ew~symmctnc utnary 11 X 11 matnx! t ,en .. >- 0 I IS a toto, y 

singular 11~space having only 0 in common with Y. 

(ii) The dimension of the intersection of any two such 11~spaces X (b 'Y) 
and X (b ~) is 11 - rank( M - N) 

PRom'. 

(i) We can write Z = {(,e, ,eM) I ,e EX} for a unique 11 x 11 matrix M. The 
requirement that Z be totally singular is equivalent to having;T,· ;T,it[ = 0 
for all ;T, E and this is precisely the condition of skew~symmetry. 

(ii) The desired dimension is that of the set of solutions to the following 
system of linear equations: (,e, ,eM) = (,e, ,eN). 0 

Part (i) says that Z consists of all of the vectors of the form (,e, ,eM); or, 
in more familiar terms, Z is the subspace (;y = ;T,Af". Note that the group in 
Lemma 3.1(ii) is transitive on the set of subspaces Z occurring in Lemma 3.2(i). 
By Lemma 3.2(ii), if some such pair of subspaces meet only at 0, then 11 must be 

even. 
In view of the definition of Kerdock sets in §2, we have the 

COROLLARY 3.3. 

(i) If K is a Kerdock sci of 11 X 11 skew~symmclric binary matrices, then 

is an orthogonal spread of V. 
(ii) Conversely, every orthogonal spread of V that contains both X and Y 

arises as in (i). 

Evidently, in (ii) I; depends on K. Is it possible that inequivalent choices 
for K produce (;equivalenf' orthogonal spreads~? The answer is (;yes": see 
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Theorem 3,4 and the remark following it. In any event, we now sec that an 
orthogonal spread exists if and only if 11 is even. 

Equivalence of equivalences. vVc now turn to the relationships between 
pairs of Kerdock codes, pairs of Kcrdock sets, and pairs of orthogonal spreads. 

An equivalence between binary codes of length N is a permutation of coordi­
nat03 sending one to the other. Auto111orphis111s of codes arc then cquivalcllcfS of 

a code with itself. Since Ollr coordinates arc indexed by vectors in , an cqmv-
alcllcc will look like (a~l)vEz~ ......... (a~1I7)vEZ;' for a permutation (f of . For exam-
ple, each translation 11 ;...-;. 11 + c of is an automorphism of C(K) since it leaves 
invariant each coset (Q(v)),,+RM(I,11), (Namely,Q(v+e) = Q(v)+Q(e)+(v,e), 
where (Q(e) + (v, e))" E RM( I, "n 

A quasi-equivalence between binary codes of length N is a map of the form 
(av)v ......... (a~lo +C~I)~11 sending one to the other, where (f is a permutation of coo1·~ 
dinates and (C"1I)V is some vector in . Thus, two codes are qua,;;i~equivalent if 
and only each is the image of the other by means of an isometry of the underlying 
metric space j Hamming metric). In the ca,;;e of linear codes, this notion is 
almost the same as equivalence. For a nonlinear code C, even one containing 0, 
it is noticeably weaker: if 10 E C, then C and C + 10 are qua,;;i~equivalent but 
not equivalent, and yet dearly they are not ';significantly~' different. 

Equivalence of Kerdock sets wa,;; defined earlier. 
Orthogonal spreads .E1 and .E2 of V are equivalent if there is an isometry of 

V sending.E1 to .E2. 

Tm;ORK\1 :3A, Let /(1 and /(2 be [(erdock sels of n x 11 binary malrices, 
Then Ihe following arc equiva1enl: 

(i) /(1 and /(2 arc equivalenl; 
(ii) C(/(J) and C(/(2) arc quasi~equivalenl ; 

(iii) The orthogonal spreads 2:1 and 2:2 of V , determined, respectively, by /(1 

and /(2 via Corollary :3,3(i), arc equivalenl by an isometry of V sending 
Y 10 ilself 

PRom', (ii)=?(i) Suppooe that g: (a"),, ~ (a,," +e"),, is a quaBi~equivalence 
sending C(/(J) to C(/(2), Then (0),,9 = (e"),, is in C(/(2), and hence has the 
form (Q(v) + s' v + f)" for some quadratic form Q, some s E , and f = ±L 
Let h be the map (~I)V ......... (av +C~I)~I. Then ah sends (av)~I ......... (a~lo)v, and sends 
C(/(2) to C(/(2) + (e"),, = C(/(2) + (Q( v))", which still contains RM( 1,11), 

The words in C(/(J) of weight 2n~l, and the words in C(/(2) + (Q(v))" of 
weight , are the hyperplanes of AC(11, 2), coITesponding to RM( 1,11), It 
follows that (f has the form v ......... vA + 10 for some invertible 11 x 11 matrix A and 
some 10 E ; we may a,;;sume that 10 = 0 since 11 ......... v + 10 is an automorphism 
of C(/(J), Each word of C(/(J) or C(/(2) containing 0 (i,e" having I in the 0 
position) arises from a quadratic form. Hence, each quadratic f01"m Q1 giving 
rise to a codeword of C(KJ) produces, via A, a quadratic form Q2 + Q giving 
rise to a codeword of C(/(2) + (Q(v)),,; that is, QI(vA) = (Q2 + Q)(v) for all 
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11 E If it[ and Bi arc thc matriccs of thc altcrnating bilincar forms produccd 
by Q and Q" then this means that (1fA)BI (vA)' = 1f( B2 + M)v' for all1f, v, and 
hence that ABu!' = B2 + M, 

(i)=?(ii) Reverse the above argnment, 
(i){:}(iii) If A is an invcrtiblc 11 x 11 matrix and it[ is a skcw~symmctric 

matrix snch that A' K2A + M = K I, then the matrix pictured in Lemma 3, I (iii) 
scnds ~2 to ~}. For thc convcrsc, rcvcrsc thc argumcnt. 0 

Thc abovc thcorcm nccds to bc cxamincd carcfully. Incquivalcnt Kcrdock 
scts can produce cquivalcnt orthogonal sprcads, a possibly confusing fact that 
has that has occasionally been overlooked [Li;CL], Many examples of this ph" 
nomcnon cxist. In fact, this situation is thc norm: it occurs whcncvcr thc group 
G(~) of orthogonal transformations prcscrving an orthogonal sprcad ~ is in~ 

transitivc on ~, and thcrc appcar to bc fcw cxamplcs whcrc G(~) is actually 
transitivc on ~. 

Inequivalent codes. Assumc that m is odd and m 2:: 5. In [Kal] it is shown 
that Kcrdock codcs arising from Examples 2,6 and 2,7 arc not qua,;;i~cquivalcnt; 
and that two codcs arising from Examplc 2,6 or 2,7 arc quasi~cquivalcnt if 
and only if they arc eqnivalent nnder a permntation of GF(2m) of the form 
,r, ~ a,r," + b for some a, bE GF(2m), a # 0, and some (r E AntGF(2m), By 
using intcrmcdiate fields in ordcr to vary these constructions (a hint of this is in 
Examplcs 2.6 and 2.7), thc following much strongcr rcsult ha,;; bccn provcd by 
Williams: 

Tm;ORK\1 :L5 [Wi], Let m be an odd integer> L Let m,ml,,,, ,me, I 

be a sequence of r + 2 2:: 3 divisors of m such that each is a proper divisor of 

the preceding one. If m 2:: 7m} then there are more than 1m pairwise 

inequivalent Kerdock sets of (m + I) x (m + I) matrices, and hence at least that 
many pairwise quasi~inequiva1ent J(erdock codes of length 2m+l. 

A similar result from [Wi] is found below in Theorem 6,6, Williams expects 
to provc similar rcsults for analogucs of Examplc 2.7, producing Kcrdock sets 
admitting a cyclic automorphism group fixing onc mcmbcr and transitivc on thc 
rcmaining oncs (and, morc gcnerally, producing orthogonal sprcads admitting a 
cyclic automorphism group fixing two mcmbcrs and transitivc on thc rcmaining 
ones), Much weaker versions of this type of result are contained in [Kal,Ka2], 
Thcrc is also thc following relatcd rcsult: 

TlmoRK\1:3,,)' [KW] , Let m be an odd integer> L Let m,ml"" ,me, I 

be a sequence of I' + 2 2: 3 divisors of m such that each is a proper divisor of the 
preceding one, Then there are at least [II~(2m. + 1)]/2ml pairwise inequivalent 

orthogonal spreads 2: in the usual binary orthogonaI2m+2~space such that 0(2:) 

has a cyclic subgroup transitive on ~. 

Thcsc rcsults, and thc dctcrmination of thc automorphism groups of thc 
Kcrdock scts or codcs as wcll as thc automorphism groups of thc orthogonal 
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spreads, rest 011 Theorem 3,4 together with Theorem 4,4 below. First we need 
to sec how to construct orthogonal spreads fro111 other geometric objects. 

To sYlllplectic spreads. Let z denote any nOllsillgular l~spaC(~ of V, so 
that Q(z) of 0, If Z is any totally singnlar 11~space of V then Z"- = so that 
Z g z..L. Consequently, if.E is any orthogonal spread of V, then 

is a family of totally singular n - l~spaces of 
vector is in exactly one of these 511 bspaccs. 

sllch that every nonzero singular 

Recall that z is contained in the hyperplane ,The 211 - 2~space / z 
inherits the nOllsillgular alternating bilinear f01"m fro111 V (but not the quadratic 
form): 

(1I+Z,V+Z):= (11, v) 

is well<defined on z"- (bnt "v + z '-' Q( v)" is not), This turns z"- / z into a sym< 
plectic space, (Recall from the fourth paragraph of §2 that any two symplectic 

spaces of the same dimension arc equivalent.) 
N ow we can ';projcct~' .E into zl.. / Z, obtaining a set 

:= {(Znz"-,z}/zIZEI:) 

consisting of I.EI = 2n -
1 + 1 totally isotropic n - l~spaces of / z such that any 

two meet only in O. This is called a symplectic spread of the symplectic space 

z..L / z: each nonzero vector of z..L / z is contained in exactly one member of .E.:. 

FrOlll sYlllplectic spreads. The preceding construction can be reversed, 
proceeding from symplectic spreads to orthogonal ones. This can be accom~ 
plished geometrically or in terms of matrices. vVe will use the latter approach, 

since lt requires no additional background. 
Let V': = X' 8) Y' be the direct sum of two m~dimensional su bspaces X' and 

Y', each of which we identify with . Equip V' with a nonsingular alternating 

bilinear form ((,r,\,yj),(,r~,yi,)) = ,r,\ 'yi, -,r,~ 'yj for ,r\"r~ EX', V\,yi, E 
Y', so that both X' and Y' are totally isotropic m~spac('s. Fix dual bases 
;r:; j , , , j ;r:~ and V~ j , , , j V:,., of X' and Y'; write matrices with respect to the 

basis ;r:~ j , , , , V~, ' , , j V:,.· As in Lemma 3.2, every totally isotropic m~space 

Z' such that X' n z' = 0 can be written a,;; X' (~ .~) for a unique symmetric 

matrix P. Two such m~spaces X' (~ .~) and X' (~ ~) have only 0 in common 

if and only if P - R is nonsingular. 

Thus, a symplectic spread in V' containing X' and Y' arises from a set 8 
of 2m symmetric matrices, containing 0, such that the difference of any two is 
nonsingular. vVe have seen above that any orthogonal spread .E of V, together 
with a nonsingular l~space z, determines a symplectic spread in the symplec~ 
tic space z..L / z of dimension 2m = 2n - 2. In terms of the ba,;;is for V introduced 

earlier, a,;;sumethat z = {;r:n+Vn}. vVeidentify X' and Y' with {Xnz..Ljz}/z and 
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(Y n , z} / z, respectively; let the basis chosen for zL / z consist of the vectors 
;r;j = ;r;i + z and vi = Yi + z, I ::; i ::; m = 11 - L 

PROI'OSlTlON ;},6 [CCKS], 

S = { MI + d'd I (1'~1 
J( = { (P + d(P)'d(P) 

d(P) 

~') EK } a.nd 

d(~)') I PES} , 
where d( P) is the vector in 
in their natural order. 

whose coordinates are the diagonal entries of P 

PRom' (SD;TCH), Consider a totally singnlar snbspace 

as in Lemma 3,2(i), Its intersection with zL = (0, 1,0, I)L consists of those 
vectors (;r;1 j a j ;r;' Afl + ad j ;r;' dt ) such that a = ;r;' dt , and hence is the union of the 
cosets (,r', 0, ,r,' MI + ,r,' d'd, 0) + z = (,r', 0, ,r,'[M1 + d'd], 0) + z with (,r', 0) EX, 0 

, '( P + d(P)'d(P) d(P)') " 
RK\1ARl,S, The eqnatlOn M = d(P) 0 defines a blJec~ 

tion P ......... it[ from symmetric m x m matrices P to skew~symmetric (m + 1) x 
(m + I) matrices M, Indeed, given a skew"symmetric (m + I) x (m + I) matrix 

let its last row be (d 0) and find P from the principal minor indicated in 
the above equation. Conversely, given a symmetric m x m matrix P, observe 
that the matrix it[ defined above indeed, skew~symmetric (the diagonal of 
d(P)'d(P) is that of P since our field is , This bijection P ~ M is not linear, 
It is an easy exercise to show that, since 11 is even, if P ......... Af and pI ......... Af' , 
then P - pI is nonsingular if and only if it[ - Af' is. 

Proposition 3.6 is very closely related to Proposition 2.5: see Theorem 4.2. 

EXAMPLl':: a.7. Suppose that ~' is a desarguesian spread: the set of I-spaces 
of G F( 2m r~. There is an obvious alternating bilinear form on G F( 2m r~, given 
by det C:), When followed by the trace map GF(2m) ~ this prodnces a 
nonsingular alternating bilinear form on such that ~' is still a symplectic 
spread. Now identify 2,~m with z..L / z. Then Corollary 3.3 produces an orthogonal 
spread ~ of V, which is in fact the orthogonal spread arising from the Kerdock 
set in Example 2,,1, This reflects the prominence of field mnltiplication there (the 
term ,rs2 ), The gronp 5L(2, 2m) that acts on GF(2mf, preserving its set 2;' of 
I-spaces, also preserves the alternating bilinear form on / z, and lifts 
to a snbgronp of O+(2m + 2, 2) that acts on 2; aB it does on the set of I~spaces 
of GF(2mf (in particnlar, this snbgronp is 3~transitive on 2;), 

Up and down. The Kerdock sets arising from Examples 2.6 and 2.7 are 
obtained from a slight variation on the example, using different choices of z and 
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taking into accollnt an intermediate field between GF(2m) and 111 order to 
get a different orthogonal spread .E. 

Starting with a symplectic spread ,E' in a 2m~di111cnsional binary symplec­
tic space, we now can produce an orthogonal spread in a 2m + 2~dimcnsional 
orthogonal space, in sllch a way that there is a l1011sillgular I-space z for which 

is ,E'. Once we have we can then form a different symplectic spread 
llsing a different l1011sillgular I-space Z'. VVhCll combined with pa,;;sagc to 511 b­
fields [KalL this type of up aud dowu process leads to the proof of Theorem 
3,5, 

4. Projective planes 

vVc now wander even further fro111 the traditional coding theory questions we 
started with: an entirely different type of geometric view of symplectic spreads 
is provided by projective planes. For this purpose we first need to ignore, tem~ 
porarily, the word \;symplectic l

'. 

FrOlll spreads to projective planes. Let V' be a 2m~dimensional vector 
space over GF(q) (no restriction is placed even on the parity of q or m), 

A spread of V' is a family .E' of qm + 1 su bspaces of dimension m whose 
union is all of V'. This means that every nonzero vector is in a unique member 
of .E'. Any family of qm + I m~spaces in a 2m~space! any two of which have 

only 0 in common! is a spread. (N .B.-An orthogonal spread is not a spread in 
this sense, but a symplectic spread is.) 

Affine planes. The importance of spreads is that they produce affine planes: 
Let A(.E') denote the point~line geometry whose points are vectors and whose 
lincs arc the cosets W + v with WE 2:', v E V', Then A(2:') is an affine plane 
of order qm: 

• Any two different points 11) 11 are on a unique line (namely, the line 
W + v where 11 - v EWE 2:'); 

• Given a line L and a point 11 not on it, there is a unique line through 11 

disjoint from L (namely, W + v if L is a coset of W E 2:'); 
and 

• Each line has exactly qm points. 
There is an obvious notion of parallelism, and by adjoining a new \;line at infinity" 
that \;contains" all parallel da,;;ses we obtain a projective plane (of order qm). 

For each c E V the translation 11 .......... 11 + c is an automorphism fixing every 
parallel class, These affine planes (and their associated proj ective planes) arc 
called translation planes. Any isomorphism between two such planes is induced 
by a semilinear transformation of the underlying vector spaces. 

EXAMPLl':: 4.1. If V' is a 2~dimensional vector space over GF(q), its set .E' 
of l~spaces is a dcsarguesian spread (cL Example 3J7), and A(2:') is called a 
desarguesian plane. This plane is pictured in the fol1owing figure. The figure also 
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suggests why it makes no difference whether we view lines as the sets (;y = ;T,8~' 

or the sets (;y = ;T,8
2

" (i.e., 8 ......... 8 2 is bijective). 

Needless to say, the study of translation planes focllsses on nondesarguesian 
planes. Nevertheless, within the context of this paper d03arguesian planes play 
very special roles: firstly, they produce the origiual Kerdock codes [Ke] (cL 
Example 2.4); and secondly, the translation plan03 constructed via Examples 
2,6 and 2,7, as well as those in Theorem 3,5, all arc very closely related to 
desarguesian planes. 

Spreads f-+ spread sets. As in Lemma 3.2, write V' = X' 8) Y' with X', Y' E 
,E', and write matrices with respect to a basis of V' consisting of a basis of X' 
together with one of Y'. Then every member of,E' - {Y} can be written uniquely 

in the form X' (~j) = (;y = ;T,P" for an m x m matrix P. The set 8 of sllch 

matrices is essentially what is called a spread set, and lets the plane be described 
in a very familiar manner, using the lines 

",r, = c" a.nd "y = ,r,P + b", b, c E V', PES, 

,E' and 8 determine one another in an obviolls manner. 

Binary operations f-+ spreads. A binary operation * satisfying conditions 
(i) and (ii) in §2 also determines a spread, consisting of Y' and the subsets 
"y = ,r, * 8" of GF(2m) (]) GF(2m), The lines of the associated affine plane have 
a familiar appearance: 

;T, = c an y = ;T, * 8 "c, 8 E . . . " "d" . + b" b GF(2m) 

Here, 8 consists of matrices of the maps ;T, ......... ;T, * 8. Conversely, starting with a 
spread ,E' in a vector space of characteristic 2, and distinct X', Y' E ,E', choose 
any ba,;;es for X' and Y', and obtain obtain a spread set 8 of m x m matrices 
as above. Fix an arbitrary bijection 8 ~ P, of GF(2m) ~ S with Po = 0, 
and define ,r, * 8: = ,r,P, for all ,r" y E GF(2m). Then conditions (i) and (ii) 
are straightforward to check. Sec [De,§5.1] for this and additional information 
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concerning these ways of representing translation planes, as well as for a survey 
of projective planes of this type, 

SYlllplectic translation planes. Now that we have seen how to go back 
and forth between spreads, spread sets, translation planes and binary operations, 
it is time to sec how this works for symplectic spreads .E' and the corresponding 
planes A( L:'), called symplectic translation planes, 

EXAMPLl':: 4.1 continued. Starting wlth a dcsargucsian spread ,E' in 

where m is odd, by Corollary 3.3 and Proposition 3.6 we obtain an orthogonal 
spread .E in 2S~m+2, and hence a Kcrdock set and Kcrdock code. This latter 
Kcrdock set just the one in Example 2.4: the one giving rise to the original 
Kerdock code of length m + L 

Symplectic spreads +-+ symmetric spread sets. Supposc wc start with a sym~ 
plcctic sprcad ,E/. Fix distinct X' j Y' E ,E/, and a ba,;;is of X', but this timc choosc 
the basis of Y' to be the dual basis (as was also done just before Lemma 3, I), 
Thcn thc rcsulting sprcad sct S consists of symmctric matriccs. Convcrscly, cach 
sprcad sct consisting of symmctric matrices produces a symplcctic sprcad. 

Binary operations f-+ J(erdock sets. Now supposc that wc start with a binary 
opcration * satisfying condition (v) in §2. Thcn thc transformations ;T, .......... ;T, * 8 

are self~adjoint with respect to the inner product T(,ry) on GF(2m} In terms 
of an orthonormal ba,;;is of GF(2m), this mcans that ;T, .......... ;T, * 8 is rcprcscntcd 
by a symmctric matrix PI!' Conscqucntly, wc obtain a sprcad sct consisting of 
symmctric matrices, and wc havc sccn that this produccs a symplcctic sprcad. 
Lift S to a Kcrdock sct K using Proposition 3.6. A calculation shows that this 
J(erdock set is precisely the one appearing in Proposition 2.5. 

Convcrscly, starting with a Kcrdock sct K, pa,;;s to thc sct SK givcn in 
Propositiou 3,6, fix a bijection 8 ~ P, of GF(2m) ~ Sf( with Po = 0, aud 
again define ,r, * 8: = ,r,P, for all ,r, y E GF(2m} Then conditions (i,ii,iv,v) are 
straightforward to check, and (iii) can be made to hold by suitably modifying 
thc bijcction 8 .......... PI!' In othcr words, 

Tm;ORK\1,L2, Every Kcrdock set of(m + I) x (m + I) binary matrices is 
equivalent to one obtained in Proposition 2,5 using some binary operation. 

vVc havc now sccn how to go back and forth bctwccn various objccts: 

orthogonal sprcad f-+ symplcctic sprcad 
orthogonal sprcad f-+ Kcrdock sct 
Kcrdock sct f-+ symmctric sprcad sct 
Kcrdock sct f-+ binary opcration 

vVith cach objcct on thc lcft arc associatcd many on thc right; with cach on thc 
right is a,;;sociatcd csscntially just onc on thc lcft. Hcrc \;many~' and \;onc" mcan 
\;up to whatcvcr notion of cquivalcncc is appropriatc". Choiccs arc madc in cach 
casc, though this is is most cvidcnt in thc first two listcd instanccs, whcrc a choicc 
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of nonsingular point z or of Y E .E wa,;; cxplicitly made. In Proposition 3.6 we 
chose a ba,;;is, and even distinguished the la,;;t basis vector. In Proposition 2.5 and 
Theorem 4.2 a specific identification wa,;; chosen between an m + l~dimensional 
vector space and GF(2m) (j) 

EXAMPLl':: 4.:3. Start with a desarguesian symplectic spread, go up and then 
down (at the end of Section 3). This prodnces another symplectic spread. The 
binary operations in Examples 2.6 and 2.7 were obtained in this manner [Kal]. 

Isomorphisms between planes. Each orthogonal spread appears to produce 
large numbers of symplectic spreads . This leads us to the isomorphism ques~ 
tion: when are two planes A(.E:;) obtained in this manner isomorphic? If there 
is a symplectic transformation sending one spread to the other, the planes are 
certainly isomorphic. It seems surprising that the converse is both true and easy 
to prove: 

Tm;OItK\1 4.4 [Kal]. For i = 1, 2, let be a symplectic spread in a 2m~ 

dimensional symplectic space V; over Let g: A(2:J) ~ A(2:2) be an isomor­
phism that sends the point 0 to the point O. Then there is an invertible lincar 
transformation s: VI ~ V2 such that the following hold: 

(i) (2:J)s = 2:2, 
(ii) s is an isometry (i.e., (1IS, vs) = (11 , v) for 01111, v E VJ) , and 

(iii) g~ls fixes every member of 2:2. 

The set of all nonsingular linear transformations fixing every member of.E2 

(as in (iii)), together with 0, is a field. It is the largest field over which the plane 
can most readily be viewed. 

COROLLARY 4.,5. Two translation planes A(2:c ,) and A(2:c ,) arising from 
the same orthogonal spread.E are isomorphic if and only if Zl and Z2 are in the 

same orbit of the group 0(2:) of all orthogonal transformations preserving 2:. 

Theorem 4,4 also permits the determination of the full automorphism groups 
of many of these planes with little or no effort. Further information concern~ 
ing some of these planes is given in [Kal]. For now we merely note that the 
construction techniqucs for planes, llsing Kerdock sets and orthogonal and sym~ 
plectic spreads, are very flexible. They have produced plancs with relatively 
large automorphism groups [Kal] a,;; well a,;; planes with unexpectedly small 
automorphism groups [Ka5;Wi]. 

5. Further aspects of Kerdock codes 

Nonlinearity. Each code elK) is nonlincar. This is not at all obvious. 
vVhat is ea,;;y to see is that linearity would be the same as K being dosed under 
addition, which is not the ca,;;e when n > 2. In fact, a much stronger result is 
true, in view of the following elegant result of Cameron (cf. [Ka5]): 
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Tm;ORK\1 ,5.1 (Cameron). Lei W be a subspace of the space of a1l2r x 2r 
8kc1L'~8ymmctric matrices over a finite field. If every nonzero member of lV is 
nonsingular, then dimlV ::; T. 

PRom'. If (aij) E W then det(aij) = Pf(aijj", where Pf(aij) is the Pfaffian 
of (aij) and is a polynomial of degree r in the aij [La, p. 373]. Let ,11, ... ,Ad 
he a hasis of W. If A = Li for scalars ,ri, then Pf(A) = f(,r1,'" "rd) for 
a polynomial f of degree r. By the Chevalley· Warning Theorem [La, p. 140], 
f has more than one zero if d > r. Thus, we mllst have d ::; r. 0 

Extremal suhspaccs (i.e., of dimension r) have yet to he investigated. In 
particular, it is not known whether there might he interesting examples. 

Strongly regular graphs. Once again consider a 2n~di111cnsional hinary 

vector space V equipped with the quadratic f01"m Q2n, where 11 2:: 4 and 11 is even. 
There is a natural graph (Sj t) defined 011 the set 5 of nonzero singular vectors. 
This is a strongly regular graph: it is regular of degree 2(2n - 1 - f )(2n - 2 + f); 
any two adjacent vertices arc adjacent to 1+ ·1(2,,-2 - 1)(2,,-3 + I) others; and 

any two nonadjacent vertices are adjacent to (2 n - 1 - f)(2n-2 + f) others. 

Any orthogonal spread .'E in V also leads to a strongly regular graph having 
the exact same parameters (i.e., the same constants, a,;;sociated with adjacent 
and nonadjacent pairs of vertices, a,;; in the preceding paragraph). Kamely, the 

vertices of this graph are the hyperplanes of the memhers of two vertices VI j \12 
arc adjacent if and only if V1 n vl = 0 [DDT;Ka3]. This graph is isomorphic 
to the previous one if 211 = 8, and prohahly not if 211 > 8, hut this is open. 

There are analogues of these graphs ohtained from symplectic spreads, and 
similar graphs ohtained over other fields [Ka3]. 

Bounds for line~sets in with prescribed angles. There is a simple 
way to emhed into , induced hy the ohvious isomorphism f} N . 

In this manner, a code C of length N produces an example of a set of unit 
vectors; and extremal properties of sets of unit vectors imply ones for codes. 
This point of view is somewhat related to that of Sloane in these Proceedings. 

Line~scts from Kerdock codes. For example, start with any Kerdock set K 

of matrices, let elK) he as in (2.3), and write ]V = 2". Then we can form the 
following unit vectors in (where coordinates are again indexed hy vectors in 

and the exponents again are just the Kerdock codewords): 

2}/} ((_f)Qn(v)+I!'v+c) "''' where B E K,.9 E ,~E 
V Ey,} 

and 
the N = 2n standard oasis vectors and their negatives. 

Totalnumher of vectors: + 2N in 
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Another way to view this is as a set of lines in 
hy the vectors in the ahove list: 

, namely the f~spaces spanned 

( ( ( -I )Qn("J+""+') ~,,) where BEl(, .9 E ,~ E 
vEY'2 

and 
Ihe I ~spaces spanned by Ihe IV slandard basis veclors, 

Total 1111111her of lines: (IV" + 2IV )/2 in 

The distances hetween codewords in the Kerdock code imply that any t1£'O of 

these lines are either perpendicular or are at an angle of cos- 1 f/VN. In fact, 
these lines fall into (IV + 2)/2 orthonormal frames snch that the angle hetween 
memhers of different frames is always cos- 1 f/VN. This construction is due to 
Konig [Ko], hased on ideas in [eS]. Applications of these line~sets to approx· 
imation theory and to isometric emheddings of Euclidean spaces into el'~spaces 
are given in [Ko]. 

One of the starting points of the paper [eeKS] waB the ohservation that 
there is a tantalizing similarity hetween the construction of this set of lines from 
K and the construction orthogonal spreads from K in Corollary 3.3. K amely, in 
hoth situations there is an apparent a,;;ymmetry to the description, in which one 
memher of the spread, or one frame (the standard one), appears to he somehow 
distinguished. In hoth situations, this asymmetry is merely apparent, caused hy 
an initial choice of ha,;;is. If we had chosen one of the other orthonormal frames 
and written all the others in terms of it, we would have ohtained a similar 
description. This is stndied in great detail in leeKS], where it is shown that 
these 11(1 + I orthonormal frames arise in a nalural way from the 11(1 + I memhers 
of the orthogonal spread determined hy K. rvloreover, it is shown how to go hack 
from the line-set to K using a group (the stahilizer of the line-set in the real 
orthogonal group). 

lVfore generalline~scts. In general, consider a set Q of unit vectors spanning 
. :v • usc the usual dot product 111 lR' , and assume that la· bl E {O, oj for all 

a b in Q, where 0 < (1 < f is a constant: the angles hetween the lines of 
determined hy the pairs of distinct memhers of Q take on only two values, 

one of which is 90' (so Q n (-Q) = W). Delsarte, Goethals and Seidel [DGS] 

d I 1"1 (:V+") f . TI· I I . d I 1"1 :V(:V+")(1~u') prove t lat !ti::; 3 or any (1. ley a so s lowe t lat !ti::; 3 (N+2)u2 , 

provided that the denominator is positive. 
It is the ca,;;e of equality here that especially concerns us, where we have 

an extremal line~set. In that ca,;;e, define a graph on Q, joining two vectors if 
they arc perpendicular. Then this is a strongly regular graph (d. [eeKS]). 
TI . I II IV 1"1 :V(:V+"i(l~u'i >;"( >; 2) 12 . I le speCla case (1 = ! V}V, !ti = 3 (N+2)u 2 =}V }V + ! ,arIses w len 
the original code is a Kerdock code e(l() of length IV = 2m +1 In that caBe, Q 
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is a uuion of (N + 2)/2 = 2m + 1 = IKI + 1 orthonormal hases, with vectors in 
different hases not perpendicular. (K. B.-It is not known whether the extremal 

case (1 = f /.IN can only arise fro111 a Kcrdock set K as ahove.) 

There arc many other extremal results concerning Euclidean lin~scts (or 
sets of vectors) due to Delsarte, Goethals and Seidel [DGSj and Levenstein [Le], 
among others. For example, the results in [Le] merely make assllmptions ahout 
the largest value of la . hi for distinct a, h E fl, rather than the exact nature 
of the set of dot products. The arguments in these papers llSC cla,;;sical Jacohi 
polynomials. Besides heing heautiful, the methods have the added advantage 
of heing highly flexihle, permitting natural extensions to a variety of different 
contexts. For example, in §6 we will he concerned with lin~scts in complex 
vector spaces. 

A ~codc of length N is just a 511 hsct GZl of ; it is linear if it is an 
additive suhgroup. vVhile one could use the Hamming metric here, an important 

discovery in [CHKSSj waB that the Lee mclric ddll, v) leads to lovely results. 
This metric is defined as follows. The Lee weights of 0,1,2,3 E arc 0, 1,2,1 
respectively, the Lee weight WiL(11) of 11 E 2,;7 is the integral sum of the Lee 

weights of its coordinates, and ddll, v): = 1i'tdll - v). 

Gray lnap. Kext we need to recall the definition of the Gray map used in 
[CHKSSj. The following figure shows the Gray encoding of the elements of 

(or of the points I, i, -I, -i in the complex plane) as pairs of binary digits. 

The 2~adic expansion c = C1 + 2C2 of C E defines maps C I-- C1 and C I-- C2 

from to . Extend these in an ohvious way to maps 11 I-- 11i from to 

Then hinary codes are ohtained from 2"l~codcs as their images under the Gray 

map :.p: given hy 

[CHKSSj. The key property of this map is the following ohservation: 

Tm;ORK\1 6.1 [CHKSSj. The Gray map is an isomclry 

- (2,~N, Hamming metric). 
, Lee metric) 
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There is really more than one Gray map: one can he followed hy a permuta~ 
tion of the coordinates of in order to ohtain another one. This is significant 
in [CHKSS] and [CCKS] since rearrangements of coordinates arc implicitly 
allowed or needed when Gray maps are used. 

Duality. Starting with a linear code Czl ~ , there is a natural definition 
of the dual linear code CzT, using the usual dot product on . The standard 
MacWilliams identity [MS, p. 127], and the fact that the Gray map is an 
isometry, produce detailed information concerning the metric properties of C{ 
and of its hinary image under any Gray map:.p. Kamely, define the Hamming 

weight enumerator of a distanc~invariant binary code C to he the following 
polynomial in two variahles Wand X: 

Hamc(W, X) = L WN-dH(C'/)XdH(C,/), 

c'Ee 

which is independent of the choice of c E C. The standard MacWilliams identity 
a,;;serts that, for a linear binary code C, 

W-X), 

The following variant of this wa,;; proved using Theorem 6. f: 

TmJORK\1 6.2 [CHKSS]. If C is a binary code such Ihal C'P- 1 is linear. 

Ihen Ihe binary codes C and ((C'P- 1 ).L)'P arc dislance-invarianl and salisfy 

Ham((CF-')L)F(W, X) = I~I Hamc(W + 

1 Gray 

binary code 

dual 

W-X), 

We will apply this helow to some of the Kerdock codes C(K). 

2"l~valued quadratic forills. Each symmetric m x m binary matrix P 

determines a map Fp : 

The definition of Fp is ha,;;ed on the ohservation that ::::::. For 
each 1; E let {; E project onto 1; mod 2. View the entries of P as elements 
0, I of and write Fp(v):= i,Pi,t, In detail, if P = (Pij) with Pij E {O, I}, and 
if i, = (,ril, then 

Fp(v) = LPij + 2 LPij,ri,rj' 
i<i 

It is eaBY to sec that this is independent of the choice of "lift" i, = (,ri) of v. Of 
course, we could just choose i; to have coordinates equal to those of 1;, hut with 
o and f viewed as elements of (as was done for P). However, we need to he 
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ab Ie to state the following baBic property of the 
a,;;sociatcd with P: 

~va1ued quadratic form Fp 

Fp(1I + v) = Fp(1I) + Fp(v) + 2ifP{;' 

for all 11, v E This equation should be compared with the similar one (2,1) 
relating binary quadratic f01"ms and alternating bilinear f01"ms. 

2':4~Kerdocl< codes. By Proposition 3,6. each Kerdock set K is related 
to a set SK of symmetric matrices. (N .B.-Note, however that relationship 
prcsuppOSffi that a row and column have been specified.) Equation (2.3) suggests 
that we consider the following 511 bsct of 

(6,3) } , 

This is called the ~J(erdock code associated with K, One of the main results 
in [CCKS] is the following 

Tm;OItK\l 6A, C(K) is the image ofC4(SK) under a suitable Gray map. 

In particular, these two codes arc isometric when equipped, respectively, 
with the Hamming and Lee metrics. Note that the Gray map in the theorem 
depends 011 the manner in which Sx:. wa,;; obtained fro111 K in Proposition 3.6. 
Namely, we arbitrarily chose to single out the nth row and column; but we could 
just as well used the jth row and column for any j. Thus, some care is needed so 
a,;; not to be mislead by notation. In view of the preceding theorem, Z4~valued 
quadratic forms are natural objects. They were first introduced within topology 
[Br], 

The preceding theorem may leave the impr03sion that the definition of 
C,,(SK) might first have been calculated by applying \C~1 to C(K), This was 
not the case: 2':4~valued quadratic forms. and the definition of C,,(SK). arose by 
viewing the real and complex repr03entation theory of extra,;;pecial 2~groups from 
1111usual perspectives, guided by real and complex lin~sets. However, we will 
not delve into the group~theoretic a,;;pects of these codes, or into the structure of 
these line~sets, which were essential ingredients in the discovery of Zil~Kerdock 
codes, (cf [CCKS]), 

2':clinear Kerdocl< and Preparata codes. We have seen that C(K) is 
never linear (Theorem 5,1), One of the most striking discoveries in [CHKSS] 
was that the C,,(SK) of C(K) can be linear, That paper studied 
this in the case of the original Kerdock code, where SK arises, a,;; in Example 
2A. using the field multiplications GF(2m) ~ GF(2m) (although this code was 
written in an entirely different manner in that paper). In that case, SK is dearly 
dosed under addition, so that C4(SK) is a linear Zil~code. This was generalized 
in [CCKS]: 
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THl'::ORl'::M fU5. If K is a J(erdock set arising as in Proposition 2,5 by means 
of a binary operation *, then C,(S,::) is a linear Z4~code if and only if * is 2~ 
sided distributive. 

The next observation in [CHKSS] was that, if C,(S,::) is linear, then 
C4(SJ()1.. also is linear, and Theorem 6.2 gives the exact weight distribution 
of the nonlinear binary code Pm(SJ() of length 2m+1 that is the Gray image 
of C4(S,::).L The codes Pm(S,,) arc examples of Preparata codes: their weight 
distributions are the same a,;; that of code Pm of length 2m+1 discovered by 
Preparata in 1968 [Prj (cL [MS]). The fact that the weight distribntion of the 
latter codes is related to that of (the original) Kerdock codes has been a perplex~ 
ing fact for many years. The introduction of Z4~linear codes and the Gray map 
have narrowed this gap, providing codes in some precise sense dual to Kerdock 
codes. If m = 3 then Pm (8,,) and Pm are eqnivalent to the Nordstrom~Robinson 
code. However, if m 2: 5 then Pm(S,,) has the property that the Z2~snbspace 

of it spans ha,;; vectors of weight 2, which is not the case for the original 
Preparata codes: the codes Pm and Pm(SJ() arc never quasi~equiva1ent ifm 2:: 5 
(proved in [CHKSS] for the case stndied there, and for any Kerdock set J( in 
[CCKS]). The fact that Pm (S,,) is a sort of dnal of C,(J() prompted the anthors 
of [CHKSS] to "propose that this is the 'correct' way to define these codes" (i.e., 
codes with Preparata~s weight distribution). 

Extremal properly. The importance of Preparata codes (either the original 
versions Pm or the new ones Pm(8,,)) takes ns back to the start of this paper. 
These codes are extremal in the following sense. They have length N = 2m +1 , 

minimum distance 6, and a,;; many codewords as possible subject to these con~ 
ditions, namely, 2N~2(m+l). :Moreover, no linear code can be extremal in this 
sense [GS]. Since the size of any linear code is a power of 2, it follows that any 
linear code with minimum distance at least 6 has at most half as many codewords 
as Preparata codes of the same length. 

In [CHKSS] it is also shown that other nonlinear snbcodes of RM(2, 11) are 
Gray images of codes. This groulldbreaking paper ha,;; produced an 
outpouring of further research on Z4~codes. This has led to the consideration of 
codes over for alII, and even more recently to codes over the ring of 2~adic 
integers by using classical Hensel lifts. 

As already observed in § I, Kerdock and other codes have the 
striking properties of being optimal from a combinatorial point of view and yet 
having linear descriptions that simplify both their study and implementation. 

Equivalence. Two Z4~codes are equivalent if one can be gotten from the 
other by a permutation of coordinates followed by multiplication by a single 
diagonal matrix of ± 1 's. Two Z4~codes of length N are quasi~equiva1ent if one 
is equivalent to a Z;7~translate of the other. 

Equivalences among the codes C4(SJ() and among the codes Pm(SJ() are 
discnssed at length in [CCKS]. The resnlts arc similar to Theorem 3.4. It is also 
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shown that, when m is composite, there is a Kcrdock code Czl(SK) and 
a Preparata code Pm(8,,) not qnasi~eqnivalent to the ones stndied in [CHKSS]. 
rvlorc recently, vVilliams proved the following far stronger result: 

Tm;ORK\1 6.6 [Wi]. lfm is odd and has r 2: 2 prim.e faclors. atlcast one 
of which is 2:: 7) then there arc at lcast 1m pairwise qua8i~incquivalcnt 

~"ne('.r lIerdock and Preparata codes of length 2m+l. 

These codes are constrncted aB follows. There is a seqnence GF(2m) J J 

... J J GF(2) of fields. For each i 2: I let 7]: GF(2m) - F, he the trace 

map and let (i E vVilliams greatly generalized Example 2.6 hy repeated llSC 

of the np and down process at the end of Section 3. He showed that the following 
2~sided distrihntive hinary operation on G F( 2m ) satisfies (i-v): 

He then handled the qllaE;i~cqllivalcncc of all of the resulting Kcrdock 

codes (ohtained nsing Propositions 2.5 and 3.6 together with (6.3)) in order 
to prove Theorem 6.6. Planes were a crucial tool in this, llsing Theorem 4.4. 
Thns, planes enter not only into the constrnction of the codes qK), ::::.,(8,,) and 
Pm (8,,), hnt also into the stndy of their strncture. 

Bounds for line~sets in with prescribed angles. As in the case 
of the llsllal Kcrdock codes, the 2"l~Kcrdock codes produce lin~scts in V1a 

the isomorphism ~ {i} N', where N' 2m . Thus, the 2"l~Kerdock code 

(6.3) produces the following set of lines of (where the exponents are just the 
/'",~Kerdock codewords): 

((iFP(V)+2.H'I+")VEZ~"') 1£'here P ESK j 8E j~E 
and 
the f ~spaces spanned by the N' = 2m standard basis vectors. 

Totalnumher of lines: 2N'2 + 2N' in 

This time the distances hetween codewords in the 2"l~Kerdock code imply that 
any t1£'O of these lines are either perpendicular or are at an angle of COS~I f /.fN'. 
These lines fall into N' + f orthonormal frames such that the angle hetween 
memhers of different frames is always cos~ 1 f /.fN'. One can pass hack and 

• • 'jm+l • • 
forth hetween these Imc-sets and those m n:k~ dIscussed earher, each complex 

lin~set producing an essentially unique real one hut each real one producing 
many inequivalent complex ones [CCKS]. 

Once again there are general hounds on complex lin~sets in [DGS] and 
[Le]; strongly regular graphs arise in suitahle ca,;;es of equality; and the lin~ 
sets ohtained from 2"l~Kerdock codes are examples of extremal line~scts (cf. 
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[CCKS]). Once again there are also applications to approximation theory and 
to isometric embeddillgs [Ko]. 

Quaternionic codes. These idea,;; arc pursued slightly further in [Ka7] , where 
quaternionic line~sets arc examined. Extremal ones arc constructed in quater~ 
nionic space , where Nil = . Thffie arise, in turn, from quaternionic 
Kerdock codes of length Nil, which arc suitable subsets of QJ:" obtained using 
Kerdock sets of m + I x m + 1 matrices. 

In general, a quaternionic code of length N is simply a su bset of QJ:. The 
study of such codffi suffers from various apparent disadvantagE's. There is no 
way to convert to additive notation, and in particular no reasonable way to 
introduce a ring structure on the coordinates, a,;; in the ca,;;es of codes over or 

Thus, they also lack one of the most basic a,;;pects of codes over or 

the notion of a dual code: there is no natural inller product 011 su bsets of QJ: 
that generalizes the dot product on or , since only one binary operation is 
available. Therefore, it is not surprising that, a,;; yet, there arc almost 110 results 
concerning quaternionic codes. 

7. Further directions 

In §5 we discussed subsets of arising from binary codes C, obtained by 
replacing by {±l}. In a similar manner, subsets of eN arise from Z4~codffi 
by replacing by {± I, ±i} = (i}. The obvions metric in is the one indnced 
by the usual hermitian inner product. The natural metrics on and arc 
also natural within coding theory: 

• the Hamming metric on ;::::::: {± I}N is half of the square of the Euclidean 
metric restricted to the sn bset {± l) N of ; and 

• the Lee metric on ;::::::: {i}N is half of the square of the hermitian metric 
restricted to the sn bset (i} N of 

These statements arc entirely elementary to check. Nevertheless, they suggested 
in [Ka7] that 

• :;the natural metric" on QJ: is half of the square of the hermitian metric 
restricted to the sn bset Qr: of 

(Note that this :;hamiltollian metric" restricts to the Lee metric on (i}N.) A 
tentative discussion of this can be found in that reference. 

vVe have merely hinted at group~theoretic a,;;pects of the su bject of this 
paper; see [Kal;CCKS]. A connection with simple complex Lie algebras IS 

surveyed in [Ka6]. 
vVe also have not spent much time discussing the affine planes ACE.:). 
The methods in [CHKSS] involve the nse of a ring of size 4m in place of 

GF(2m). This leads into the realm of cyclic codes over This fnndamental 
new direction in coding theory has not been dealt with at all in the present 
survey. 
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