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INTRODUCTION 

One of the most beautiful and important results concerning finite projec- 
tive planes is the Ostrom-Wagner Theorem [26]: such a plane admitting a 
2-transitive collineation group must be desarguesian. It has long been con- 
jectured that the same conclusion must hold if it is only assumed that there 
is a collineation group transitive on incident point-line pairs [ll, 
pp. 208-214; 171. The starting point for this paper was a proof of this con- 
jecture, modulo a degenerate situation: 

THEOREM A. Let E be a projective plane of order n, and let F be a 
collineation group transitive on incident point-line pairs. Then either 

(i ) n is desarguesian and Fk PSL(3, n), or 

(ii) F is a Frobenius group of odd order (n’+n + l)(n + l), and 
nr + n + 1 is prime. 

It is well known that the group Fin Theorem A must act primitively on 
the points of 7~ [ 17; 11, p. 793. It turns out that this weaker condition is 
more useful than the transitivity assumed in Theorem A: 

THEOREM B. Let K be a projective plane of order n, and let F be a 
collineation group permuting the points primitively. Then either 

(i) II is desarguesian and F> PSL(3, n), or 

(ii) F is a regular or Frobenius group of order dividing 
(n’+n+ l)(n+ 1) or (n’+n+ l)n, andn’+n+l is prime. 
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Theorems A and B, part (ii), involve possibilities that have been studied 
with only limited success for 35 years. These are arithmetic situations, 
rather than group-theoretic ones (cf. [ 11, pp. 87-90; 208-2131). 

The proof of the Ostrom-Wagner Theorem is both elegant and infor- 
mative. By contrast, our proof of Theorem B uses a sledgehammer 
approach, involving detailed properties of all finite simple groups. In fact, 
the proof uses relatively little concerning projective planes. The plane in 
Theorem B has n2 + n + 1 points, and this number is odd. The classification 
of finite simple groups’ provides fairly good insight into the structure of 
primitive permutation groups of odd degree, as can be seen from (2.1) and 
the following result. 

THEOREM C. Let F be a primitive permutation group on a set of odd size, 

and let x be a point. Jf F has a nonahelian simple normal subgroup G, then 
one of the ,following holds. 

(C.1) F is A, or S,, and F, is the stabilizer of a subset of the relevant 

d-set Y, or F, is the stabilizer of a partition qf Y into 1 subsets of size k, 
wlhere d= kl; or G is A, und G,. is PSL(3, 2). 

(C.2) G is a group of Lie type of characteristic 2, and G, is a 
parabolic subgroup. 

(C.3) G is a group of Lie type of odd characteristic, and 
G, = N,(C,(o)) for a ,field automorphism o of prime order. 

(C.4) G is PSL(d, q) with q odd and G, is either the stabilizer of a 
subspace or the stabilizer of a pair of incident subspaces interchanged by a 
graph automorphism lying in F, - G,; or G is E,(q) with q odd and G, is a 

parabolic subgroup of type PQ + ( 10, q). 

(C.5) G is a classical group of odd characteristic and G., is the 
stabilizer of a direct sum decomposition into two subspaces, which are per- 
pendicular to one another if G is not of the form PSL(d, q) and are 
interchanged by a graph automorphism lying in F, - G, tf G is of the form 

f’SL(d 4). 

(C.6) G is n classical group of odd characteristic, and G, is the 
stabilizer of a direct sum decomposition into subspaces of equal dimension, 
which are all isometric and pairwise orthogonal tf G is not of the form 

PSU4 4). 

(C.7) G is G,(q), 3D4(q), or E,(q) with q odd, and G, is the normalizer 
of afundamental subgroup; or G is E,(q) or E,(q) with q odd, and G, is the 

’ At the time of this writing (January, 1984), this classification is not quite complete: the 
uniqueness of the Monster has not been proved. However, this does not cause any difliculties 
with our use of the classification. 
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stabilizer of a family of k pairwise commuting fundamental subgroups, where 
k = 3 or 7 when G is E,(q) and k = 8 when G is E,(q). 

(C.8) G is 3D,(q) and G, = G,(q); or G is G,(q) or 3D4(q), and G, is 
the normalizer of a subgroup SL(3, q) .2 or SU(3, q) ’ 2 depending on 
whether q = 1 or - 1 (mod 4). 

(C.9) (i) G is F,(q), 2E,(q), or E6(q) with q odd, and FX is the nor- 
malizer of a subgroup 22. PQ(8, q); or (ii) G is FJq), 2E6(q), E,(q), E,(q), 
or E,(q) with q odd, and G., is the normalizer of a subgroup 2. PQ(9, q), 
(4, q + 1) PQ-(10, q), (4, q - 1) . PQ+(lO, q), 2 PQ+(16, q) or 
22. (PQ+(8, q) x PQ’(8, q)), respectively. 

(C.10) G is G,(q), G,(q), PQ(7, q), PQ+(8, q), or PQ+(8, q) for a 
prime q = +3 (mod 8) and G., is 23PSL(3, 2) G,(2), 52(7,2), Q+(8,2), or 
2’. 23PSL(3, 2), respectiveI-y; and in the latter case F.,- G., contains a 
triality automorphism. 

(C.11) G is E,(q), E,(q), E,(q), ‘E,(q), or G,(q), q is odd, and F, is 
the normalizer of an abelian subgroup of order (q f 1 )*, (q f 1)‘/2, 
(q - 1 )“/d, (q + 1 )“/d, or (q f 1 )2, respectively, where d E { 1, 3 } and 
q + 1 = 0 (mod 4); and, if G = G,(q), then q is a power qf 3 and F, - G, con- 
tains a graph automorphism. (See (3.6) for an explicit construction of these 
abelian groups. ) 

(C.12) G is PSU(3,5) and G, is A,.2. 

(C.13) G is PSL(2, q) or ‘G,(q) with q odd, q > 3, and either G, is the 
centralizer qf an involution or G is PSL(2, q) and G., is Ad, Sq, or A,. 

(C. 14) G is sporadic. 

We have not been precise in (C.l) and (C.3)-(C.6): the exact conditions 
on dimensions are purely arithmetic and do not seem interesting. In (C.5) 
and (C.6) we have dealt with the groups PQ(5, q) and PsZ’(6, q) but have 
not described G., in the case of their isomorphic copies PSp(4, q), 
PSL(4, q) and PSU(4, q). The “fundamental subgroups” in (C.7) are 
isomorphic to SL(2, q), and will be defined in Section 3. For further infor- 
maton concerning (C.7), (C.9) and (C.l l), see Table II, [18] and [2, 
Theorem 31, respectively. In each case appearing in (C.7))(C.13) the 
group G., is uniquely determined up to conjugacy in Aut G but not 
necessarily in G. (See [21] for discussions and applications of the examples 
in (C. IO), and especially of the PQ+ (8, q)-classes of subgroups 52 + (8,2).) 
Finally, the possibilities in (C.14) are mostly known, and obviously involve 
a case-by-case analysis. 

Theorem C is almost implicit in Aschbacher’s papers [l] and [Z]. In 
effect, our proof is just a fairly straightforward exercise in the use of his 
classical involution theorem and other results in [ 11, with some assistance 



18 WILLIAM M. KANTOR 

from the work in [S, lo] and [ 191 on groups generated by long root 
elements. Theorem C constains as a special case Theorem A of [2], which 
was proved using [ 1 ] but not [S, 10, 191. Theorem C should also be com- 
pared to the classification of all primitive permutation representations of 
prime power degree of simple groups 123, 20, 161. 

This paper has been divided into two parts. Part I contains a proof of 
Theorem C. Part II contains the deduction of Theorem B from Theorem C. 
Since we are proving Theorem B instead of Theorem A, none of the known 
results concerning flag-transitive collineation groups are relevant. Instead, 
we require the result of Wagner [31] stating that a finite projective plane is 
desarguesian if its collineation group is transitive on points and contains a 
nontrivial perspectivity. Beyond this, the proof involves the tedious 
elimination of each of the various possibilities in Theorem C using proper- 
ties of G, elementary counting arguments, and properties of integers of the 
form mz + m + I. It does not seem as if the stronger hypothesis of 
Theorem A would have significantly simplified or shortened this obnoxious 
case analysis. 

Our group theoretic and geometric notation is standard. For the 
required background concerning root groups and fundamental subgroups, 
see [S, 10, 191 and, of course, [7]. If k is an integer and p is a prime then 
k, denotes the largest power of p dividing k. 

If G is a group then n. G denotes an extension of a group of order n by 
G, while G. n denotes an extension of G by a group of order n. If C is a 
family of subsets of G, and H < G, then H n Z denotes {SE C / SE H}. 

PART I. THEOREM C 

1. NOTES ON ASCHBACHER'S CLASSICAL INVOLUTION THEOREM 

In [ 11, Aschbacher considered a group X, and an X-invariant collection 
Q of subgroups of X, such that the following hold for all A, BE Q, A # B: 

(Q. 1) A has a unique involution z(A ) and nonabelian Sylow 2-sub- 
groups; 

(52.2) Either A = O*‘(A) or A/O(A) g X(2,3); 

(Q.3) A/O(A) z B/O(B); 

(52.4) IAnB1,<2, and [A,B]=l if IAnBl,=2; 

($2.5) If v is any 2-element in B-Z(B) centralizing z(A) then v nor- 
malizes A. 

Throughout this section we will assume that (R.l)-(Q.5) hold. The 
following result is an easy consequence of the results in [l]. 
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THEOREM 1.1. Assume that X= (a) and U(X) = O,(X) = 1. Then there 
are subgroups Y, ,..., Y, of X such that, for each /I, 

(i) Y,= (Y,,n52); 

(ii) [f Y,{ is simple it is M,,, M,,, Sp(6, 2), SZ+(8,2), or a Chevalley 
group over a field of odd characteristic (and, in the latter case, each A in 
Y,{ n Sz is normal either in a ,fundamental subgroup of Y,j or, for Y, = G,(q) 
or ‘D4(q), possibly in a short fundamental subgroup of Y,)); 

(iii) [j” Y,j is not simple then Y,j is PSL(2, s2). 2, PSL(3, s). 2 or 
PSU( 3, s) .2 ,for some odd prime power s; 

(iv) X= Y, x ... x Y,; and 

(VI Q=Ug(YIjnQ). 

ProojI In [ 1, pp. 356-3571, Aschbacher defined sets A(K) E A*(K) c s2 
for each K E !Z so that [ 1, Theorems 3 and 43 

(1.2) (a) IfA(K)#@ for some KEQ then [A*(K),SZ-A*(K)]=1 
and (A*(K)) z M,> or G,(q) with q=2 or q odd, and 

(b) If A(K) = @ for all KE Q then distinct orbits of X on Q com- 
mute. 

It follows that (i) and (v) hold for suitable groups Y,], and either Y, is 
M,, or G?(q) as in (1.2)(a), or Y,] is transitive on Y,j n Sz. In the latter case 
[l, Theorem l] states that (ii) or (iii) holds. Now (iv) is clear. 1 

Remark. We have not defined A(K). However, we note that, if 
Y,j = (A*(K)) is as in (1.2)(a), then Y, has two orbits on YDnQ and 
Y,{ n Sz contains two members sharing an involution. 

LEMMA 1.3. If X= (n), O(X) = 1, A ESZ, Q~syl,(A) and Z(Q) & 
O,(X), then O,(X) centralizes Q. 

Prooj: Since Qn O,(X)= 1, Q centralizes O,(X) by [l, (6.13)]. 1 

2. PRELIMINARY REDUCTIONS 

Let F be a primitive permutation group on a set X, where 1 X 1 = n is odd. 
Let x E X. According to the O’Nan-Scott Theorem [28, 31, there are three 
possible situations: 

(2.1) (i) F has a regular normal elementary abelian p-subgroup V, and 
F, is an irreducible subgroup of Aut V. 
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(ii) Fr> T, x ... x T, with T, simple, k > 1, F transitive on 

IT , ,..., T,}, and F< F, wrS, for a primitive group F, of degree n,, where 
F,p T, and n=nt. 

(iii) Fr> G with G simple and nonabelian, and C,(G) = 1. 

Clearly, (2.1 )(i) is impossible to classify, while (2.1 )(ii) more or less 
reduces to (2.l)(iii+xcept, of course, that any transitive group of 
degree k may be induced on { T, ,..., Tk f. Therefore, we will focus on 
(2.1 )(iii), which is the situaton in Theorem C. 

The remainder of Part I is concerned with the proof of Theorem C. First, 
we will introduce slightly more convenient notation: 

M*=F, and M=G,, 

T* E Syl,( M*) and T=T*nM. 

PROPOSITION 2.2. Jf G = A,, m # 6, then (C. 1) holds. 

Proof: Here, F= A,,, or S,, and T contains the product of two disjoint 
transpositions. If M* is intransitive on the relevant m-set then it is the 
stabilizer of a subset. Otherwise, since M* contains a product of two dis- 
joint 2-cycles it is imprimitive for m >, 8. Finally, the possibilities for m < 7 
are easy to enumerate, and show that (C.l) holds in all cases. 1 

LEMMA 2.3. If G is qf Lie type and characteristic p, and if either M con- 
tains a Sylow p-subgroup qf G or if O,(M) # 1, then M is a parabolic sub- 
group qf G. Moreover, ifp is odd then (C.4) holds, while ifp = 2 then (C.2) 
hoIdLy. 

Proof: Let U~syl,(G). If U<M then, by [29, (1.6)], (U”) is con- 
tained in a uniquely determined parabolic subgroup P of G. Then M* nor- 
malizes P, so that M* = N,(P). Thus, M = M* n G = P. 

Similarly, if O,,(M) # 1 then, by [4], M is in a canonically defined 
parabolic subgroup P. As above, M = P. 

If p is odd it is straightforward to check that only the possibilities in 
(C.4) can occur. This is especially easy when G is a classical group. When G 
is exceptional, it follows from Table 1 in Section 3 in view of the fact that G 
and M/O,(M) do not have the same rank. 1 

LEhfMA 2.4. If G = PSL(2, q) or 2G2(q) with q odd and q > 3, then (C.3) 
or (C.1)(3) holds. 

Proqf This follows readily from [ 12, Chap. 12; 32; 333. 1 
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LEMMA 2.5. If G = PSL(3, q) or PSU(3, q) with q odd then one of (C.3), 
(C.4) (C.6), or (C.12) holds. 

Proqf: This follows from an examination of the lists in [25]. m 

3. FUNDAMENTAL SUBGROUPS 

In Sections 3-6, G will be a group of Lie type over GF(q), where q is odd 
(cf. (2.3)) and G is not as in (2.4) or (2.5). Let p be the prime dividing q. 

Pairs of opposite long root groups generate subgroups SL(2, q), called 
,fimdumental subgroups. Let s’i be the set of all fundamental subgroups. 
Then G is transitive on s”i, and fi satisfies (52.1)-(52.5). 

Let T be as in Section 2 and let Q < T be a Sylow 2-subgroup of a mem- 
ber of s’i. We will be concerned with the conjugacy class QG of subgroups 
of G. 

Let A = Tn Q”. The members of A commute in pairs [ 1, (6.2); 2, (1.3)]. 
If H6G and TnH~syl,(H), write m(H)=ITnHnQGl. In 

[2, Theorem 21, both m(G) and N,(A)“ are determined. These are listed in 
Table I (where k = m( G)/2). 

If R E Qc then R is in a unique member i? of d. Note that 

(3.1) If[Q,R]=l then [Q,i?]=l. 

In general, if H= (HnQG) write A= (~?/REH~Q’). 

In the next two results we will not assume the hypotheses of Theorem C. 
For the first one, cf. [9, (3.4)]. 

TABLE I 

G m(G) N&A 1“ 

PW% Y) 
f5wn, Y 1 
PSWn, 4) 
fQ’(2n. 4) 
PQ(2n + 1,q) 
PQ-(2n, 4) 
GAY 1 
‘D,(q) 
F,(Y) 
2W~) 
E,(y) 
E,(q) 
E,(q) 

In/21 
II 
In/21 
2C@l 
2Cfl/21 
2C(n-t)/21 
1 
I 
4 
4 
4 

8 

SIW,,, 
S, 
sm,,, 
2’: + I -(Y!.l!). Sk 

2k Sk 
2” Sk 
1 
1 

s4 
& 
& 
PSL(3,2) 
23 P&x(3,2) 
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PROPOSITION 3.2. Let 2, BE fi and J= (A, B). Then J has u 
homomorphic image PSL(3, q), PSU(3, q), G,(q), 3D4(q), or PsZ’(d, q), 
d6 8, such that 2 and B project onto fundamental subgroups. 

Proof If G is an orthogonal group acting projectively on its natural d- 
dimensional module V then dim C,(a) = d- 4. When d< 8 use [ 191. If 
d > 8 then C,(J) # 0, and the result follows easily by induction. The case of 
the remaining classical groups is handled in exactly the same manner 
(recalling that PSp(4, q), PSL(4, q) and PSU(4, q) can all be viewed as 
orthogonal groups). If G is G,(q) or 3D4(q) then [19] again applies. 

In the case of the remaining exceptional groups of Lie type a similar 
approach works using the following triples (G, d,f), where d is the dimen- 
sion of a suitable basic module V for G and ,f= dim C,(d): 

(&(q), 248, 133); (&(q), 56, 32); (ck4 27, 15); 

m(q), 27, 15); (F,(q), 26, 14). 

In each of these cases, the weights for V easily produce the indicated value 

of.6 
Sincef’> d/2, in each case C,(J) # 0. If 0 # v E C.(J) then G,/O,(G,) is a 

group of Lie type by [4,8]. Thus, by successively replacing G by smaller 
groups we eventually embed a homomorphic image of J into a classical 
group, thereby reverting to the first paragraph of the proof. 1 

The only interesting parts of the proof of Theorem C are the following 
curious fact and its subsequent use in (3.7). 

PROPOSITION 3.3. Let Y be an elementary abelian r-subgroup of G nor- 
malized by some element ,f E Q of order 4, where r is a prime other than 2 and 
p. Then one of the ,following holds (where t = f ‘): 

(i ) t centralizes Y, or 

(ii) 1 YI = 9, G= PSL(3, q) or PSU(3, q), and the preimage of Y in 
SL(3, q) or SU(3, q) is extraspecial of order 27. 

Proof: Let Y and G produce a counterexample with 1 G 1 + 1 Y 1 minimal. 
Let 1 #YE Y with y’=y- ‘. 

We claim that Y = ( y”‘). F or otherwise, since (i) does not hold for the 
pair G, (y’/>), we must have G = PSL(3, q) or PSU(3, q) as in (ii). 
However, it is easy to check that the only abelian 3-group normalized by f 
but not centralized by t has order 9 (cf. [25, pp. 24&241 I). Thus, 
Y= (y”>). 

Set J= (0, 0”). Then (y) = (tP) is in J, so that Y< J. 
First, suppose that O,(J) # 1. By [4] there is a parabolic subgroup P of 
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G such that Jd P and O,(J) Q O,(P). Let cp denote the natural 
homomorphism P + P/O,(P). Then .P z J/O,(J) is contained in 
Pv = (nj X,) H, where the Xi are pairwise commuting groups of Lie type 
and H is a torus. Moreover, Qw is a fundamental subgroup of Pv, and 
hence lies in some Xi. Since [Q, Q”‘] # 1, also (Q’)“<X,. Thus, P’<X,. 
In view of the minimality of 1 G 1 + 1 YI, X,/Z(X,) is PSL(3, q) or 
PSU(3, q). By [8, 191, G has a unique class of subgroups S generated by 
long root groups such that S/Z(S)zX,/Z(X,). Since Yq is elementary 
abelian it can lie in PSL(3, q) or PSU(3, q) but not in SL(3, q) or SU(3, q). 
Thus, Z(Xi) = 1. However, since G # Xi, a glance at the groups G shows 
that S= SL(3, q) or SU(3, q). This contradicts the fact that Xi # SL(3, q), 
SU3, 9). 

Consequently, O,(J) = 1. By (3.2) and [ 191, J/Z(J) is PSL(3, q), 
PSU(3, q), G,(q), 3D,(q), or PQ’(d, q) for some d< 8. 

Let V be the natural projective module for J/Z(J) over the algebraic 
closure K of GF(q). Then dim I’d 8. Assume that the Frobenius 
group Y(S) acts linearly on V-which is certainly the case when 
dim I’> 4. Then V contains a copy of the regular representation of (f). 
But then C,,(S) # C,(f*), which contradicts the fact that Q is contained in 
a fundamental subgroup of J. 

Thus, Y(f’) pulls back to a subgroup D(f) of GL( V), where we may 
assume that D = [D,f], D is an r-group, and Z(D) # 1 consists of scalars. 

Let dim V= 3. Then J/Z(J) = PSL(3, q) or PSU(3, q), and D(f) has 
the form 3’+‘(f) by [25]. M oreover, J only acts projectively on V, since 
Z(D) # 1. Thus, Z(J) = 1 and J # SL(3, q), SU(3, q). Consequently, G = J 
(using S as above) and (ii) holds. 

This leaves the case dim V= 4. However, r{ IZ(SL(4, K)I so that this 
case cannot occur. 1 

Now consider the groups F, M*, M and T* of Section 2, so that 
Q < T< M. From now on we will assume that G is not as in (2.4) or (2.5). 

Write A=QnM, Z(A)=(z(A)) and 

i-2 = AM*, X= (52). 

Then A contains a Sylow 2-subgroup Q of 0, and is known by [ 12, 
Ch. 121. A staightforward check yields: 

LEMMA 3.4. (i) 52 satisfies (a.l)-(S2.5) and 

(ii) X= (Q”*). 

Note that the case G = G,(3’) is different from all others: there, Aut G 
does not act on d. In other words, in that case some members B of Sz may 
not be contained in members of 8. Nevertheless, B continues to be well 
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defined: B is a short fundamental subgroup (generated by short root 
groups). 

LEMMA 3.5. (i) R= X or G. 

(ii) [f 8= G then l2 is not the union of two nonempty commuting sub- 
sets. 

Proqf!f: (i) Since M* normalizes X it acts on (ii 1 R E Q”*), which 
equals 8 by Sylow’s theorem. If M*T= M* then %< M* n G = M, so that 
z= X. The only other possibility is that M*x= F, in which case X? cannot 
be proper in G. 

(ii) Assume that 52=52, usZ, with sZ,#O and [Sz,, a,] = 1. If 
Q,~SZ,then [Q,,Q2]=l.Thus,X=(fi,,fi2)=(fi,)(fi2)#G. 1 

EXAMPLE 3.6. Let q be a set of subgroups of T such that (i) each R E ye 
is a maximal cyclic subgroup of some member of Qc;, (ii) qr= g, 
(iii) W = (9) is abelian, and (iv) I ye ( is maximal subject to (i)-(iii). Then rl 
and W are uniquely determined up to conjugacy [2, (1.4)]. Moreover, 
N,/O(N,) W is described in [2, Theorem 31, where N, = (Qi / Qi E Q’ and 
Q, <N,;(W). 

If G is a classical group then N,(W) is either reducible or imprimitive on 
the natural projective module for G. 

If G is F,(q) then NJ W) lies in the normalizer of a 
subgroup 2’. PQ+(8, q). If G is E,(q) with q = - 1 (mod 4), or *l&(q) with 
q s 1 (mod 4), then NJ W) is again contained in the normalizer of a 
subgroup 2’. PQ+ (8, q) [2, Theorem 63. In all remaining situations in 
which G is E,(q), 2E6(q), E,(q) or E,(q), [l, Theorem 31 and the remain- 
der of the list in Theorem C show that the group N,(W) in (C.ll) is 
maximal in G. When G is E,(q), E,(q), or E,(q) and q = 1 (mod 4), NJ W) 
is just the group “N” of BN-fame. The orders given in (C.ll) follow easily. 
(N.B. When G = E,(q), m = 7 or 8, let d” be a family of m pairwise com- 
muting fundamental subgroups. Then W< (d), which makes it very easy 
to handle NJ W) both in these cases and in the closely related cases E,(q) 

and *b,(q).) 
If G is G?(q) or ‘D,(q) then N,(W) normalizes a subgroup S = SL(3, q) 

or SU(3, q) generated by long root groups. However, if G is G,(q) and q is 
a power of 3 then there is a graph automorphism interchanging Q n W and 
C,(Q) but not normalizing S, as required in (C.ll). 

LEMMA 3.7. If A4 contains no.fundamental subgroups, and if O(M*) # 1, 
then (C.6) or (C.11) hold.7. 
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Proof: Let Y be a minimal normal elementary abelian r-subgroup of 
M* contained in M, where r # 2, p (recall that we are assuming that 
O,(M) = 1). Define q as in (3.6), let R E q, and let t be the involution in R. 
Since (3.3)(ii) does not hold for G, t centralizes Y. Then Y acts on the set 
of 1, 2, or 4 subnormal fundamental subgroups of C,(t). There are 4 such 
subgroups only when G is PO+ (8, q), in which case G has no 3-element 
permuting them nontrivially (although Aut G does). Consequently, Y nor- 
malizes i? n M (where m is the fundamental subgroup containing R). 

Write R+=RnM. Clearly, [R+,Y]BR+nY. If [R+, Y]=l then 
M* = NP( Y) b i?, contrary to our hypothesis. 

Thus, 1 # R + n Y a R +, and R + has a unique maximal cyclic 
subgroup R,. Since N,(a) does not induce nontrivial field automorphisms 
on 8, it follows that Y and R+ n Y act the same on R+. Thus, 
R,=C‘,+(Y). 

Similarly, if D is in some member of q”* we can define D + and D, as 
above. Then D, n Y centralizes R,, so that R, acts on the only fundamen- 
tal subgroup b containing D, n Y. It follows that R, acts on D+ and hence 
on D,. Write R, = O,(R,) and D, = O,(D,). Then [R,, Dz]dRZnD,, 
and consequently [R2, D2] = 1. (For, by (Q.4) the only other possibility is 
that R2 n D, = (t), in which case R and b commute since R2 # Dz.) 

This shows that the set qr of all the groups D, generates an abelian nor- 
mal subgroup W, of M*. Moreover, / rZ 1 > 1 q I. Then g, E 4’ [2, (1.4)], 
and (3.6) applies. 1 

The preceding proof depended upon (3.3) and Aschbacher’s results con- 
cerning qc. The case O,(M) # 1 is even easier, since it is implicit in [ 11: 

LEMMA 3.8. Z’ 8=G, O(M)= 1, and O,(M) # 1 then (C.5), (C.6), 
(ClO), or (C.ll) holds. 

Proof: Let Y be a minimal normal 2-subgroup of M* contained in M. 
Then z(A ) E Y (since otherwise by ( 1.3) Q centralizes Y and M* = NJ Y) 3 
(D”“) = 2, which is not the case). Consequently, Y= (z(A)‘@) Q X. 

In view of (3S)(ii), [l, Theorems D and 31 provide an O(X) = 1 # 
O,(X) version of (1.2), stating that one of the following holds: (i) Wa X 
(cf. (3.6)); (ii) XE Z;- ’ >Q A, for some n > 5, where d = (2, n); 
(iii) X z Z: >a PSL(3, 2); (iv) X is isomorphic to a parabolic subgroup of 
$2+(8,2) of the form Z: >Q (Zi >Q PSL(3,2)); or (v) X is a nonsplit exten- 
sion 2'PSL(3,2). 

If (i) holds we are finished (by (3.6)). 
In (ii)- there are two conjugate members of Sz having the same center 

(cf. [ 1, (11.5) and p. 413]), so that G is orthogonal. Let V be the natural 
projective module for G, and assume for the moment that G # PQ+(8, q). If 
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Y pulls back to an abelian subgroup of n(V) then either M* is reducible 
on I’ or (C.6) holds. If Y pulls back to an extraspecial group then, since 
M=N,( Y), M/Y must be an orthogonal group over GF(2), and (as 
I G: iVG(X)I is odd) the only possibility for X is Z: >Q Ax. In that case X has 
four members with the same center, whereas G # PQ’(8, q). 

This leaves the case G = PQ+ (8, q). The preceding paragraph applies 
almost verbatim, unless M* - A4 contains a triality automorphism. In view 
of 1 TI, XZ 26A, or 2h.23PSL(3, 2). By conjugating within Aut PQ’(8, q) 
we can replace M by another group in order to guarantee that the normal 
subgroup of X of order 26 pulls back to an elementary abelian subgroup of 
S2+(8, q). Then M is monomial with respect to an orthogonal basis and is 
invariant under a triality automorphism. It follows easily that 
XZ 26. 23PSL(3, 2) and that X is uniquely determined up to conjugacy in 
Aut PQ’(8, q) (cf. [21]). Thus, (C.10) holds. 

Finally, consider case (v). Here, X has two classes of quaternion groups 
either or both of which might be in 52; moreover, there is a unique member 
of each class lying in T, and these have the same center. Since Aut XE X 
we have X= N,(X), and then the structure of T forces G to be G,(q) or 
‘D,(q). It is easy to see that G,(q) has a unique conjugacy class of sub- 
groups (v) (e.g., argue as in [21, Sect. 81). If G is ‘D,(q) let V be its natural 
g-dimensional module over GF(q’) [30]. Then it is straightforward to see 
that X must fix a nonzero vector in V; and then NG(X) lies in a group 
G2(q) by [ 303. (N.B. See the proof of (3.11) for a further discussion of 
‘D,(q) that makes this inclusion in G,(q) apparent.) m 

In view of (2.3), (3.5) (3.7) and (3.8), throughout the remainder of the 
proof’ of Theorem C we may assume that O,(M) = 1, and that either x= X 
or else O(M) = O,(M) = 1. 

LEMMA 3.9. If G # G,(q), 3D,(q), and if X contains no nontrivial long 
root elements, then (C. 10) holds. 

Proqf Since A has no nontrivial long root element, while 2 = SL(2, q), 
p[ 1 A / Thus, either A is metacyclic or is SL(2, r) or SL(2, r) .2, where 
r=3 or 5 and r#p [12,Chap. 123. 

By (3S)(ii) and (1.1) X is one of the following (where s is an odd prime 
power): (i) M,,, (ii) M,,, (iii) PSL(2, s2). 2, (iv) PSL(3, s) .2 or 
PW3, ~1.2, (v) @(6,2), (vi) Q+(8,2), or (vii) a group of Lie type over 
GF(r). 

In (i) there are Frobenius groups of order 9.4 and 5.4 whose Sylow 2- 
subgroups fix 3 of the 11 points and hence lie in conjugates of Q. By (3.3) 
this eliminates (i). Similarly, groups of order 9.4 and 5.4 eliminate (ii) as 
well. 
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Note that M* acts on X, and C= C,,(X) is 1: otherwise, M* = 
NF(C) 3 f. A further restriction is provided by the fact that X contains 
m(X) = m(G) pairwise commuting members of QG. 

Case (iii). Since m(G) > 1 by Table I, this case cannot occur. 

Case (iv). By Table I, m(G)=m(X) = 2 and T is transitive on A. 
However, only one member of A lies in x’. 

Case (v). Since m(G) =rn(X) = 2, Table 1 shows that G is PSL(4, q), 
PSL(5, q), pSp(4, q), PSW4, q), PSU(fi q), f’Q(7, q), or PQ-@,q). BY 
[22], G = Pl2(7, q) or PQ (8, q). Moreover, SP(6,2) = W(E,)’ < PQ(7, q) 
for each q, and SP(6,2) contains a Sylow 2-subgroup of G when 
q E +3 (mod 8). Thus, X= Sp(6,2) < PQ(7, q) occurs in (C.10). It remains 
to show that X= SP(6,2) < P!X(S, q) does not. 

Assume that G = PQ ~ (8, q). Then G E Q-(8, q), and G acts on an 8- 
space V. Let P, and P, be the parabolic subgroups of X containing T and 
having the form 25. s2(5,2) and 26. SL(3, 2), respectively. It is easy to see 
that P, acts monomially with respect to an orthogonal basis of V, and 
dim C,(P,)=dim C,,(T)= 1. Also, P’, =25.A6 and dim C,,(P;)=2. Con- 
sequently, C,(T)=C,(P,), and X= (P,, P,) fixes C.(T). This con- 
tradicts the fact that NF(X) is maximal in F. 

Case (vi). This time, m(G) =rn(X) =4. Also, C= 1. Thus, 1 TI divides 
IAutX-1, so that IT/<2’“. 2’. Only G = PQ+ (8, q) is allowed by these 
conditions, and W(E,)‘<SZ+(S, q) shows that 52’(8,2) lies in PQ+(S, q). 
Once again this case occurs in (C.10). 

Case (vii). Recall that Y #p. Since O,(X) = 1, X# SL(2, r), SL(2, r) .2. 
If X has a subgroup PSL(3, r) or SL(3, r) containing Q, then X has a sub- 
group of order r2 normalized by Q and inverted by z(Q), contradic- 
ting (3.3). Consequently, X cannot be an exceptional group of Lie type, 
PSL(k, Y) or an orthogonal group of dimension 27. 

Also note that m(X), as defined for the group X of Lie type, must coin- 
cide with m(G). Moreover, N,(A)d must lie in N,(A)d. By Table I, and 
[22], X is not an exceptional group of Lie type. 

Consequently, G and X are both classical groups. By Table I, G acts pro- 
jectively on a 2m(G) + 4-dimensional GF(q)-space V. Then X also acts pro- 
jectively on the 2m(X) +4-dimensional space V. By [22], X is PQ(5,3) or 
PsZ-- (6, 3). Moreover, by Table I, dim Vd 8. 

If. X = PQ(5, 3) then / MI, = 26 or 2’. This can only happen when 
G= PQ(5, q) or PQ’(6, q). Since Xr IV(&)‘, it is easy to deduce that 
1 G: NC(X)1 is even. 

Finally, if X= PW(6, 3) then by [22, (4,4a), (5.7)] we have dim V>6 
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and a perfect subgroup of SL( P’) projecting onto X has a center of order 
divisible by 3. Thus, G is not orthogonal or symplectic. Now dim V> 6 
shows that m(G) 3 3, whereas m(X) = 2. 1 

The method used at the end of Case (v) can be used in a situation 
excluded in (3.9) (cf. (3. lo)), and also to give an elementary proof of the 
uniqueness in Aut G of the conjugacy classes of subgroups $2(7,2) < 
52(7, q) or Sz + (8,2) < Ps2+(8, q). For example, suppose that X is n’( 8,2). 
By [22], X pulls back to a nonsplit extension 252 + (8,2) < Sz + (8, q). Let 
Y = Z, x 52(7,2) < 2n+ (8,2). Then Y fixes a l-space, just as in the proof in 
Case (v). Now X has an orbit of 120 nonsingular l-spaces. Also, 252 + (8,2) 
has a subgroup 2’. A,, and this group leaves invariant exactly two sets of 
120 nonsingular l-spaces. The stabilizer of either set in 0 + (8, q) is just the 
Weyl group W(E,) embedded in the natural way. Thus, X is uniquely 
determined up to conjugacy in Aut G. Incidentally, it then follows that q is 
a prime (since M* is a maximal subgroup of F). 

LEMMA 3.10. If G = G,(q) or 3D,(q), and if X contains no nontrivial long 
root elements, then (C.8) or (C.10) holds. 

Proqf The first live paragraphs of the proof of (3.9) are valid without 
change. 

This time, m(G) = 1, while T contains the central product of two quater- 
nion groups. This leaves the following cases: (iv) PSL(3, s). 2 or 
PSU(3, s). 2, and (vii) PSL(3, r), PSU(3, r), G*(r) and 3D,(r) with r #p 
and r = 3 or 5. By [22], X is PSL(3, s). 2 or PSU(3, s). 2 with p 1 s, 
PSU(3, 3).2= G,(2), or PSU(3, 3). 

Let Z(Q) = (t ). Then C,(t) = (So). 2, where the first product is a cen- 
tral product and S = SL(2, q’), q’ = q or q3, is a short fundamental sub- 
group. On the other hand, C,(t) has the form (SL(2, s) D) .2, where the 
first product is again central, s = r = 3 in (vii), and D is metacyclic except 
when Xr PSU(3, 3) and D is cyclic of order 4. Then the SL(2, s) lies in S 
or in (2, and the former occurs if p 1 s (since X contains no nontrivial long 
root elements). 

Assume that G = G,(q). If p = 3 we can apply a graph automorphism to 
M* to obtain a new group “X’ containing nontrivial long root elements, so 
that [ 191 applies and (C.8) holds. If p # 3 and p 1 s then the proof of [ 14, 
(4B)] shows that X fixes a l-space (w) in the standard 7-dimensional 
module V for G; then (w) is uniquely determined, and M* normalizes a 
group SL(3, q) or SU(3, q) generated by long root elements (by [30] or 
(3.11)). Thus, X must be G,(2) or PSU(3,3), and p Z 3. We must eliminate 
the latter case. There, the SL(2, 3) in C,(t) contains Q, so that 
A=onM=C,(D)=SL(2,3). Let BEA~-{A} with (Z(A), Z(B))<T. 
Then dim C,( -z(A)) =4 and dim C,( -z(A)) n C,( -z(B)) = 2, so that 



PRIMITIVE PERMUTATION GROUPS 29 

(A, B) acts on the 6-space (C,(z(A)), c,(z(B))), and X= (A, B) fixes its 
orthogonal complement. By [30] (or (3.11)), M* normalizes a group 
X(3, q) or SU(3, q) generated by long root groups, and this contradicts 
one of our hypotheses. 

This leaves the case G = 3D4(q). Here, we will show that M* normalizes 
a nontrivial subgroup of a suitable G,(q). We begin by studying the action 
of T on the natural sZ+ (8, q3) module V for G. 

Since T lies in some subgroup G,(q), T fixes some vector u # 0. We claim 
that 

(3.11) C,,(T)= (u), and Tfixes a unique l-space (w) # (0). 

For, T> (Z(Q), Z(R)) for some RE QG- {Q}. Extending the ground 
field shows that (0, R) lies in the monomial group of a subgroup 
X(3, q2) of G2(q2), acting on vl@ GFcy) GF(q’) by fixing two totally 
singular 3-spaces [30, pp. 23,381. Moreover, T lies in X(3, q*). 2, and 
hence interchanges these 3-spaces. Since G,(q*) < 52(7, q2) it follows that 
(Q, R) T fixes a nonsingular 6-space of u’ and induces f 1 on its 
orthogonal complement (w) in u’. This proves (3.11). 

In particular, we see that T lies in a uniquely determined subgroup G,(q) 
of G--namely, G,-and a uniquely determined subgroup SL(3, q) .2 or 
SU(3, q). 2-namely, G,,,.,. 

Now consider Xz PSL(3, s). 2, PSU(3, s). 2, G,(2), or PSU(3, 3). In the 
last two cases C,,(t) lies in a group (SL(2, q) SL(2,q)). 2 which in turn 
lies in some G,(q); by (3.1 l), C,,(t) fixes (u). Also, R fixes (u). Thus, 
XT= (C,,(t), R) fixes (u), so that C,(X) is (u) or (u, w). In the first 
case M* normalizes our G,(q), while in the second M* normalizes G,, = 
SL(3,q) or SU3,q). 

Finally, if Xr PSL(3, s) .2 or PSU(3, s) .2 then C,(t) = (SL(2, s) D) .2 
where SL(2, s) d S = SL(2, q3), so that GF(,s) s GF(q’). Also, s3 f 1 divides 
I G I and hence divides (q12 - 1)(q6 - l)(q’- 1). Thus, by [34], both q4 and 
q3 are powers of s, and hence GF(‘(s) E GF(q). Now C,,(t) lies in some 
(SL(2, q) SL(2, 4)). 2. As before it follows that M* fixes (u) or (u, w), 
and hence contains long root groups, which is not the case. 1 

Once again, the only case X= G,(2) < G = G,(q) occurring in (3.10) is 
uniquely determined up to conjugacy in Aut G-and hence, q is prime since 
M* is maximal. To see this, note that the case p = 3 was handled in the 
above proof (in view of [ 191) so let p # 3. Let E be a Sylow 3-subgroup of 
C,(t). Then I N,(E)1 = 27.8. It follows that C,(E) = SL(3, q) .2 or 
SU(3, q). 2 (depending on whether q- 1 or - 1 (mod 3)) and C,(E) is a 
l-space (0). Thus, I (u)” I= 28. Let J be a Sylow 2-subgroup of N,(E). 
Then J induces + 1 on (u), and fixes a unique second member (u) of 
<u>x, inducing + 1 on (U ) as well. This uniquely determines (U ), and 
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hence also the orbit of (u) under N,(E). Consequently, N,(E) uniquely 
determines (v )X, so that X is determined up to conjugacy in G, as asser- 
ted. 

4. CLASSICAL GROUPS 

In this section G will be a classical group defined by a vector space V 
equipped either with no form or with an alternating, quadratic or her- 
mitian form. 

LEMMA 4.1. Zf M is reducible then (C.4) or (C.5) holds. 

Proqf: Let W be a minimal M-invariant subspace. Assume that 
G # PSL( I’). Then W is either nonsingular or else totally isotropic or 
totally singular. In view of (C.5), we may assume that W is totally isotropic 
or totally singular. However, 1 G: NJ W)l is never odd for such a W. 

Now let G = PSL( I’). If M* = N,(W) then (C.4) holds, so assume that F 
contains a graph automorphism. Then M has a second invariant subspace 
IV’ of codimension dim W, and M* fixes { W, IV’}. Since Wn IV’ and 
( W, IV’) are M*-invariant, it follows that ((2.4) or (C.5) holds. 1 

Let X be as in Section 3. 

LEMMA 4.2. rf M is irreducible but X is reducible then (C.6) holds. 

Proof. By [ 193, M preserves a decomposition V’= V, 0.. .@ V, of V’ 
into X-irreducible subspaces I/, permuted transitively by M. In view of 
(C.6), we may assume that G # PSL( V). Then all V’, are nonsingular, or all 
are totally isotropic or totally singular. In the latter case 1 G : M 1 would be 
even. Thus, all Vi are nonsingular, and (C.6) follows easily. 1 

LEMMA 4.3. Zf X is irreducible then (C.3) or (C.10) holds. 

Proof If x contains no nontrivial long root elements then (3.9) states 
that (C.10) holds. Assume that X contains a nontrivial long root element. 
Theorems I and II and Section 11 of [ 191 list all of the candidates for X. If 
x= X then nothing on those lists has 1 G: NG(X)l odd. If w# X, those lists 
imply that (C.3) holds. 1 

5. EXCEPTIONAL GROUPS OF LIE TYPE 

In this section we will complete the proof of Theorem C by settling the 
case of exceptional groups of Lie type. Let F, G, M*, M, T, A, X, 2, m(G), 



PRIMITIVE PERMUTATION GROUPS 31 

and m(X) be as in Section 3. Since d is contained in X, m(X) = m(G). As in 
the proof of (3.9) this greatly restricts the possibilities for X. 

LEMMA 5.1. IfR=G then (C.3) or (C.10) holds. 

Proof By (3.9) and (3.10) we may assume that X contains a nontrivial 
long root element. By (l.l), (3.5)(“) n and [lo], X= C,(o) for a field 
automorphism 0, unless X is 2E,(q’) in G = E,(q), q = q’2e, e odd, embed- 
ded naturally. In the first case (C.3) holds. In the second case 1 G: NG(X)I is 
even. 1 

In view of (3.4) we may now assume that 8=X. Recall that O,(X) = 1. 

LEMMA 5.2. One of (C.7t(C.9) holds. 

ProoJ The possibilities for X are more or less listed in [lo]. After 
correcting a few statements concerning centralizers in that paper, and then 
using Table I (in Sect. 3) and the fact that m(G) = m(X), we obtain the list 
of candidates in Table II. (For brevity we have omitted q throughout the 
table, and used Lie notation.) 

If G is G,(q) or 3D,(q) then all possibilities in the table can occur, and 
appear in (C.7) and (C.8). 

Now consider G = F4(q), 2E,(q) or E,(q). By Table I, T is transitive on 
A. However, T acts on X This leaves only the possibilities X/Z(X)=A;‘, 
C, x C2, D,, B,, D,, 2D,, CA, or F4. Note that G has a 
subgroup X= 22. PQ+(8, q) such that 1 G: NJX)) is odd and 
N,(X)> N,(A) (cf. [2, Theorem 61). Also, ‘l&(q) and E,(q) have sub- 
groups X= NJX) = F,(q) with 1 G: XI even. 

If G = F,(q) then there is a subgroup 2 * Q(9, q) whose center is Z(T). 

TABLE II 

G x/a X) 

& 
A, x AS, A, x Cs, A: x A,, A; x C,, A:, 

C, x C,, C,, De,, B,, D,, Fe, 

E, .4,xD,,A;xD,,A: 

ES A, x E,, A: x De, A: x D,, A;, D:, D, 

481/106/l-3 
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Similar statements hold for all the remaining cases in (C. 9)(ii) (cf. [IS] for 
Z(X)). Moreover, this takes care of all possibilities for F,(q). 

If G = ‘EJq) then we must still eliminate the cases X/Z(X) = B,, 
C, x C,, or C,. By [S] there is just one class of subgroups of type B,, all 
of the form 2. Q(9, q) < (4, q + 1). PQ- (10, q), so that their normalizers 
are not maximal. If X/Z(X) = C, x C, or C, then a simple calculation 
shows that 1 ‘E,(q)l/ X/Z(X)1 is divisible by 32 or 8, respectively. Thus, 
C,(X) has even order and hence meets Z(T) nontrivially. Since 
C,(Z(T))> (4, q+ 1). PC(l0, q), X/Z(X) # C,. Moreover, if X/Z(X)= 
Cz x Cz then N,(X) < C,(Z( T)). 

The case G = E,(q) is handled similarly. 
Next, let G = E,(q). Again T is transitive on d. This time, Table II leaves 

only three possibilities: At, D,, and 0:. The first two of these are included 
in (C.7) and (C.9). If X/Z(X) = 0: then X lies in 2. PQ+( 16, q), so that 
IZ(X)l =4. Since 2*. PQ’(8, q)‘S, is contained in E,(q), N&Z(X)) 
induces S3 on Z(X) and hence does not lie in 2 . PL2 + ( 16, q). This case is 
also in (C.9). 

Finally, let G = E,(q). This time, T has orbit lengths 1, 2, and 4 on A. 
Each candidate in Table II has I G: NG(X)I odd, and appears in (C.7) or 
(C.9). I 

This completes the proof of Theorem C. 

PART II. THEOREM B 

6. PRELIMINARIES 

Let rc be a projective plane of order n. If Q is any nonempty set of 
collineations of n then rc(Q) will denote the set of points fixed by Q. When 
Q is planar, we will identify n(Q) with the fixed point plane of Q. 

If r is an involutory collineation other than a perspectivity then 1 rc(t)l = 
m* + m + 1 where n = m* [ 11, p. 1721. Consequently, we will be especially 
interested in properties of integers of the form u2 + u + 1, where u is an 
integer. 

LEMMA 6.1. Zfn=m2thenn2+n+1=(m2+m+l)(m2-m+l), where 
(m2+m+1,m2-m+l)=l. 

LEMMA 6.2. If u* + u + 1 =pa for a prime p, then either pa =p or pa = 73. 

Proof [ 24, p. 111. 1 

LEMMA 6.3. If n = m* and n* + n + 1 = q”b for a power qa >p of a prime 
p, then either b > 8q” or q” = m* _+ m + 1 = 73. 
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Proof: By (6.1), m2 f m + 1 = 9°C and m2 T m + 1 = b/c for some odd 
integer c and some choice of signs. If c = 1 then m2 f m + 1 = 73 by (6.2). If 
c Z 3 then b/q”c2 > (m’ -m + 1 )/(m2 + m + 1) > $, since m2 + m + 1 is not 
square-free (as go >p2) and hence m > 16 (as is seen by checking all 
m616). 1 

LEMMA 6.4. If p is a prime divisor of n2 + n + 1 then either 

(i) p=3 and9[n2+n+1, or 

(ii) p- 1 (mod 3). 

ProoJ If p = 3 then (i) is easy to check. Let p # 3. Clearly, 
n3-l=O(modp) and p[(n’+n+l,n-l), so that n has order3 in 
GF(p)*. I 

LEMMA 6.5. Assume that G is a collineation group having a proper nor- 
mal elementary abelian subgroup of order n2 + n + 1. Then n2 + n + 1 is a 
prime and G is a Frobenius group of odd order dividing (n’ + n + l)(n + 1) or 
(n2+n+ 1)n. 

Prooj If n2 + n + 1 is not prime then it is 73 by (6.2). This possibility is 
eliminated in [S, p. 470; 271. Thus, n2 + n + 1 is prime, G acts on points as 
a Frobenius group, and G, is cyclic for each point x. Clearly, G, = G, for 
some line L, and this group acts semiregularly on L or L - {x}. Moreover, 
1 G / is odd, since an involution would fix more than one point. 1 

LEMMA 6.6. Assume that G is a point-transitive collineation group of TC. 
Let Q E G with x(Q) a subplane of order u, and let x E n(Q). Then 

(i) (n2+n+ l)lQ’nG,I =(u’+u+ l)lQ”l; 
(ii) If G, is transitive on Q” n G, then NG( (Q)) is transitive on n(Q) 

and I~(Q)l=ING((Q)):Nc((Q)),I; and 

(iii) ZfQ={t}, Itl=2anduZ2 then2~G:G,I>IC,(t):CG(t),~2. 

ProojY (i) Count the pairs (y, Qg) with g E G and y E rc(Q”). 
(ii) G is transitive on the above pairs. 

111) 
here (“’ 

1 Co(t): Co(t),12 < (u2 + u + 1)2 < 2(n2 + n + 1) since n = u2 
. I 

7. START OF PROOF 

Let rc be the plane in Theorem B. We may assume that conclusion (ii) 
does not hold. By the result of Wagner [31] stated in the Introduction, we 
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may also assume that all involutions in F fix m’+ m + 1 points, where 
n = m*. Thus, the remainder of this paper will be directed towards obtain- 
ing a contradiction. 

LEMMA 7.1. Fp G with G simple and nonabelian. 

ProoJ: By (6.5), F has no nontrivial elementary abelian normal sub- 
group. Thus, if (7.1) fails then, by (2.1), Fc- T, x . . . x Tk for k > 1 simple 
groups T, permuted transitively by F, and Fd F, wrSk with the natural 
action on Yk for some Y, where F, acts primitively on Y and F, p T,. In 
particular, n* + n + 1 = bk where b = / Y I. 

Let t be an involution in T,. Let f be the number of points of Y fixed by 
t. Then t fixes fbk-’ points of 71. Thus, m’+m+ 1 =fbk-‘>bk-‘. If k23 
then m2 + m + 1 3 (n’ + n + 1 )*j3, whereas n = m2. Consequently, k = 2 and 
m2 + m + 1 = fb while m4 + m2 + 1 = b2. In particular, m* < b, so that f = 1 
and b = m2 + m + 1, which is impossible. 1 

Now we are in the situation of Theorem C. Of course, G is transitive on 
points (and hence also on lines). Moreover, G, is known by Theorem C. 
This allows us to ignore F most of the time. 

The various possibilities in Theorem C are dealt with in the following 
places: 

(C.1) 
(C.2) 
(C.3 1 
(C.4) 
(C.5) 
(C.6) 
(C.7) 
(C.8) 
(C.9) 
(C.10) 
(C.11) 
(C.12) 
(C.13) 
(C.14) 

(8.3), (8.4) 
(10.6) 
@.l), (8.2), (9.4) 
(8.4) 
(9.11, (9.3) 
(9.2), (9.3) 
(9.3) 
(9.2), (9.3) 
(9.3) 
(9.2) 
(9.2) 
(8.3) 
@.l), (8.2) 
(11.1). 

Note that each possibility produces a diophantine equation 1 G: G, 1 = 
n2 + n + 1. While we do not handle all of these equations simultaneously, 
many are dealt with in large batches, using (6.1), (6.3), and (6.4) (see 
(9.2)-(9.4) and (10.6) for examples of this). There are many alternative 
approaches. For example, one could estimate the number of fixed points of 
a carefully chosen involution in order to contradict (6.6)(iii), but the 
calculations involved seem worse than those we have used. 
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However, it seems likely that anyone reading this paper will find better 
arguments for several of the cases (C.l)-(C.14). 

8. MISCELLANEOUS CASES 

This section eliminates some of the possibilites in Theorem C. 

LEMMA 8.1. G # ‘G2(q), q > 3. 

Proof. If G= ‘G,(q) let u~Syl,(G). By (6.4i), 1 U: U,j = 1 or 3 for 
some point x. Then 1 G: G, 1 cannot be odd by (C.3) and (C.13). 1 

LEMMA 8.2. G # PSL(2, q), q odd, q > 3. 

Proof. Assume that G is PSL(2, q). By (C.3) and (C.13) one of the 
following holds: (i) G., is dihedral of order q + 1; (ii) G, is PSL(2, q’) or 
PGL(2, q’), where GF(q’) c GF(q); or (iii) G, is A,, S4 or A,. Let t be an 
involution in G. 

Case (i). By (6.6)(i), 

(n2+n+ l){l +(q+ 1)/2}=(m2+m+ l)lt”l, 

where It’1 =n’+n+ 1. Now m4+m2+ 1 =q(qf 1)/2 and m2+m+ 1= 
1 + (q f 1)/2. It follows first that m* + m + 1 = (q + 1)/2 and m4 + m* + 1 = 
;$: 1 )/Z and th en that m2-m + 1 = q>m* +m + 1. Thus, (i) cannot 

Case (ii). If G., = PSL(2, q’) then q = q” with e odd, and (by (6.6i) with 
Q an involution) 

(n2+n+1)q’(q’+1)/2=(m2+m+1)q(qf1)/2 

nZ+n+ 1 =q(q2- l)/q’(q’2- 1). 

Then m’+m+ 1 =(qT l)/(q’f 1) and m2-m+ 1 =q(qf l)/q’(q’f l), 
which is impossible. 

Thus, G, = PGL(2, q’), and then q = q’* since F, is maximal in F. Now 

(n2+n+1)q’2=(m2+m+1)q(q+1)/2 

n2 + n + 1 = q(q2 - 1)/2q’(q’2 - 1) = q’(q + 1)/2, 

so that m2 + m + 1 = q’ and m2 - m + 1 = (q’* + 1)/2, which is impossible. 
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Case (iii). Since G., contains a Sylow 2-subgroup of G it must be self- 
normalizing. There are three subcases, which yield the conditions 

(a) q(q’-1)/24=nZ+n+1=(m2+m+l){q(q+1)/2}/3, 

(b) q(q2-1)/48=n2+n+ 1 =(m’+m+ l){q(qf 1)/2}/9, or 

(c) q(q2- 1)/120=n2+n+ 1 =(m*+m+ l){q(q+ 1)/2)/15. 

Simple calculations eliminate all three possibilities. 1 

LEMMA 8.3. Neither (C.12) nor the last case in (C.l) can occur. 

Proof: Since IG: G,I = 175 or 15, (6.4) applies. 1 

LEMMA 8.4. G # A,. 

Proof: Assume that G = A,. By (8.2), d> 7, so that F= A, or Sd. Let Y 
be the corresponding d-set. By (C.l) and (8.3), F, is either (i) the stabilizer 
of a k-set, 1 <k <d/2, or (ii) the stabilizer of a partition of Y into 1 sets of 
size k, where d = kl. In each case we will show F,y also fixes a line. 
(N.B. Although F is certainly line-transitive, we do not know that F is line- 
primitive.) 

(i ) Since G is not 3-transitive, k > 1. Consider D = (S, ~ I x 
S,-, ~, x S,) n G. There is a line L fixed by D. Since F, contains D and a 
Sylow 2-subgroup of F, while / F: F, 1 = 1 F: F, 1, this is impossible. 

(ii) Since I;, contains a 5-cycle by (6.4), k Z 5. Let D be the pointwise 
stabilizer or a partition of Y into l- 2 sets of size k, 2 of size k - 1 and 2 of 
size 1. Then D fixes exactly 2 points, and these are interchanged by N,(D). 
Thus, N,(D) fixes a line L. 

Let D, be the subgroup of D inducing the identity on one of the 
k - 1 - sets. Then D, fixes exactly k + 1 points on which NF(D,) induces 
A k + , . Thus, D, cannot be planar and Ak + , x D i must fix a line, which can 
only be L. Then G, contains (SZk x (S,wrSlp2)) A G. Since I G, I = ( G, ( , it 
follows that 1(1- 1) > (‘,“), so that I> 3. 

Let E be a subgroup A,-, wrS, of G,. Then E fixes exactly l! points, per- 
muted by an A, in N,(E). It follows that N,(E) fixes some line. Now G, 
must also contain N,JE)R for some g E G. It follows readily that I G, I > 
IG,l. I 

LEMMA 8.5. Case (C.4) cannot occur. 

Proof Assume that (C.4) holds with G= PSL(d, q). Let V be the 
relevant vector space. Then either (i) G, is the stabilizer of a k-space, where 
we may assume that k ,< d/2, or (ii) G, is the stabilizer of a flag I/, c VdPk 
with dim I’; = i (where k < d/2). 
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(i) Certainly k # 1. Choose k-spaces X and Y such that 
dim Xn Y=O. Then Gfx,*) fixes no proper subspace of dimension #2k. 
Next choose x’ and Y’ so that dim X’ n Y’ = k - 1, and note that GIX,yl 
fixes no subspace of dimension 2k. Since G (X,yl and G,,., r) are both con- 
jugate to subgroups of G, for a line L, it follows that G, is irreducible. 
However, 1 G: G, 1 = 1 G: G, 1 = 1 (mod p), so that G, contains a Sylow p- 
subgroup of G. By (2.3), G, = G, which is not the case. 

(ii) Use V,, &c V,-, with dim Vk n Vk = k - 1 as above in order 
to see that G, is reducible and can fix no subspace of dimension #d-k, 
k-l, k+l. Since lGLl =lG,I ( or since F- G contains a graph 
automorphism), this is impossible. 

Finally, assume that G=E,(q) in (C.4). Then G acts on the points of rc 
as a rank 3 permutation group of degree .* +n + 1 = (qg- l)(ql*- l)/ 
(q- 1)(q4- l)>q” and subdegrees 1, q(q3+ l)(q’- l)/(q- l), 
q8(q4 + l)(q’- l)(q’- l)/(q - 1). Each line L through x meets each sub- 
orbit of G., (as otherwise G, would be 2-transitive on L). Thus, G is flag- 
transitive on rc, and the lines through x determine partitions of each sub- 
orbit of G., into n + 1 sets of equal size. It follows that n + 1 divides both 
nontrivial subdegrees, and hence divides q(q4 + 1). Since n > q’, this is 
impossible. [ 

9. ODD CHARACTERISTIC 

In this section G will be a group of Lie type over GF(q), where q is a 
power of an odd prime p. We will show that none of the cases (C.3), 
(C.5).(C.11) can occur. (Recall that (C.4), (C.12), and (C.13) were dealt 
with in (8.5), (8.3), (8.1), and (8.2).) Most of these cases will be eliminated 
using simple calculations (cf. (9.2)-(9.4)). However, some situations 
involving orthogonal groups seem to require more care. 

Most of the cases can be eliminated in several different ways, although 
we have not indicated more than a few instances of this (compare the 
remarks at the end of Sect. 7). 

LEMMA 9.1. If G is orthogonal then G, is not the stabilizer of a non- 
singular subspace. 

Proof: Assume that (C.5) holds with G, the stabilizer of a nonsingular 
k-space U of the underlying vector space V, where 2k < d = dim I’. Write 
U = U,- ,I U, for a l-space U,. Let U; E UF n U,l- i, where either 
(a) U; E Uf or (/I)( U,, U; ) has a radical R # 0. In either case, Uk- 1 + U, 
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and U,-, + U; produce points of n interchanged by an element of G,,-, 
Thus, we get two lines L, and L,, say, whose stabilizers contain the 
stabilizers in G of { U, ~ , , { U, , U’, } }. Clearly, GLO can fix at most two non- 
zero subspaces of dimension <d/2, and both are nonsingular (of dimension 
k - 1 and 2). On the other hand, GLr can fix at most one nonsingular sub- 
space of dimension <d/2, namely U,-, . Since GLZ and G,, are conjugate 
in G, it follows that either both are irreducible or both fix a nonsingular 
k - l-space. (If k = 1 then both must be irreducible.) 

Since 1 G, 1 = 1 G.,I, while 1 G,, ., 1 < 1 G,I when k > 1, G, must be 
irreducible for any line L. By [19], G, cannot contain any long root 
groups. Using G,,{ we see that d- k + 1 d 4, so that k d d- k d 3 and hence 
d = 5 or 6 and k = d- 3 (since d > 4 by (8.2)). However, in either case we 
can choose Uk , so that U:-, is of type 1;2+(4, q), and then G,, will con- 
tain a long root group. 1 

LEMMA 9.2. The following cases cannot occur: (C.lO), (Cl l), (C.6) with 
G orthogonal, and (C.8) with G., = G,(q). 

Proof: Let Q be as in Section 3. In each case, Qc; n G, = QGy. (For 
(C.11) this follows from Sylow’s theorem and the description in (3.6) 
and [2, Theorem 31.) We claim that, in general, (c() IG: G,l,> 
I NG(Q): N,(Q), Ip > 1, and (B) I NG(Q)I, > I G,l,. In view of (6.6)(ii) and 
(6.1) (a) asserts that Q cannot be planar; while (8) implies that NC(Q) 
cannot fix a line L (since 1 G,I = I GJ). Since Z(Q) cannot be a triangle by 
(c() and (6.4)(i), it follows that (a) and (b) are sufftcient to eliminate each 
of the cases of the lemma for which they hold. 

Case G = G,(q), G., = 23PSL(3, 2) or G,(2). Note that q2 1 (G: G.,I, so 
that p # 3 by (6.4)(i). Also, p 27 since q- f3 (mod 8) in (C.10). Thus, 
lGI,=@, IG,I,=l = ING(Q).rlp, and INQ)l,,=q, so that (~1 and (PI 
hold. 

Case G = Pl2(7, q), G, = 52(7, 2). This time 1 G IP = q9, I G, IP = 1 and 
I NdQ)l, = q2. 

CaseG=PSZ+(8,q),G,=a+(8,2). Here IGI,=q”, IG,I,,=l and 
1 Nc(Q)l, = q3. 

Case G = Ps2 * (d, q) and G, preserves a decomposition of the underlying 
vector space V as I’= V,I...l Vr with all Vi isometric of dimension 
k = d/l. We will distinguish several subcases, depending upon the parity of d 
and k as well as the size of k. Note that db 5 by (8.2). 

Subcase d = 2r + 1, k=2s+ 125. IGIp=qr2, (NG(Q)lp=q1+(r-2)2, 
1 G,I,, = q8”l!,, I N,(Q), IP = q1+(s-232q’2(‘p “(E- l)!,. Note that p # 3, 5 by 
(6.4) so that log,(Z!,) = xy [//$I d l/(p - 1) d Z/6. Then (a) holds since 
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I G: NJQ)l, = q4’-5 > q4’-‘+‘> q4”-‘fp = 1 G,: Nc(Q).Jp, and (/I) holds 
since 

Subcased=2r+ 1, k=2s+ 1~3. Then lGIP, IN&Q)l, and IGJ, are as 
above, and q4’-’ > q7(2’f ‘)“’ > q”“f!, while I N&Q)l, > q7’2’+ ‘)A* > I G, Ip. 

Subcase d = 2r, k=2sk6. IGI,=q”‘-“, ING(Q)lp=q1+(‘~2)“-33), 

IG,lp=qs(s-‘)‘~!p, INcAQLI,=q 1 +‘~--Z)‘S-~)~S’S- I)‘/- “(,- I)!,, and (a) 
and (/I) are easy to check. 

Subcased=2r, k=2s64, G#PSZ+(8,q). IGl,, lN&Q)l, and IG,), are 
as above, and 1 G: N,JQ)l, = q4’-’ > q”‘“- ‘)lfU6 > I G, IP while I NJQ)l, > 
q”‘“-U/+‘/6> lG,l,. 

SubcaseG=PSZ+(8, q), k=2s. IGI,=q”, INo(Q)l,=q3, IG,lp= 

4 
s’s ~ I “p, = qs’s ~ I”, and (c() and (/I) hold. 
(N.B. When k = 2s, (6.3) also yields a contradiction.) 

Suhcased=2r, k= 1. IGI,,=q’(‘-l), [No(Q)/ =q’+(‘p2)(‘-3), IG,lp= 
d!,,, q”-‘> qd16 > d!,, and q’ +“p2)(‘-3)> qdi6 > d!,. 

Subcase d = 2r, k = 2s + 1 > 3. Since 1 G : G, I is odd, a calculation yields 
that f=2 and r=2s+ 1. Now IGIp=q”‘pl), INo(Q)Jp=q1+“-2Z)“~3), and 
1 G ~ 1 p = qsz2. 

Assume that r3 5. Then INJQ),l,= q1+‘s-2)2+sz and (a) holds. Also, 
(fi) holds except when r = 5. So let r = 5. Then n(Q) cannot be a subplane 
or a triangle (as (a) holds), so that NJQ) fixes a line L. Now ( No(Q)/ 
divides 1 G, I = I G., I. However, 1 Q * (6, q)j divides I NJ Q)l but cannot 
divide 2 1 O(5, q)l 2. 

Thus, r = 3 and G = Ps2 ~ (6, q). Once again (LY) holds but (/I) does not. 
Let NG(Q) d GL, and let X be a long root group in NJQ). Since 
/ NG(X)lp = q6, NJX) moves L. Thus, X fixes at least two lines, whereas G, 
contains no conjugate of X. 

Case (C.11). The description (3.6), together with [2, Theorem 31, show 
first that q2 1 I G: G,I-so that p# 3 by (6.4)-and then that I G,l,<p. 
Consequently, (M) and (p) hold trivially. 

Case G., = G,(q) < 3D4(q) = G. Here ( G lP = q”, I G, Ip = q6, I No(Q = 
q3 and I NG(Q).r IP = q. Then (a) holds but (8) does not. By (LX), NG(Q) fixes 
a line L. However, by Theorem C there is no subgroup G, of G containing 
N,(Q) and having order divisible by I G, ID = q6. i 

PROPOSITION 9.3. None of (C.5)-(C.9) can occur. 

Proof In each case (6.3) applies. Instead of going through all of the 
possible cases, we will list the cases, write 1 G: G, I = q”b with (q, 6) = 1, and 
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TABLE III 

PSUd, 4) 

PSWd Y) 

m.Jw, 9) 

PW4 9) 

PSU(d, 4) 

PM26 4) 

GAY) 
‘D,(4) 
E,(q) 
E,(q) 
G,(9) 
‘D,(Y 1 
F,(q) 
E,(q) 
'E,(9) 

F,(Y) 

E,(q) 

'E,(q) 

E,(9) 

(CS),d=k+l 

(C.5),d=k+l 

(CS), k = 2s, 
l-2& 

r=s+t 

(C.6), d = kl 

(C.6), d=kl 

(C.6), k = 2s 
2r = 2sl 

(C.7) 
(C.7) 
(C.7), k = I. 3, 7 

(C.7) 
(C.8) 
(C.8) 
(C.9Ni) 
(C.9)(i) 
(C.9Hi) 
(C9)(ii) 
(C.Y)(ii) 
(C.S)(ii) 
(C.9)(ii) 

($(:)-(:) 
(i)-(:)-(:) r2-.y2-p 

d k 0 0 2 
-1 -r. 

2 

0 d 2 -1 0 k 2 -2 

r2 - Is’- I 

4 
8 
32, 48, 56 
112 
3 
9 
12 
24 
24 
12 
16 
16 
64.96 

4 

8 

4 

4 

8 

A 

2 
2 

8,6, 1 

1 
2 
2 
4 
4 
1 
4 
4 

4.4 

give both a and an upper bound on b/q” (Table III). (Note that to use (6.3) 
we do not need a precise value for b/q”: a rough estimate suffices, namely, 
b/q”< 8. Also note that we have to consider the possibility q”= 
m2 fm + 1 = 73 each time; but this presents no serious difficulty.) 
Moreover, we will give some examples of these calculations. 

In (C.5) let k and 1 be the dimensions of the two subspaces, where k < 1. 
In (C.6) let I be the number of subspaces, let each subspace have dimension 
k, and write pi = I!,. 

EXAMPLE. G = G,(q), (C.8). [(G: G, 1 = q3(q3 f 1)/2. By (6.3), q3 = 73, 
but thenm=18and (G:G,(#IS4+18+1. 

EXAMPLE. G= E,(q), (C.9)(i). The group X= 2’. PL?+(8, q) is 
generated by root groups corresponding to a subroot system, and hence is 
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normalized by a Cartan subgroup. Thus, G, = N&X) has order divisible by 
lXl(q- l)‘/(q- 1, 3). Then a=36- 12 and 1G: G,l,, is at most 

(q12- l)(q9- I)(@- I)(@- l)($- 1)($- ‘)/t3, 4- ‘I<~~24 

(q4- 1)(q6- 1)(q4- 1)(q2- l).(q- U2/(3, q- 1) . 

Similarly, if G = 2E6(q) in (C.9i) then 1 G,I is divisible by 
I‘u(q+ 1J2/(q+ 17 3). 

EXAMPLE. G = PSU(d, q), (C.5). Here a = (t) - (5) - (i) and 

since nl: (1 + l/q’) < 2 and IJf (1 - l/q’) > 4. (These are proved by noting 
that In{ 1 + l/q’) < l/q’ and In( 1 - l/q’) > - l/q’.) 

EXAMPLE. G= PSU(d, q), (C.6). This time a= ($)-I(‘;)-A and 
1 G: GyI,c/q“ < 21!,,/(f)’ I!,,. Thus, Table III asserts that 2’+ I(/!,)* Q 81!. This 
is certainly true if 1!, = 1. Since I!, <p”(P- I), we cannot have q” = 1 or 3, so 
that p 3 7 by (6.4). If I < 12 then we may assume that p = 7, in which case 
2” ‘7 < 8f! holds. Finally, if l>, 13 then 

The remainder of Table III is checked in a similar manner. 1 

We note that there are other simple ways to eliminate various cases. For 
exaple, when G = E,(q) or E*(q) in (C.9), 1 G: G, 1s 0 (mod 9) and (6.4)(i) 
applies. 

LEMMA 9.4. (C.3) cannot occur. 

Proqf: Let A be as in Section 3, and let t = z(A). Then tG n G, is a con- 
jugacy class of G, (e.g., by [6]). 

By (6.6)(ii), 1 n(t)1 = 1 c,(t): c,(t), 1. However, it is very easy to check 
that (G: G,I, > (c,(t): C,(t),(,> 1 in each case. This contradicts (6.1). 1 

Note that the argument in (9.2) also works. 

10. C~IARACTERISTIC 2 

In this section we will show that (C.2) cannot occur. Here G, will be a 
parabolic subgroup. It would be nice to handle this situation by using the 
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geometry of groups of Lie type, or by showing that root involutions cannot 
fix the required numbers of points. Unfortunately, there seem to be too 
many different cases for such uniform approaches. Instead, we will use 
elementary properties of the classical groups (10.4), (10.5) and numerical 
methods (10.1) in order to obtain contradictions. 

LEMMA 10.1. (i) If qi+ 11 lG:G,I for some i>O, then i is odd and 
q+l=O(mod3). 

(ii) For all i,j>O, (q’+ l)(q’+ 1)JIG:G.I. 

Proof (i) If qi + 1 E 2 (mod 3) then some prime divisor of 1 G: G, / con- 
tradicts (6.4)(ii). Thus, i is odd and q = 2’ is not a square, so that e is odd. 
Then 3 ( q+ 1. 

(ii) Use (i) and (6.4)(i). 1 

LEMMA 10.2. (i) The Dynkin diagram of G, is obtained from that of G 
by removing an orbit of graph automorphisms (namely, automorphisms lying 
in F). 

(ii) There is a line L such that G, is contained in a proper parabolic 
subgroup of G. (In particular, tf G is a classical group then G, acts reducibly 
on the underlying vector space.) 

Proof: (i) F, is a maximal subgroup of F. 

(ii) [29, (1.6)]. 1 

LEMMA 10.3. (i) G has BN-rank I> 2. 

(ii) G # PSp(4, q). 

(iii) G, is obtained by removing at most 2 nodes from the Dynkin 
diagram of G. 

(iv) G f G2(q), 3D4(q). 

Proof: (i) Since G is not 2-transitive on points, I> 1. 
(ii) Since q2 + 1 divides the index of every parabolic subgroup of 

PSp(4, q), (10.1)(i) applies. 
(iii) Otherwise q* + 1 1 I G: G,J. 

(iv) By (10.2i), if G= G,(q) or 3D,(q) then I rc I= (q6 - l)/(q - l), 
(q3 + 1 )(q8 + q4 + 1 ), or (q + 1 )(q8 + q4 + 1). In the first case, G = G,(q), the 
points of 7c can be identified with the points or the lines of the generalized 
hexagon for G, and it is easy to check that a long root involution fixes 
q + 1 + (q + 1). q. q or 1 + (q + 1) q points of X. The remaining possibilities 
can be eliminated in the same manner, or by noting that q + 1 E 0 (mod 3) 
by (10.1)(i), and hence that 17~1 ~0 (mod 9), contradicting (6.4)(i). 1 
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LEMMA 10.4. G # PSL(d, q). 

Proof. See the proof of (8.5). 1 

LEMMA 10.5. G is not a classical group. 

ProoJ: By (10.3)(ii) and (10.4), we must consider the case in which G 
acts projectively on a vector space V as a symplectic, orthogonal or unitary 
group, and G., is the stabilizer of a totally isotropic or totally singular 
k-space X. Let YE Xc with Xn Y’ = 0. Then G,, y) is contained in 
a parabolic subgroup by (10.2)(ii). However, it is easy to check that 
G IX,yl fixes a totally isotropic or totally singular subspace only if one 
of the following holds: (i) G= PSp(2r, 2) or PSU(d, 2), k= 1, or 
(ii) G = Ps2’(2r, 2), k = 2, and G, fixes a totally singular 2-space but no 
1 -space. 

In (i), a transvection fixes too many points of rc. In (ii), choose X’ and Y 
in Xc so that dim x’ n Y’ = 1 and Y’ C& X’l. Then the only totally singular 
subspace fixed by G,,., y’) is X’ n Y’, of dimension 1. 1 

PROPOSITION 10.6. Case (C.2) cannot occur. 

Proof We must eliminate the possibilities G = F,(q), ‘E,(q), E,(q), 
E,(q) and E,(q). By (10.1)(i), q4 + 1 J 1 G: G, 1. However, a glance at 1 G 1 
and the possibilities for the orders of parabolics quickly shows that there 
only live cases to consider: (i) G= E,(q), G, of type E,; (ii) G=&(q), G, 
of type D,; (iii) G = E,(q), G, of type D, x A ,; (iv) G = *EJq), G, of type 
‘D4; and (v) G= E,(q), G, of type D,. 

In (ii) and (iii), q6 + 1 1 1 G: G,l, and this is impossible as above. In (i) 
and (iv), (q5 + 1)(q9 + 1)1 I G: G.,/, which contradicts (lO.l)(ii). 

In (v), G induces a rank 3 permutation group on the points of rc, and this 
produces the same contradiction as in (8.5). 1 

11. SPORADIC GROUPS 

The following Lemma will complete the proof of Theorem B. 

LEMMA 11.1. G is not sporadic. 

There are several approaches to this lemma. For many sporadic groups, 
all maximal subgroups are known, and hence (6.4) can be applied. 
However, this method fails for the largest groups. 

Alternatively, the method on p. 44 of [ 131 can be applied, almost ver- 
batim, because I G, I is divisible by so many prime divisors of 1 G I (by 
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(6.4)). However, we will use the most mindless approach, based primarily 
on elementary arithmetic. 

Proof: By (6.4), 1 G : G,! is a factor of the product of 3 and all powers p’ 
of primes p = 1 (mod 3) such that p’ 1 1 G 1. Moreover, 1 G: G, 1 = 
(m*+m+ l)(m*-m+ 1) by (6.1). These two conditions produce a very 
small number of possibilities for m, in view of the possible orders 1 G] 
(cf. [15-J). 

For example, suppose that G is a section of the Monster. Then 
(m2+m+l)(m2-m+1)~3~76~133~19~31. Since m > 2, arithmetic 
produces a unique possibility: n = m* = 52. Then CG(t)R(f) is isomorphic to 
a subgroup of PGL(3, 5), for each involution t of G; while the pointwise 
stabilizer of n(t) has order dividing n -m = 20. When t is a 2-central 
involution, inspection of the various cases produces a contradiction. (Alter- 
natively, no group G here has a subgroup of index 31.21.) 

Similarly, when G = J, , J,, .I,, LyS, Ru, or ON, I G : G, 1 divides 3 .7 . 19, 
3.19, 3.7’31 .37.43, 3 .7.31 .37.67, 3.7.13, or 3. 73. 19.31, respec- 
tively. As above, only n = 5* is numerically feasible, and this again 
produces a contradiction. 1 

Note added June 4, 1985. Since this manuscript was submitted, two relevant preprints have 
circulated. (i) M. Aschbacher, “Overgroups of Sylow subgroups in sporadic groups.” This 
paper contains, among many other things, the completion of the list in Theorem C for the 
case of all sporadic groups. (ii) M. Liebeck and J. Sax], “The primitive permutation groups of 
odd degree.” This paper consists of Theorem C and a slightly different proof of it. While 
Aschbacher’s main theorem in [ 1 ] still plays a central role in that proof, algebraic group and 
modular representation theoretic properties of groups of Lie type are used instead of the many 
subsidiary results in [ 1 ] employed in the present approach. 
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