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Codes, quadratic forms and finite geometries

WILLIAM M. KANTOR
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1. Introduction

A hmazy srror-correcting code O of length N is just a subset of thx? vertor
space :m) . the most standard ones being fincar codes: subspaces of 2 mj} . The
Hamamang distance dyg between two veetors is the mimber of places they differ:

d ((2:), () = (# 1 os # 1),

Omne of the hasic problems in the theory of error—correcting codes s to construct
and study codes O of length N and large size /O] subject to the condition that
the minimum of the distances between any two different “codewords™ n € is
some given integer d, the mmimum distance of the code. OF particular interest
are those eodes that are extremal subjoct 1o such a condition. Evideutly, such
questions are highly combinatorial. Our purpose is $o discuss aspecis that are
also within finite geometry and algebra. We will only touch on one type of con-
nection of coding theory with finite geometry, one rich in a number of additional
directions (projective planes, quadratic forms, Fuclidean geometry, and groups).
Many other connections with finite geometry are provided in [M§].

Another way to view a code of length N is as a set of subsets of an N-clement
set. The transition between these views is elementary, just using an ordering
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of the N-set to associate an NV-tuple (1.e., vector) with each subset. Addition
becomes symmetrie differonce, and the Hamming distance is just the size of the
symmettic difference of the corresponding subsets, The size of a subsct is the
weight of the corresponding word: the number of nonzero coordinates.

One way to search for families of subsets of a set is to Impose additional
structure on the set. We will assume throughout that the underiying set is itsclf
a vertor space Za, 50 that N = 27, The most obvious family of subsets consists
of all affine hyvperplanes: all » — {~dimensional subspaces and thelr translates,
It is casy to see that, if the empty set and the whole space Z5 are also inelnded,
the result is a subspace of Z5 |, called the first order Recd-Muller code RM (1, 7).
Note that EM (1, =) is closely tied to the binary affine space AG(n, 2) based on
Za the analogue, in this binary setting, of real affine space based on a real
vector space. Thus, we will never be far from this binary affines space,

Forms other than Haear ones can be used. An especially rich source of “good”
codes is the sccond order Reed-Muller code RM{2, n), consisting of all of the
zero-sets of all binary polynomials of degree at most 2 in n variables, That is,
RAM{(2, 7n) has subcodes that behave in intoresting manners, and in partieular,
extremal subeodes; historieally, this has besn the reason for the time devoted
to subeodes of BM(2, n) by mumerous anthors, We will focus on some of those
arising from untons of cosets of RM(1,n) in BEM{(2 =),

These Reed-Muller codes can be written as follows in terms of coordinates

Y,

(where some ordering is chosen for 7, ):

RM(L,n)={{s-v+e)pepr | SEZL e €T}

zn

RM(2,n) ={(Qv)+sv+&).ezr | @ 15 a quadratic form on Z5, s € 25,2 € Za},
where quadratic forms will be defined in the next section. Quadratic forms
will then be used to construct {(nonlincar) subcodes of RM (2, n) called Aerdock
codes. In §83.4 we will see entirely different views of these codes 10 terms of
orthogonal geometries and projective planes, which will lead vs o structural
properties and nonuniguensss results for the codes and for the various geometric
objects associated with them.

The codes we focus on are noenlincar: they are not subgroups of Z5. Histori-
cally, lincar codes have been the most important codes, since they are casier 1o
discover, deseribe, encode and decode. On the other hand, the nonlinear codes
studied here have the advantage of being superior from a combinatorial point of
view: they have at least twice as many codewords as any hinear code with same
length and minimum distance. A surprising breakthrough in coding theory is
that some of these nonlinear codes can be viewad as Hacar codes over Za, rather
than Ze [CHKSS], and hence have the best of both worlds: sunerior deseription
and implementation, and yet combinatorial optimality,

Much of this paper can be viewed as an introduction to Kerdock and other
interesting subcodes of BM (2, n) described in detail in [M8], codes which have
Just been investigated anew in [CHKSS] and [CCKS] from the vantage point
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of Zy (cf. §6). The smallest example is the Nordstrom-Rebivson code, described
in Calderbank’s paper in these Procecdings. Subeodes of EM(2,n) also arose
in the study, by Cameron and Seidel [CS], of extremal line-sets in Euclidsan
spaces (of. §85.4).

We will deseribe large numbers of codes by means of projective planes and
nonassociative “algebras”. This will lead to a better understanding of some of
the mathematical underpinnings of the newly—discovered aspects of codes over
Za, besides producing new connections with other arcas of mathematics.

2. Quadratic forms and Kerdock codes

Quadratic forms are standard in algebra and geometry. Care is needed when
dealing with charactoristic 2, but is well worth the offort: large numbers of
important geomeiric apd combinatorial objects (as well as groups) arisce from
them (ef. [MS8] for many examples).

Quadratic and aliernating forms. A gquadratic form on a binary vector
space ¥V is a map : V — Za such that

(2.1 (u,0) = Q{u+v) — Qu) — Qiv)

is a symmetric bilinear form on V. In terms of coordinates, if V = Z5 then )
looks like
Q(;‘l’:;> s wut ,;I.-’n) m Zﬁgj;l?g;l?}'
igi

for some scalars oy, and {{=:), (1)) = }_:2.3. byaga;, where by = b = agy for
i< jand by = 0. The rank of , or of 1ts associated bilinear form, s just
the rank of the matrix B = {#;;) representing the bilincar form; this is also the
codimension of the subspace consisting of all of the vectors v such that {», V) = 0.
Also, ) and the bilinear form are called nonsingular if B 1s (equivalently, if
(v, V)=0=v=10).

The matrix B is skew-symmeiric (symmetric with 0 diagonal); its rank noces-
sarily is even. The associated bilinear form is called an alfernating bilincar form
() ) = (v,u) and (v, 0) = 0 for all u, 2,

A vector space oquipped with a nonsingular alternating bilinear form (1, ) is
called a symplectic space. By a linear change of variables, any such form on W:ir
can be transformed into the form Y . (2:4i4r — ZTopei) (1., any nonsingular
alternating bilinear form is equivaient to the indicated one). An isomeiry, or a
symplectic transformation, is a novsingular linear transformation g of the vector
space that proserves the form: (ug, vg) = (1, v) for all vectors u, v

Singular vectors of guadratic forms. It is casy to count the numbor of
zeros {stnguler vectors) of guadratic forms over finite fields, Here we will only
deal with the field Za.

Let €)a, denote the guadratic form on Z50ZL defined by Quele, ) = @y for all

il

o,y € Z5 (ordinary dot product). Any quadratic form on Z5 can be transformed,
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using an affine change of coordinates (i.e., a transformation v — v A +¢ for some

invertible n x 7 matrix A and some ¢ € Z5) to one of the following:

QEr: QE?“@" Loar Qﬁr‘f"zg

where 2 is a variable not among those used for Que (“Dickson’s Theorem”
[Dic, p. 197], of. [MS p. 438]). This makes it very sasy to determine the
mumber of zeros (singular vectors) of €0 an casy caleulation shows that

€Que and (Qar + | have, respectively, cxactly

grmb o aneler gpd on-l _onel-t aorng in 70

(22)

It is straightforward to deduce that any ceset (Q(v)). -+ EAM (1, n), where @ has
rank 2r, has weight distribution as follows:

weight # of vectors of 1hal weight
anl . 2?2»»:“@ 22?‘

anl 2?1-1»} . 22r+§

2?:»»1 _E_anrmi 22:»

{Note that the complements of the vectors of weight 2771 4+ 2771 are those of
weight 271 — 2771 )

We will be interested in the largest possible weights, and honce will restrict
to the case in which n = 2r. Then any quadratic form of rank » in » variables
can be transformed, as above, to either @), or ., + 1, in which case our coset
becomes (Qn(v))e + RAM (1, n). Moreover, the above weight distribution is then
even simpler (there are no vectors of weight 27713,

cosels, Sinee our characteristic is 2, unlike the familiar situation with real
quadratic forms it is not possible to recover € from the bilinear form (u, 4):
many different quadratic forms determine the same symmetric bilinear form.
For any quadratic form @ on Z5, the coset (Q(v))y + RM (L, n) “contains” all
quadraiic forms €Y determining the same bilinear form as €). Namely, if £ and
£ determine the same bilincar form, then

(1,0) = QUu+1) = Q) = Q(v) = Q' (u+ ) — Q') - Q(v)

ey

for all w, v € Z5, and then € — €)' is clearly a Hnear functional Z7 — Zs; this
argument can be reversed.

We now turn 3o the behavior of a wnton of cosets (Q{v)), + BEM (1, n), where
2 is allowed to run over a family F of gquadratic forms on Z§ cach of which
has rank n. However, we require oven more: we want the distance between the
zero sets of any two different forms Q. 6F € F to be large, which means that
£} — ) should he another quadratic form of rank n. This condition is casier 1o

understand in terms of the corresponding bilinear forms-or, better vet, in terms
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of the skew-symmetric matrices 8, B determined by these bilinear forms: our
requirement is that B— B is nonsingular, Thus, we are led 1o consider aset X of
skew-symmetric n x n matrices the difference of any two of which is nonsingular.
Then any two of these matrices have different first rows, so that there can be at
most 271 such matrices. The extremal case is the one of special interest here.

Kerdock sets and Kerdock codes. Kerdock sets and their associated
codes and geometries are the principal subject of this paper.

A Kerdock sei of n < n binary matrices is a family K of 2771 skew-symmetric
n x n binary mairices, containing O, such that the difference of any two is
nonsingular. (Note that n s oven sinee we are dealing with skew-symmetric
matrices.) For the reason indicated above, this number 2777 is extremal. In
combinatorial setiings, exiromal configurations frequently have rich structures,
This is very much the case with Kerdock sets, Wo will construet such sots very
soon, but fivst we construct codes using them.

Each Kerdock set K determines a Kerdock code C(K) = Upe[(Q@r(2))y +
RAM(1,n)], where Qg denotes any quadratic form whose associated bilinear form
isuByt Thus, if B = (b;) and if U denotes the upper triangalar matrix obtained
from B by replacing all entries below the diagoval by 0 (so that U + U7 = B),
then we may assume that Qp(s) = sUs'. Explicitly, in terms of veetors we then
have

(2.3) Cik): = {(Qg}(i;) R mf’wf)vézﬁ: i BekK. se ';"gf & T }

(K} is a code of length N = 27 {where n is even), consisting of 271272 = 227
codewords (i.e., vectors). Any ¢ € C(K) partitions C(K) in terms of distances,
as follows:

dislance from ¢ # of words al thatl distance  comments

0 ! ¢

gr—1_ pla=2}/2  gnign-1_ 1y

A 20+l

P A A VA §

2" ! ¢+ (the all-1 vector)

- . ~ avin
Minimum distangs; 201 — 9ln-23/2

The property that the distribution of distancss is independent of the choice
of ¢ is called distance—tnvartance. It as an approximation to the Hncarity of a
code, this property being trivial for such codes. (That is, if € is a linear code
then the translations v w1 4 ¢ form a group of antomorphisms transitive on the
seb of codewords, so that distance—invariance is obvious.) as we will sco below
{Theorem 5.1), C(X) is nonlinear.
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Recovering K from C(K). RM(1,n) is the set of codewords of weight 0, 2771
or 2. C{K) 38 a union of cosets of RA{L, n), cach of which corresponds 0 a
unigue skew-symmetrie matrix, These matrices comprise K.

Ezamples of Kerdock sefs,
Here is an example of a st of 2771 quadratic forms when n = 4;
{0, wyma -+ wama, T2+ 212y b Tty F Loy,
e+ Taly-+Taly, TP 08P EaF ey, T 2alg-H Dol -+ el
Tyds b Tyl b Baly, BT b Tyms b Temy b parg )l
This desceripiion is opague. It is not motivated (nor will our other examples be
well-motivated uniil later, when we get to projective planes), and it is tedious
to verify that all differences of these quadratic forms are nonsingular (ef. [Li]).
All remaining examples discussed here will be obtained from the ficld GF(2™),
where m s add (this will be “n— 17 in our previous notation]. Let 7' GF(27] —
GF(2) be the trace map: Tiz) = Z:’;}l 2. This determines an inner product
T{ay) on GF2™). There is an orthonormal basis that lets us dentify GF(2™)
equipped with this inner product and Z5° equipped with its usual dot product,
We are searching for Kerdock sets, which require even—dimensional spaces
whercas m is odd. Hence, we boost the dimension by 1, and consider GF{27) &
Za, equipped with the inner product ((x,a), (. 5))}: = T{xy) + ab. In place
of skew-symmetric matrices we will use lincar operators M GF(2™) & 2 —
GF{2™) @ Za such that ({z,a), (z, 0)M) = 0 for all (z,a) € GF(2™)  Zy. We
will comstruct familiss of such Hnear operators M by using suitable binary oper-
ations on GF{2™).

Exampre 2.4, Consider the set K of 2™ Hnear operators M, GF2T ) DZEy —
GF{27) @ Za given by

(i, )M, = (ws® + sT(sz) +as, T(sz)) .

This definition has been pulled out of the blue, and will be motivated later in
terms of projective planes (34). For now, we nole that these matrices M, form
a Kerdock sel K. First, M, is skew—symmetric;

((z.a), (x, a)M,) = T'{e[es” + sT(s2) + as]) + al'(sz) =0

since T{zws®) = Ti{zs)? = T{xsT(s2)). Next, M, — M, is nonsingular whenever

r# g iof
(27 + rT(rz) +ar, T(rz)) = (25° + §T(s2) +as, T(sx)),
then T{rz) = T(sz) and #r2 + rT(s2) + ar = 5% + sT(s2) +as, so that
wlr+ ) +(r+s)T(sv) +alr+ 5 =0,

re+ sz +T(sa)+a=10,
Tlrx)+Tse)+Ts2)+a=10
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“¥

{this uses the fact that m is odd, so that 7(1) = 1), and hence
re+ sz =0="T(sz) +a

Thus, M. — M, is nonsingular, as required,

By (2.3). this Kerdock set produces a Kerdock code C(X). This is the origi-
nal code discovered hy Kerdock [Ke] in 1972 (in rather different language); <f.
[Di;MS:Kal]. When m = 3 this is the Nordstrom-RBobinson code of length 16.
Moreover, we now see that a Kerdock code of length 27 exisis for every even n.

Kerdock set equivalence. Kerdock sets Ky and Ks of n % n matrices are
cquivalent if there 1s an invertible n x n matrix A and a skew-symmetric matrix
M such that A A+ M = Ks. One of our goals is 1o deseribe large numbers
of inequivalent Kerdock sets (and corresponding codes) by means of projective
planes and nonassociative “algebras”.

Example 2.4 used field multiplication (the term xs%). As we will seen in §4,
important types of projective planes are described using more general types of
binary operations. Hence, we are led to introduce those operations important in
our coding-theoretic context. These have the advantage of heing the quickest
way to write down what amount to ol Kerdock sets (ef. Theorem 4.2]..

Binary operaltions. Consider a binary operation * on GF(2™) related to
field multiplication by the following conditions (for all z, ¥, 2 € GF(2™)):
(i) (4+yj*rz=wxz+ gz (loft distribusivity),
(i) zxy=erz=u0w=00ry =2,
(111} Taz(z+y)) = T'(ay), and
{iv) axy=0 > =00 y=10.
Also, (311} taplies
(v) Tizly=*2)) =Tlylz+z))
(namely, in (Hi) replace @ hy @ -+ 2, @ and z, and subtract). This condition is
more sseful for our purposes; but if {v) holds and (i1} does not, it 15 easy to
modify + insignificantly so that (iii) will hold.

A fundamental aspect of the subject matter in this paper is that (i) and (ii)
are familiar in the theory of projective planes (ef. §4). These amount to some
distorted versions of fields; for example, if both distributive laws hold then we
are dealing with a special type of (nonassociative) division algebra {(except for
the lack of an identity element). It is just such field-like algebras that arise n
the coordinatization of projective planes. Thus, one can expeet that there will
he further interactions between coding theory and planes, with a great deal to
be learned in cach discipline from the other one.

In Example 24, z + y = zy” (note that T{z(z + y) = T{z*y*) = T(zy), which
explains the use of xy” instead of the more natural-looking =y). The argument
used in that example sssentially shows that



3 WILLIAM M. KANTOH

ProrosiTion 2.5, The maps
Myi{w,a) — (& s+ sT{s2) -+ as, T{sx)), s € GF(2™),
form a Kerdeock sel,

Namely, proceed exactly as before in order to obtain the equation zer-+rss =
(r+s)[T(se) + o), I (2, q) also satisfies Tisz) +a = 0then, by (v}, 2 =0 Tt
follows that the dimension of the kernel of M. — M, is ab most 1, and henes is
0 sinee m -+ 1 is even and M. — M, is skew—symmetric,

Examprie 2.6, Lot 7Y depoic the trace map from GF(2™) to some proper

wx 5= x5 4+ Ti(e)s + Ti(zs)

satisfies (1-v). (N.B.—If we allowed F' = Z; here, then the Kerdock set obtained
in this manner would be the same as the one obtaived in Example 2.4.)

Omnce again, these maps appear to have come from nowhere, but will turn out
to be motivated by projective planes,

Exavrrr 2.7. Lot 77 again denote the trace map from GF(27) to some
proper subfield F # 7, let o € F — Zs, and write

w5 =8+ asTi(rs).

Then this operation satisfies {1+v), but this time only one distributive law is
satisfied. Once again a Kerdock set is obtained using the preceding proposition.

It might appear that the ahove conditions {1-v} are so strong as to prevent
the existence of many examples. This is not the case. Every RKerdock set is, in
a suitable sense, cquivalent to one of those in Proposition 2.5 (sec the Remark
following Proposition 3.6). One can, of course, ask whether X determines the
“algebra” (GF(2™), +, ) uniquely up o something like isomorphism. However,
this also is not the case if m > b there s a strong version of non-uniquensss,
which is essentially the content of Theorem 4.4. Moreover, there are large num-
hers of inequivalent Kerdock sets (¢f. Theorem 3.5).

3. Finite orthogonal geometries’

Quadratic forms arise for us in two different ways. On the ons hand, we have
used them in order o covstruct codes (second order Reed-Muller codes and
Kerdock codes). On the other hand, we will use them in order to construct a
very different-looking type of confignration in larger vector spaces (“orthogonal
spreads” ). We will also see that the two ways to use quadratic forms are nicely
linked, albsit in a somewhat indireet manner.

b Much of this section anly uses the fast that the Beld s Bnite of characteristic 2,

rather than Zn. The exception is the part of Thesrem 3.4 that concerns codes,
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An orthogonal geometry. In order o have a more geometric view of skew~
symmetric matrices, we will double the dimension and consider one conerste type
of orthogonal geometry, Let V = ZI® = X @ ¥ for subspaces X and ¥ both of
which are identified with Z3. Equip V with the quadratic form ) = Qa, (s0 that
t2{z, ¥) = z-y), with associated bilinear form { , ). The notion of porpendicularity
is as usual. However, note that every vector is perpendicular to itsell {since
{u, 1) = 0). If W is any subspace of V then Whi= lv € V | (0, W) = 0} is a

stihspace of dimension dim V' — dim V. For example, Xt = X and ¥+ = V.

Totally singular subspaces. A subspace W is totally singuler QW) = 0, in
which case it also is perpendicular to itself (i.e., W C W since (W, 1) = 0),
and hence dimW < » (since 2r = dimW + dim W+ > 2dimW). Thus, X and
Y arc examples of totally singular n-spaces.”

Orthogonal spreads. By (2.2), V bas (2® — 1){2*7" + 1) nonzero singular
vectors. Each totally singular n-space consists of singular vectors, and contains
2% — 1 nonzero oness. This aumber divides the number of singular vectors and
suggests that there might be families £ of totally singular n-spaces that partition
the set of all nonzero singular vectors. Sueh a family of 2771 4+ 1 subspaces is
called an orthogonal spread. We will see soon that such a family cannot exist
unless n s even, and that there 1s always at least one such family when n is even.

Isamctrics. An asometry of Vs a nonsingular lincar transformation proserv-
ing @ = Qsn (1o, anopsingular inear travsformation I such that Q7)) = Q(v)
for all v € V); these form a group, the erthogenal group O {(2n,2) of V. (Here,
the “+7 refers 1o the fact that V has totally singular n—spaces.) This group
is transitive on the ordered pairs of totally singular n—spaces having only 0 in
common: from the point of view of this orthogonal geometry of V', the palr XY
we started with is indistinguishable from any other such pair.

Fix a basis xy,...,2, of X and let y4,... .4, be the dual basis of ¥:
{z:,1;) = &;. Write matrices with respect to the basis 2y, ..., 2o, 11, U

Leava 3.1,

(i) The wsometrics of V that fix cocry vector of ¥ arc just thosce hnoar trans-
formations whose matrices are ({‘; ”if} for some bmary skew-symmeiric
n xn matriz M.
(1) These wsomeirics form a group tsomerphic 1o the additive group of oll
binary skew-symmelric n X n mailrices,
(m) The 1somelries fizing ¥ are just thosc linear transformations whose ma-
trices are (A(;i g)({‘; MY, where A runs through the group GL{n,2) of

afl nonsingular v x n binary matrices and M 15 as i (1),

9 e - . . . . ;e
< Similarly, in the case of a 2m—dimensional symplectic space, a sebspace W s tolaliy

isotropic f W C W, ir which case dim W < m.



H WILLIAM M. KANTOH

Proor,

PR -
[ 1

and B. Then € is preserved f and only = (2 M -+ yB) = 2 - y for all
x,y, which is the case if and ooly f M is shew-symmetric (use y = 0)
and B = I

o 1o MAN LN { MN

(i) (G 1)(9 I)m (G B )

(111) Any such isometry g induces a linear transformation on ¥, with matrix

{i] Any such isometry must look like ( ) for some n % n matrices A

A, say. The matrix (g A{i,) ariscs from an isometry i of V, and A~y

s asin (1), O

Levnva 3.2,

(i) Euery totally singular n-space £ of V such that Y N Z =0 has the form

X {‘; ‘zf for a unigue skew-symmeiric mairiz M. Conversely, if M

18 4 skew-symmetric binary n ¥ n matriz, then "“{(é fif) 15 a totally
singular n-space having only 0 in commeon with Y.

{i1) The dimension of the infersection of any two such n-spaces "“{({‘; M)

!
and Y((‘; ‘:f) 15 7t — rank (M — N

Proor,

(i) Weean write 7 = {(2,2AM) | 2 &€ X'} for aunique » x n matrix M, The
requirement that Z be totally singular is equivalent to baving e 2M = 0
for all # € X and this is precisely the condition of skew-symmetry,

(i) The desived dimension is that of the sot of solutions to the following
systemn of lincar equations: {(z,2M) = (¢, aN). O

Part (1) says that Z consists of all of the vectors of the form (2, 2 M); or,
in more familiar terms, £ is the subspace “y = zA{”. Note that the groun in
Lemma 3.1(11) is transitive on the sot of subspaces 7 ocourring in Lemima 3.2(3).
By Lomma 3.2(31), of some such parr of subspaces meet only ot 0, then n must be
cvet.

In view of the definition of Kerdock sets in §2, we have the

CoroLLary 3.3.

(1) If K 15 a Kerdock set of n < n skew-symmetric binary matrices, then

e ;3—'}U{:{(é ?) | ;ua;;c}

16 an orthogonal spread of V.
(1) Conversely, cvery orthogonal spread of Vo that contams both X and ¥
arises as i (1),

Evidently, in (i) ¥ depends on KA. Is it possible that inequivalent chivlecs
for K produce “equivalent” orthogonal spreads 27 The answer s “yes”! soo
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Theorem 3.4 and the remark following 1. In any event, we now see that an
arthogonal spread exists if and only if n s cven,

Equivalence of equivalences. We now turn to the relationshins between
pairs of Rerdock codes, pairs of Kerdock sets, and pairs of orthogonal spreads.

An eguzvalence betwoen binary codes of length N is a permutation of coordi-
nates sending one to the other. Automorphisms of codes are then equivalences of
a code with itself. Since our coordinates are indexed by vectors in Z5, an equiv-
alence will look like (az}),ﬁé;’jg - (a%(,)ﬂ&g; for a permutation o of Z5. For exam-
ple, each translation v — v+ ¢ of Z§ 1s an antomorphism of C(AD) sinee it leaves
invariant each coset (Q))s +EM (L n). (Namely, Qlu+c) = Qu)+Qle)+ (v, o),
where (Q{e) + (v, ¢))y € RAM(1,n).)

A guasi-equivalence between binary codes of length N is a map of the form
{2 )y (ty s + 4 )y, sending ove $0 the other, where o is a permutation of coor-
dinates and (e ) 16 some vector in W? Thus, two codes are quasi—equivalent if
and only each is the image of the other by means of an isometry of the underlying
metric space (’"’"E’ , Hamming metric). In the case of linear codes, this notion is
almost the same as equivalence. For a nonlinear code €, even one containing 0,
it is noticeably weaker: if w € ¢, thon C and O - w are guasi-equivalent bt
not equivalent, and yet clearly they are not “significantly” different.

Equivalence of Kerdock sets was defined sarlier.

Orthogonal spreads 3y and Bs of V are eguivalent if there is an isometry of
V osending 2 to Ds.

TaroreM 3.4, Let Ky and Ks be Kerdock sels of n x n bmary matrices.
Then the following are equivalent:
(i) K1 and Ky are equivalent;
(i) C1KL) and C(Ks) are quasi-equivalent;
(111) The orthogonal spreads 3y and Yo of V, delermined, respectively, by Ky
and Ks via Corollary 3.301), are equivalent by an isomeiry of V' sending
Y to dself.

Proor. {(ii)=-(1) Supposec that g: (. )y — (oo + 00 e 16 @ quasi-cquivalence
sending C{AL) to CiKy). Then (D)0 = (e, 18 In C{Ks), and hence has the
form (Q(v) + 5 - v -+ 2), for some quadratic form Q, some s € Z3, and ¢ = £ 1,
Let i be the map (o )y = (s -+ ¢y )w. Then gh sends (ay)y = (840w, and sonds
Ciky) to C) + (ea)p = ClRs) + (1), which still contains BAM (1, n).

The words in C(K1) of weight 2771, and the words in C(Ks) + (Q{2)), of
weight 2771, are the hyperplanes of AG(n,2), corresponding to RM(L,n). It
follows that o bas the form v = 24 4w for some invertible n x n matrix A and
soMe 1 € Zay; we may asstime that w = 0 since v = v+ 1w is an automorphism
of CKy). Each word of C(A) or C{Ky) containing 0 {L.e., having 1 in the 0
position) arises from a quadratic form. Henee, cach quadratic form € giving
rise to a eodeword of CUK;) produces, via A, a quadratie Torm Qu + 0 giving
rise to a codeword of C{Ks) + (Q(2))y; that is, Q1{vA) = Qs -+ Q)(¥) for all
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w Tl

v € Zy. I M and By are the matrices of the alternating bilinear forms produced
by @ and £, then this means that (uA) B (v AV = u( Bs -+ Mr for all 1, ¢, and
henee that AB A" = By + M.

(1)=+(i1) Reverse the above argument.

(=) If A b an invertible n % n matrix and A s a shkew-symmetric
matrix such that A" A+ M = Ky, then the matrix pletured in Lemma 3.1(3i0)
sends Yo to 3. For the converse, reverse the argument, [

The above theorem needs 1o be examined carcfully. Inequivalent Kerdock
sots can produce cquivalent orthogonal spreads, a possibly confusing fact that
has that has occasionally been overlooked [Li;CL]. Many examples of this phe
nomenon oxist. In fact, this situation is the norm: i occurs whenover the group
(%) of orthogonal transformations prescrving an orthogonal spread X s in-
transitive on X, and there appear to be few examples where G(E) is actually
transitive on 1.

Ineguivalent codes. Assume that m is odd and m 2> 5. In [Kal] it is shown
that Kerdock codes arising from Examples 2.6 and 2.7 are not quasi-equivalent;
and that two codes arising from Example 2.6 or 2.7 are quasi-equivalent if
and only if they are equivalent under a permutation of GF{(27) of the form
o+ qx” + b for some o, b € GF(2™), a £ 0, and some ¢ € AutGF{(27), By
using intermediate fields in order to vary these consiructions (a hint of this is in
Examples 2.6 and 2.7}, the following much stronger result has been proved by
Williams:

TaeoreM 3.5 [Wi]. Let m be an odd miteger > L. Let mymy, . .. mp |
be a sequence of r + 2 > 3 dwisors of m such that each is a proper divisor of
the preceding one. If m > Ty then there arc more than 207U fm pairwise
mcquivafent Kerdock sets of (m -+ 1) x (m + 1) matrices, and hence at least that

many pairwise guasi-trequivaleni Kerdock codes of length 2711,

A similar result from [Wi] is found below in Theorem 6.8, Williams expects
to prove similar resulis for analogues of Example 2.7, producing Kerdock sets
admitting a evelic antomorphism group fixing one member and $ransitive on the
remaining ones (and, more generally, producing orthogonal spreads admitting a
cyelie automorphism group fixing two members and transitive on the remaining
ones). Much weaker versions of this type of result are contained in [Kal,Ka2],
There is also the following related result:

THEOREM 3.5" [KW]. Let m be an odd infeger > L Let momy, . o0 1, L
be a sequence of v 42 > 3 divisors of m such 1hal each 15 a proper divisor of the
preceding ome, Then there are af {east [IT5(2™ + 1)]/2my pairwise incquivaient
orthegonal sproads X an the uswal binary orthogonal 2m-b2-space such that (G(2))
fras a cychic subgroup transtitve on 3.

These resuits, and the determination of the automorphism groups of the
Rerdock sets or codes as well as the automorphism groups of the orthogonal
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spreads, rest on Theorem 3.4 together with Theorem 4.4 below. First we nesd
to soe how to construct orthogonal spreads from other geometric objects,

To symplectic spreads. Let z denote any nonsingular l-space of V', so
that Q(z) # 0. If Z is any totally singular n—space of V then Z+ = Z, so that
Z ¢zt Conscquently, if ¥ is any orthogonal spread of V, then

Znt |2z e}

is a family of totally singular n— l-spaces of 2+ such that every nonzero singular
vector is in exactly one of these subspaces,

Recall that z is contained in the hyperplane zt. The 2n — 2-space z1/z
inherits the nonsingular alternating bilinear form from V (but not the quadratic
form}:

(v 2,0+ 2)i= (u,v)
is well-defined on z (but “v 4 z +— Q(v)” is not). This turns z1/z into a sym-
plectic space. (Recall from the fourth paragraph of §2 that any two symplectic
spaces of the same dimension are cquivalent.)

Now we can “project” ¥ into z1 /2, obtaining a set

T.i= {222 /x| ZEX)

consisting of [5] = 271 + | totally isotropic n — l-spaces of 21 /2 such that any
two meet only 1 0. This is called a symplectic spread of the symplectic space
2t /20 cach nongern vector of 24 /2 is contained in exactly one momber of 3.

From symplectic spreads. The preceding construction can be reversed,
proceeding from symplectic spreads to orthogonal ones. This can be accom-
plishad geometrically or in terms of matrices. We will use the latter approach,
since it requires no additional background.

Lot V= X'DY' be the direct st of two m-dimensional subspaces X' and
Y7, cach of which we identify with Z5°. Equip V7 with a nonsingular alternating
bilincar form ({2, ¥1), (#h.16)) = #) th — b -1 for 2}, 0h € X', ¥, €
¥?, so that both X' and ¥ are totally isotropic m-spaces. Fix dual bases
wh, oo my, and i, wh, of X7 and YYD write matrices with respect to the
basis o4, ... .20, 1, . -, Uy As o Lemma 3.2, every totally isotropic m—-space

Z' guch that X' N 27 = 0 can be written as X’((‘; ’;) for a unique symmetric

matrix . Two sueh mm-spaces X7 ( {‘; };) and X’ ( é, ’if) have only 0 in common
ifand only if P — K is nopsingular,

Thus, a symplectic spread in V7 containing X7 and ¥’ arises from a st &
of 27 symmetric matrices, containing O, such that the difference of any two is
nonsingular, We have seen above that any orthogonal spread 3 of V| togethor
with a nonsingular l-space 2, determines a symplectic spread 3. in the symplec-
tie space 21 /2 of dimension 2m = 2n — 2. In terms of the basis for V introduced
carlier, assume that z = (£, +ys ). Weidentify X7 and Y/ with (X Nzt 2)/2 and
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{Y Nzt z)/z, respectively; Tet the basis chosen for 2t /z consist of the vectors
th=astrzand g =g+, L <i<m=n— 1.

ProrosiTion 3.6 [CCKS].

A H
sx{mm@ﬂ (gl {f]) ex:} -

={ (740 47 [res)

where d(P) is the veclor in Z5 whose coordinaies are the diagonal eniries of P

i their natural order.
Proor {skercH). Consider a totally singular subspace

{t,eM) |z & X} = { ((#/, 0). (', ) (‘?‘j? ‘g)) l (', 6) €X @ Za

as in Lemma 3.2(i). Tts intersection with zt = (0,1,0, 1)1 consists of those
vectors (2, a, 2’ My + ad, 2'd") such that @ = 2/d', and hence is the union of the
cosels (2,0, 2’ My +2'd'd, 0)+2 = (2,0, 2/[My + 'L 0) + 2 with (27, 0) £ X, T
P+ diPVd(P) d(PY
d(P) 0
tion P M from symmetric m % m matrices P to skew-symmetric (m + 1) »
{mn -+ 1) matrices M. Indesd, given a skew-symmetric Gn4 1) % (m - 1) matrix
M, et 135 Tast row be {(d 0) and find P from the prineipal minor indicated in
the above equation. Conversely, given a symmetric m x m matrix P, observe
that the matrix M defined above is, indeed, skew-symmetric (the diagonal of
APV AP is that of P sinee our field is Zs). This bijection P M is not linear,
It is an ecasy oxercise to show that, since n is even, if P — M and P/ — A,
then P — P is nonsingular if and only if M — M7 is.

ReManrks. The equation M = ( ) defines a hijec-

Proposition 3.6 is very closely related to Proposition 2.5: see Theorem 4.2,

ExaMPLE 3.7. Suppose that ¥/ is a desarguesian spread: the set of L-spaces
of GF{2%)?. There is an ohvious alternating bilinear form on GF{2™)?, given
by det ?:) Whon followed by the trace map GF{2™) — Za, this produces a

.
oz

nonsingular alternating bilinear form on Z5™ such that ¥/ is still a symplectic
spread. Now identify Z5™ with z1 /2. Then Corollary 3.3 produces an orthogonal
spread 2 of V, which is in fact the orthogonal spread arvising from the Kerdock
sot in Example 2.4, This reflects the prominence of field multiplication there (the
term zs?). The group SL(2, 2) that acts on GF(2™)?, preserving its set 3 of
I-spaces, also preserves the alternating bilincar form on Z2™ = 21 /2, and lifis
to a subgroup of OV (2m + 2, 2) that acts on X as it doos on the set of l-spaces
of GF(2™)? (in particular, this subgroup is 3-transitive on ).

Up and down. The Kordock sets arising from Examples 2.6 and 2.7 awe
obtained from a slight variation on the example, using different choices of 2 and
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taking mto account an intermediate field between GF(2™) and Zs in order to
get a different orthogonal spread 2

Starting with a symplectic spread 7 in a 2m—dimensional binary symplec-
tic space, we now can produce an orthogonal spread in a 2m + 2-dimensional
orthogonal space, in such a way that there is a nonsingular L-space 2 for which
Y. is B Oncee we bave 3, we can then form a different symplectic spread 3.
using a different nonsingular L-space /. When combined with passage to sub-
fields [Kal], this type of up and down process leads to the proof of Theorem
3.5,

4. Projeciive planes

We now wander even furtheor from the traditional coding theory questions we
started with: an entirely different type of geometrie view of symplectic spreads
is provided by projective planes. For this purpose we first need to ignore, tem-
porarily, the word “symplectic”.

From spreads to projective planes. Let V' be a Zm—dimensional vector
space over GF(g) (vo restriction is placed even on the parity of ¢ or m).

A spread of V7 15 a family ¥ of ¢™ + | subspaces of dimension m whose
union 1s all of V7. This means that every nonzero vector 1s in a unique member
of &', Any family of ¢ + | m-spaces in a 2m-space, any two of which have
only 0 in common, s a spread. (N.B.—An orthogonal spread is not a spread in
this sepse, but a symplectic spread is.)

Affine planes. The importance of spreads is that they produce affine planes:
Let A(Z') denote the point-line geometry whose points are vectors and whose
lines are the cosets W+ v with W e 2/, v £ V', Then A(Z) 15 an affine plane
of order ¢
¢ Any two different points 1,2 are on a umque line (namely, the line
W o whereu—v e Welly
¢ Given a line L and a point v not on it, there is a unique line through v
disjoint from L (namely, W -5 i L is a coset of W e &'
and
¢ Each line has exactly ¢™ points.
There is an obvious notion of parallelism, and by adjoining a new “hine at infinity”
that “contains” all parallel classes we obtain a projective plane (of order ¢™).
For each ¢ € ¥V the translation v — ¢ + ¢ 15 an automorphism fixing every
parallel class. These affine planes (and their associated projective planes) are
called fransiation planes. Any isomorphism between two such planes is indueed
by a semilinear transformation of the underlying vector spaces.

ExaMrie 4.1. ¥ V' s a 2-dimensional vector space over GFlg), its sot 3/
of l-spaces is a desarguesian spread (cf. Example 3.17), and A(E) is called a
desargucsian plane, This plane is pictured in the following figure. The figure also
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suggests why it makes no difference whether we view lines as the sets “y = 25"
Y 1= - 3. .. -
or the sets “y = 25%7 (le., § = 57 18 bijective).

Needless to say, the study of translation planes focusses on nondesarguesian
planes. Nevertheless, within the context of this paper desarguesian planes play
very special roles: firstly, they produce the original Kerdock codes [Kej (cf.
Example 2.4); and secondly, the trapslation planes consiructed via Examples
2.6 and 2.7, as well as those in Theorem 3.5, all are very closely related to
desarguesian planes,

Spreads « spread sets. Asin Lemma 3.2, write V' = X' &Y with X', Y’ £
37, and write matrices with respect to a basis of V' consisting of a basis of X'

together with one of Y. Then every member of £/ — Y} can be written uniquely

F
(O

matrices is essentially what is called a spread sef, and lets the plane be described
in a very Tamiliar manner, using the lines

in the form X’( ) =%y = 2P7 for an m x m matrix P. The 522 8 of such

“e=¢” and Y=aP +b7 bog V', Peé.
%' and & datermine one another in an obvious manner,

Binary operations — spreads. A binary operation = satisfving conditions
(1) and (3} in 82 also determines a spread, consisting of Y7 and the subsets
Y= aews” of GER™) @ GF(27). The lines of the associated afline plane have
a Tamiliar appearance;

r=c”and Y= awwes-bb7 boe,s e GFET).

Here, & consists of matrices of the maps © — & + 5. Conversely, starting with a
spread B Inoa vector space of charactoristic 2, and distinet XV € ¥, choose
any bases Tor X7 and ¥, and obtain obtain a sproad set S of m % m malrices
as above. Fix an arbitrary bijection § » P, of GF(2™) — & with B, = 0,
and define x « s:= aF, for all x,y € GF(27). Then conditions (i) and (ii)
are straightforward to check. See [De§5.1] for this and additional information
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concerning these ways of representing translation planes, as well as for a survey
of projective plancs of this type.

Symplectic traunslation planes. Now that we have seen how to go bhack
and forth betwesen spreads, spread sets, translation planes and binary operations,
it is time to see how this works for symplectic spreads £ and the corresponding
plancs A(X)), called symplectic translation plancs.

; 4 5 ¢ : o eften
ExaMrie 4.1 confinued. Starting with a desarguesian spread & in 757,

where m is odd, by Corollary 3.3 and Proposition 3.6 we obtain an orthogonal
spread ¥ in 727 and hence a Kerdock set and Kerdock code. This latter
Kerdock set just the one i Example 2.4: the one giving rise to the original

Kerdock code of length m + L.

Symplectic spreads «— symmelric spread sets, Suppose we start with a sym-
plectic spread 37, Fixdistinet XY € 3/, and a basis of X7, but this time choose
the basis of ¥/ o be the dual basis (as was also done just before Lemma 3.1),
Then the resulting spread set § consists of symmetric matrices, Conversely, cach
spread set consisting of symmetric matrices produces a symplectic spread.

Binary operations «— Kerdock sels. Now suppose that we start with a binary
operation = satisfying condition (v} in §2. Then the transformations z — z + 5
are solf-adjoint with respect to the ioner product T{zy) on GF(2™). In terms
of an orthovormal basis of GF(27), this means that # — 2+ s is represented
by a symmetrie matrix P,. Consequently, we obtain a spread set consisting of
symmeiric matricss, and we have seen that this produces a symplectic spread.,
Lift & to a Kerdock sot K using Proposition 3.6, A caleulation shows that fhas
Kerdock sct 1s preciscly the one appearing i Proposition 2.5,

Conversely, starting with a Kerdock set K, pass to the set Sp given in
Proposition 3.6, fix a bijection s » B, of GF(2™) — Sg with By, = 4, and
again define z + s:= #P, for all 2,y € GF(2™). Then conditions (LiLiv,v) are
straightforward to check, and (3ii) can be made to hold by suitably modifying
the bijection s~ P, In other words,

Tororem 4.2, Every Kerdock sel of (m -+ 1) x (m + 1) hinary mairices 1s
cquivalent 1o one obfained in Proposition 2.5 using some binary operation,

We have now seen how o go back and forth between various objects:

orthogonal spread — symplectic spread
orthogonal spread — Kerdock set

Kerdock set — symmetric spread set
Kordock sot > binary operation

With sach object on the left are associated many on the right; with cach on the
right is associated essentially Just one on the left. Here “many” and “one” mean
“up to whatever notion of equivalence is appropriate”. Cholces are made in each
case, though this is is most evident in the first two isted instances, where a choice
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of nonsingular point z or of ¥ € ¥ was explicitly made. In Proposition 3.6 we
chose a basis, and even distinguished the last basis vector. In Proposition 2.5 and
Theorem 4.2 a speeific identification was chosen hetween anm + l-dimensional
vector space and GF(2™) @ Za.

Examrre 4.3, Start with a desarguesian symplectic spread, go up and then
down (at the end of Section 3). This produces another symplectic spread. The
binary operations in Examples 2.6 and 2.7 were obtained in this manner [Kal].

Isemorphisms between planes. Fach orthogonal spread appears to produce
large numbers of symplectic spreads 3. This leads us to the isomorphism ques-
tion: when arc two planes A(3.) obtained in this manper somorphic? If there
is a svmplectic transformation sending one spread to the other, the planes are
certainly isomorphic. It seems surprising that the converse is both true and easy
to prove:

TieoREM 4.4 [Kal]., For{ = 1,2, lot 5 be a symplectic spread in 2 2m-
dimenstonal symplectic space Vi over Zo. Lel 1 AL ) — AS) be an 1someor
phism that sends the pomt O 1o the pornd 0. Then there 1s an vertible lincar
transformation s Vy — Vo such thal the following hold:

(1) (Zi)s = B,
(1) 5 15 an sometry (e, (us,vs) = (1, %) for all w, v € Vi), and
(1) g7 's fires every member of 2o,

The set of all nonsingular linear transformations fixing every member of X,
{as in (i11)), together with O, is a field. It is the largest field over which the plane
can most readily be viewed.

COROLLARY 4.5, Twe translation planes A(i:) and A(2LL,) arising from
the same orthogonal spread 5 are 1somorphic if and only if 21 and 2y are in the
same orbait of the group G(2) of all orthogonal transformations preseromg 3,

Theorem 4.4 also permits the determination of the full avtomorphism groups
of many of these planes with little or no offort. Further information coneorn-
ing some of these planss 15 given in [Kal]. For now we merely note that the
construction techniques for planes, using Kerdock sets and orthogonal and sym-
plectic spreads, are very flexible. They have produced planes with relatively
large automorphism groups [Kal] as well as planes with unexpectedly small
automorphism groups [Kab;Wil,

5. Furtlier aspecis of Kerdock codes

Nonlinearity. Each code C(K) s nonfincar. This is not at all obvious.
What is vasy to see is that linearity would be the same as K being closed under
addition, which is not the case when n > 2. In fact, a much stronger result is
true, in view of the following elegamt result of Cameron (¢f. [Kadl):
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TieoreM 5.1 (Cameron). Let W be a subspace of the space of all 2r x 2r
skew-symmetric matrices over g finde field. If cvery nenzere member of W ois
nonsingular, then dim W < r,

Proov. If (a;) € W then det{a;;) = Pfla;;)?, where Pf{ay;) is the Pfaffian
of (mi;) and is a polynomial of degree rin the ai; [La, p. 373]. Let Ay, ..., Ay
be a basis of W. If A = 5, #:.4; for scalars ay, then PRA) = floy, ... 2g) Tor
a polynomial f of degree r. By the Chevalley-Warning Theorem [La, p. 140],
F has more than one gero if d > . Thus, we must have d <r. I

Extremal subspaces (L.e., of dimension ») have yet to be investigated. In
particular, it is not known whether thore might be intoresting oxamples,

Strongly regular graphs. Once again consider a 2n—dimensional binary
vector space ¥V equipped with the gquadratic form Qa,, where n > 4 and n is even,
There 1s a natural graph (5, L] defined on the set § of nonzero singular vectors,
This is a strongly regular graph: it is regular of degree 2(27°~1 — 13{27~% + 1);
any two adjacent vertices are adjacent to L +4(277% — 1){27~% + 1) others; and
any two nonadjacent vertices are adjacent to (2771 — 13(27 2 + 1) others.

Any orthogonal spread 2 in V also leads to a strongly regular graph having
the eoxaet same parameters {i.e., the same constants, associated with adjacent
and nonadjacent pairs of vertices, as in the preceding paragraph). Namely, the
vertices of this graph are the hyperplanes of the members of £; two vertices V1, Va
are adjacent if and only if V3 N V5 = 0 [DDT;Ka3]. This graph is isomorphic
tor the previous one if 2n = 8, and probably not if 2n > 8, but this is open.

There are analogues of these graphs obtained from symplectic spreads, and
similar graphs obtained over other fields [Ka3].

Bounds for line—sets in BY with prescribed angles. Thoere is a simple
way to embed Z into RY, induced by the obvious isomorphism 7Y — {1}V,
In this manner, a code € of length N produces an example of a set of unit
vectors; and extremal properties of sets of unit vectors imply ones for codes.

This point of view is somewhat related to that of Sloane in these Proceedings.

Line—sels from Kerdock codes. For example, start with any Kerdock set X
of matrices, let €(K) be as in (2.3), and write N = 27, Then we can form the
following unit veetors in BY {whoere coordinates are again indexed by vectors in
Zz and the exponents again are just the Kerdock codewords):

ﬁ((—l)‘gﬁ(”}**'ﬂ“) . where BEK, s €78, £ € Za;
fi XA

and

the N = 2% standard basis vectors and ther nogatives,

Total mumber of vectors: N2 4 24 in RY
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Another way to view this is as a set of lines in =Y, namely the l-spaces spanned
by the vectors in the above lish:

{((—p@eernte) N where BEK, s €73, € &7
w L
and

the I-spaccs spanned by the N standard basis vectors,
Total number of lines: (N 4+ 2N)/2 in BY,

The distances between codewords in the Kerdock code imply that any twe of
ihese lincs arc either perpendicular or are al an angle of cos™ 1 1//N. Tn fact,
these Tines fall into (N -+ 2)/2 orthonormal frames such that the angle between
members of different frames is always cos™ ! I.ff’-\,@ . This construction is due 1o
Kinig [K0], based on ideas in [C8]. Applications of these line-sets 1o approx-
imation theory and to sometric cmbeddings of Euclidean spaces into €,-spaces
are given in (K&

Oune of the starting points of the paper [CCKS] was the observation that
there is a tantalizing similarity between the construction of this set of lines from
K and the construction orthogonal spreads from K in Corollary 3.3, Namely, in
both situations there 1s an apparent asymmetry to the deseription, in which one
member of the spread, or one frame {the standard one), appears to be somehow
distinguished. In both sibuations, this asymmetry is merely apparent, caused by
an initial choice of basis. If we had chosen one of the other orthovormal frames
and written all the others in terms of it, we would have obtained a similar
description. This is studied in great detail in [CCKS], where it is shown that
these |K1+ 1 orthonormal frames arise in a natural way from the (X |+ 1 members
of the orthogonal spread determined by K. Moreover, it is shown how to go back
from the line-set 1o K using a group (the stabilizer of the linc-set in the real
orthogonal group).

More general ne—sets. In general, consider a set £ of unit vectors spanning
‘Y use the usual dot product in RY, and assume that ja - b € 10, a} for all
a# bin 8, where § < o < | 15 a constant: the angles hetwesen the lines of
&Y determined by the pairs of distinet members of © take on only two values,
one of which is 90° (so 2N (—Q) = #). Delsarte, Goethals and Seidel [DGS]
proved that |81 < (“‘ig"“}} for any . They also showed that |] < %%
provided that the denominator 1s positive,

It is the case of equality here that especially coneerns us, where we have
an crtremal fine-sel. In that case, define a graph on 1, joining two vectors if
they are perpendicular. Then this is a strongly regular graph (of. [CCKS]).
The special case o = /N, Q] = %ﬁ = N*N + 2)/2, arises when
the original code is a Kerdock code C(K) of length N = 27+, In that case, ©
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is annion of (N +2)/2 =27 4+ 1 = [KI+ | orthonormal bases, with vectors n
different bascs not perpendicular. (N, B.—TIt is not known whether the extremal
case o = 1/ VN can anly arise from a Kerdock sot K as above.)

There are many other extremal rosults concerning Euclidean line-scts (or
sets of vectors) due to Delsarte, Goethals and Seidel [DGS] and Levenstein {Le],
among others. For example, the results in {Le] merely make assumptions about
the largest value of |a - b for distinet o, b € Q, rather than the exact pature
of the set of dot products. The arguments in these papers use classical Jacobi
polynomials. Besides being beautiful, the methods have the added advantage
of being highly flexible, permitting natural extensions to a variety of different
contexts. For example, in §6 we will be concerned with line-sets in complex
veclor spaces.

6. Zy—codes

iV

A Eyecode of length N is just a subset C4 of 2775 1t is fnear i 1t is an
additive subgroup. While one could use the Hamming metrie here, an important
discovery in [CHKSS] was that the Lee meiric dp(u, v) leads to Tovely results.
rospeciively, the Lee woight wip(v) of v £ ""T’ s the integral sum of the Lee
weights of its coordinates, and dr (v, v)i = wig{y — v).

Greay map. Next we need to recall the definition of the Gray man used in

[CHKES]. The following figure shows the Gray encoding of the elements of 7,
(or of the points 1,4, — 1, —4 in the complex plane) as pairs of binary digits.

The 2~adic expansion ¢ = ¢ + 202 of ¢ € Zy defines maps ¢ — ¢ and ¢ — o

=iV ¥

from Zy 1o Za. Extend these in an obvious way to maps v — w from Z) 1o Z5 .
Then binary codes are obtained from Zy—codes as their images under the Gray

¥

AN
map 1 Zy — e given by

iV

v = (vn, 01 +v2), v EZy
[CHEKSS]. The key property of this map is the following observation:

TugoreM 6.1 [CHKSS]. The Gray map is an isometry (7Y, Lee metrie)

— (25", Hamming metric),



o
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There is really more than one (Gray map: one can be followed by a pernmta-
tion of the coordinates of Z3" in order 1o obtain another one, This is significant
in [CHKSS] and {CCKS} since rearrangements of coordinates are implicitly
allowed or needed when Gray mans are used,

Duality. Starting with a lncar code €y € 7Z2 there is a ;m%zlsai definition
of the dual linear code €, using the usual dot pmdl;c% on ZY . The standard
MacWilliams identity {E\fi& p. 127], and the fact that the Gray map is an
isometry, produce detailed information concerning the metric properties of O
and of its binary image vnder any Gray map . Namely, define the Hammmg
weight enumerator of a distance-invariant binary code € to he the following
polvnomial in two variables B and X:

Hame(W, X) = ) Wh=dnles) ydulee]
el £
which is independent of the choice of ¢ € €. The standard MacWilliams identity

asserts that, for a fincar bmary code O,

|
?ﬁamc(%” + X W - X).

The following variant of this was proved using Theorem 6.1:

Hameo (W, X)) =

TueorEM 6.2 [CHKSS]. IF € is a binary code such that Cp™ is linear,
then the binary codes € and ((Cg.c“l)J')fp are distance—invariant and satisfy

Hamggp-ty0y, (W X)) = ﬁamp(ﬁ’méw AW - X0

8

dual

Zy-code  Cp™! ({Ce~)*
l{ira@; T;{o“l Lﬁ
binary code € (Co M )e

We will apply this below to some of the Kerdock codes C(X).

Za—valued quadratic forms. Fach symmeiric m x m binary matriz P
determines a map Fp: 25 — 2.

The definition of Fp is based on the observation that ZT /2Z5F = ZI7. For
sach v € Z5 let © € ZT project onto v mod 2. View the (*1;2:11(*@ of Fas z%z*mz*m%
0.1 of Z,4, and write Fp(z),m £ P4 In detadl, if P = (py) with pyy € {0, 1}, and

if 4 = (2], then
Zpgjr -E-QZ;?B}T T,
i<
It is casy to see that this is independent of the choles of “lIR7 © = (1) of v. Of
cotrse, we could just choose © 1o have coordinates equal to those of ¢, but with
0 and 1 viewed as clements of Z, (as was done for F). However, we need to be
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able to state the following basic property of the Za-valued quadratic form Fp
associated with P

Fpl(u +v) = Fplu) + Fp(v) + 20PH}

for all w,v € Z5. This equation should be compared with the similar one (2.1)
relating binary guadratic forms and alternating bilinear forms.

Zs—Kerdock codes. By Proposition 3.6, each Kerdock set K is related
to a set Sk of symmetric matrices. {N.B.—Note, however that relationship
presupposes that a row and eolumn have been specified.) Equation (2.3) suggests

sy

that we consider the following subset of Z;
(6.9 CalSx)i={ (Fp(v) +28 -6 +¢), 70 | PESK s €5 e €y 1.

This is called the Zay-Kerdock code assoriated with K. One of the main resulis
in [CCKS] is the following

Turorem 6.4, C(K) 15 the image of CalSx) wnder a suitable Gray map.

In particular, these two codes are isometric when equipped, respectively,
with the Hamming and Lee metrics. Note that the Gray map in the theorem
depends on the manner in which Sy was obtained from A] in Proposition 3.6.
Namely, we arbitrarily chose to single out the nth row and column; but we could
Just as well used the jth row and column for any 7. Thus, some care is needed so
as not o be mislead by notation. In view of the preceding theorem, Zs-valued
quadratic forms are natural objects. They were first introduced within topology
[Br].

The preceding theorem may leave the impression that the definition of
CalSx) might first have heen caleulated by applying ™' to C(K). This was
not the case: Zy—valued quadratic forms, and the definition of €4{Sx), arose by
viewing the real and complex representation theory of extraspecial Z-groups from
unusual perspectives, guided by real and complex line-sets. However, we will
not delve 1nto the group-theoretic aspects of these codes, or into the structure of
these hine-sets, which were essential ingredients in the discovery of Zy-Rerdock
codes. (cf. [CCKS]).

Zy-linear Kerdock and Preparata codes. We have scon that C(K) is
never hnear {Theorem 5.1). One of the most striking discoveries in [CHKSS]
was that the Zy-vorsion Cy{Sx) of CiK) can be Hncar. That paper studisd
this in the case of the original Kerdock code, where Sy arises, as in Exampie
2.4, using the fleld multiplications GF(27™) — GF(2™) (although this code was
writion in ap entively different manner in that paper). In that case, S is clearly

in [CCKS]:
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THeoreM 6.5, If X 18 a Kerdock set arising as in Proposttion 2.5 by means
of a bmary eperation *, then C4(Sk) 25 2 Imear Zy-code 1f and only if + 15 2-
sided distributive,

The next observation v [CHKSS] was that, f C4(Sc) b Huear, then
CalSxc)t also is linear, and Theorem 6.2 gives the exact weight distribution
of the nonlinear binary code Pp(Sk) of length 2%t1 that is the Gray image
of Cu(Sx)t. The codes P (Sx) are examples of Preparata codes: their weight
distributions arc the same as that of code Py, of length 277 discovered by
Preparata in 1968 [Pr] (cf. [MS]). The fact that the weight distribution of the
latter codes is related to that of (the original) Kerdock codes has been a perplex-
ing fact for many years. The introduction of Zs-linear codes and the Gray map
have narrowed this gap, providing codes in some precise sense dual to Kerdock
codes, Ifm = 3 then P (Sx) and B, arc equivalent to the Nordsirom-Robinson
code. However, if m > 5 then P {8y ) has the property that the Zs-subspace
of W::MH it spans has vectors of weight 2, which is not the case for the original
Preparata codes: the codes P, and P (Sx) are never guast-equivalent tf m > 5
{proved in [CHKSS] for the case studied there, and for any Kerdock set X
[CCKS]). The fact that Fip, (Sx) 16 a sort of dual of CL(K) prompied the authors
of [CHKSS] to “propose that this is the ‘correct’ way to define these codes” (1.,
codes with Preparata’s weight distribution).

Ezxtremal property. The importance of Proparata codes (either the original
versions Py, or the new ones P, (Sk)) takes us back to the start of this paper.
These codes are extremal in the following sense. They have length N = 2741
minimum distance 6, and as many codewords as possible subjeet to these con-
ditions, namely, 2V =2+ Maoreover, no linear eode can be extremal in this
sense [GS]. Sinee the size of any linear code is a power of 2. 1t follows that any
fmear code with manimum distance al least § has at most half as many codewords
as Preparata codes of the same length.

In [CHKSS] it is also shown that other nonlinear subcodes of BA(2,n) are
Gray images of Zy-linear codes. This groundbreaking paper has produced an
outpouring of further research on Zy—codes. This has led to the consideration of
codes over Za for all £, and even more recently to codes over the ring of 2-adie
integers by using classical Hensel lifts,

As already observed in §1, Kerdock and other Za-lnear codes have the
striking properties of being optimal from a combinatorial point of view and vet
having Iinear descriptions that simplify both their study and implementation.

Eguwalence, Two Zy-codes are cgquavalent if one can be gotten from the
other by a permutation of coordinates followed by multiplication by a single
diagonal matrix of £ s, Two Zy~codes of longth N are quasi-eguavalent i one
is equivalent 1o a Z5 ~translate of the other.

Equivalences among the codes Cu{Sx) and among the codes F,(Sx) are
discussed at length in [CCKS8]. The results are similar to Theorem 3.4, Tt 1s also
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shown that, when m is composite, there is a Za-linear Kerdock code C4(Sx) and
a Preparata code P (Sx) not quasi—equivalent to the ones studied in [CHKSS].
More recently, Williams proved the following far stronger result:

Taeorem 6.6 Wil If m is odd and has v 2> 2 prime factors, at least one
of which 15 = T, then there are af least 2(’“1}”‘}17? pairwise quasi~incquivalent
Fa~lincar Kerdock and Preparata codes of length 2711,

These codes are constructed as follows. There is a sequence GF(2™) D F D
<o 0 Freq O GF(2) of fields. For each ¢ > 1 let T GF(2™) — F; he the trace
map and let {; € F;. Williams greatly generalized Example 2.6 by repeated use
of the up and down process at the end of Section 3. He showed that the following
2-sided distributive binary operation on GF(2™) satisfies (i-v):

e |
rrs=wst Y (”?‘"%Etféﬂ?)ﬁ + Cﬁé(é‘ﬁ«‘f))»
1
He then handled the quasi-equivalence of all of the resulting Zy-linear Kerdock
codes (obtained using Propositions 2.5 and 3.6 together with (6.3)) in order
to prove Theorem 6.6. Planes were a crucial tool in this, using Theorem 4.4.
Thus, planes enter not only into the construction of the codes CIKY), C4(Sx) and
Fr.(8x). but also into the study of their structure.

4
Bounds for line-sets in O with prescribed angles. As in the case

£
of the usual Kerdock codes, the Z~Kerdock codes produce line-sets in T via

the isomorphism ""‘:‘i; = {z}“‘i cwhere N7 = 27, Thus, the Za-Kerdock code
(6.3) produces the following set of lines of OV (where the exponents are just the

Za~Kerdock codewords):

<(iF}>{ﬂ}+35;-if+£) mm’) where P €Sy, s € "Z"ff‘ £ & Ly

% Hany
and

the L—-spaces spanncd by the N' = 2 standard basis vectors,

Total number of lines: 2N2 4+ 9N in C‘v.

This time the distances between eodewords in the Za-Kerdock eode imply that
any fwe of these lincs arc either perpondicular or arc al an angle of cos™! ﬁf\/ﬁ?.
These lines fall into N -+ 1 orthonormal frames such that the angle between
members of different frames is always cos™! 1/4/N7. One can pass back and
. . bl .

forth between these line-sets and those in R” discussed carlior, cach complex
line~set producing an essentially unique real one but sach real one producing
many ineguivalent complex ones [CCKS].

Ouce again there are general bounds on complex line—sets in [DGS] and
[Le]; strongly regular graphs arise in suitable cases of equality; and the line-
sets obtained from Zy-Kerdock codes are examples of crfremal lime-seis (of,
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[CCKS]). Once again there are also applications to approximation theory and
to Isoretric embeddings Ko,

Quaternionic codes. These ideas are pursued slightly further in [KaT], where
quaternrontc line—sets are examined. Extremal ones are constructed in quater-
nionie space HN“: where N = 271, These arise, in turn, from quaternionic
Rerdock codes of length N*, which are suitable subscts of QF " obtained using
Kerdock sets of m 1 xom -+ 1 matrices,

In general, a quaterniontc code of length N is simply a subset of Q. The
study of such codes suffers from various apparent disadvantages. There is no
way 1o convert to additive notation, and in particular no reasonable way to
introduce a ring structure on the coordinates, as in the cases of codes over Zs or
7. Thus, they also lack one of the most basic aspects of codes over Zs or 7,
the notion of a dual code: there is no natural inner product on subsets of QF
that generalizes the dot product on WS’ or W‘? since only one binary operation is
available. Therefore, it s not surprising that, as yet, there are almost no results
concerning quaternionic codes,

7. Further directions

- — i .. . .
In §5 we discussed subsets of RY arising from binary codes €, obtained by

e ; P P -

replacing Zs by {1}, In asimilar manner, subsets of €7 arise from Za—codes
% L : : 5 AT 5

by replacing Za by {1, £} = (@), The obvious metric in € is the one induced

by the usual hermitian inner product. The natural metrics on EY and OV are
also natural within coding theory:
¢ the Hamming metric on Wi‘i = {41}V is half of the square of the Euclidean
metric restricted to the subset {117 of RY; and

. N o AN s :
¢ the Loe metric on Z) = {i}" 15 half of the square of the hermitian metric

rostricted to the subset {i}‘w of TV,
These statements are entirely elementary to check. Nevertheless, they suggested
in (KaT] that

e “the natural metric” on QY s half of the square of the hermitian metric

restricted to the subset QF of HY.

(Note that this “hamiltonian metric” restricts to the Lee metric on {i}".) A
tentative discussion of this can be found in that reference,

We have merely hinted at group-theoretic aspects of the subject of this
paper; see [Kal;CCKS]. A connection with simple complex Lie algebras is
surveyed in [Kab].

We also have not spent much time discussing the affine planes A(E;).

The methods in [CHEKSS] involve the use of a ring of size 4™ in place of
GF{2™). This leads into the realm of cyclie codes over Zy. This fundamental
tew direction in coding theory hias not been dealt with at all in the present
survey.
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