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Let G be a subgroup of S,, given in terms of a generating set of permutations, 
and let p be a prime divisor of 1 G 1. If  G is solvable-and, more generally, if the 
nonabelian composition factors of G are suitably restricted-it is shown that the 
following can be found in polynomial time: a Sylow p-subgroup of G containing a 
given p-subgroup, and an element of G conjugating a given Sylow p-subgroup to 
another. Similar results are proved for Hall subgroups of solvable groups and a 
version of the Schur-Zassenhaus theorem is obtained. 0 1988 Academic Press. II-K. 

1. INTRODUCTION 

While subgroups of the symmetric group S,, can be large, each such 
subgroup can be described (in polynomial time) in terms of a small number 
of generating permutations. It is natural to ask what portions of finite 
group theory have polynomial-time versions. A number of such algorithms 
are known [1, 4, 6, 7, 8, 9, 111. For example, given a permutation group G, 
the following can be determined in polynomial time: (G(, the pointwise 
stabilizer of any given subset, all orbits of G, the derived series of G, a 
composition series for G, and an element whose order is any given prime 
divisor of ]G]. 

Sylow’s theorem is one of the fundamental results concerning finite 
groups. It is presently unknown whether or not Sylow subgroups can be 
found in polynomial time. An elementary result in this direction is given in 
IS]. In [7] a sledgehammer approach is used to find a Sylow subgroup of G 
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when it is known that G is simple. In this paper we will obtain other 
versions of Sylow’s theorem as well as related group-theoretic theorems. 

Our main results are as follows. Assume that all nonabelian composition 
factors of G are suitably bounded (as explained in Section 3). 

(1) If (generators for) a p-subgroup P of G are given, then (generators 
for) a Sylow p-subgroup containing P can be found in polynomial time 
(Section 4). 

(2) If Sylow p-subgroups P, and Pz of G are given, then an element of 
G can be found conjugating PI to P2 (Section 4). 

(3) A version of the Schur-Zassenhaus theorem is proved (Section 6). 
(4) Analogues of (1) and (2) are proved for Hall subgroups of solvable 

groups (Section 5). 

The proofs of these results turn out to be surprisingly elementary. Of 
fundamental importance is the fact, outlined in [8] on the basis of [3], that 
in polynomial time it is possible to find the intersection of G (restricted as 
above) with any coset of any subgroup of S,,. The principal group-theoretic 
idea in our proofs involves the so-called Frattini argument-especially its 
proof (see (G.2) in Section 2). 

Section 2 contains some elementary group-theoretic preliminaries, while 
Section 3 lists the known polynomial-time group-theoretic algorithms that 
we use. This list can be viewed almost as a collection of axioms restricting 
our ability to do traditional group theory. 

Section 4 contains algorithmic versions of Sylow’s theorem. It is worth 
noting that, on the one hand, we make use of Sylow’s theorem in proving 
the validity of our algorithms but, on the other hand, standard proofs of 
Sylow’s theorem do not lead to polynomial-time algorithms. For example, 
in (1) above we do not know whether or not the normalizer N,(P) of a 
p-group P can be found in polynomial time, so that we cannot simply 
search for a p-element of N,(P) - P. 

Sections 5 and 6 deal with solvable groups and the Schur-Zassenhaus 
theorem, respectively. In Section 7 we indicate further variations on Sylow’s 
theorem of a more technical nature. In particular, we observe that the 
problem of finding Sylow subgroups of arbitrary subgroups of S,, is 
polynomial-time reducible to the intersection problem. 

2. PRELIMINARIESI: GROUPTHEORY 

This section begins with a description of some of the notation we use 
throughout the paper and concludes with a collection of elementary results 
on permutation groups. Further details can be found in [5 or 121. 
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Let X be a finite set and consider the symmetric group Sym( X) of all 
permutations of X. The letter n will always denote 1x1, and we will also 
denote Sym( X) by S,,. 

Suppose that G is a subgroup of Sym( X). The letter x will always denote 
an element of X with stabilizer G, and orbit xc = (xs)g E G}. Recall that 
(G: G,I = Ix’I. 

If Y is any subset of X and g E G, then Yg is the set ( ys]y E Y }. The 
setwise stabilizer of Y is G, = {g E GJ Ys = Y } and its pointwise stabilizer 
is G(r, = {g E G(yg = y for all y E Y}. If G = G, then Y is said to be 
G-inuariant, and in this case each element g E G restricts to a permutation 
gy E Sym(Y). Define GY to be the group { gr]g E G}, and notice that GY 
is isomorphic to G/G,,,. If G(,, = 1, we say that G acts faithfully on Y. 

Since G acts on the set of subsets of X, the groups G,, Gcz, and (G,)” 
are well-defined whenever Z is a set of subsets of X. For example, 
G(x) = (g E G] Yg = Y for all YE Z}, and if g E Gx, then gx is the 
element of (G,)z induced by g. 

The following elementary results will be used frequently throughout the 
paper. Any notation not already explained can be found in [5, 121 or any 
book on basic group theory: 

(GA) Suppose that G < Sym( X) and that a subgroup H of G is 
transitive on an orbit xc. Then G = G,H. 

Proof. If g E G then, for some h E H, xg = xh and consequently 
gh-’ E G,. Thus g E G,H, as required. 

(G.2) (The Frattini argument.) If K is u normal subgroup of a group G 
and if P is a Sylow p-subgroup of K, then G = NJ P) K = KNo( P). 

Proof: Let G act by conjugation on the set X of all Sylow p-subgroups 
of K. The stabilizer of P in G is No(P), so the result follows from (G.l). 

(G.3) Let Z be the set of orbits of a subgroup K of Sym( X). Then 
N Sym~X)tK) 2 SwtX)~. 

Proof: If g E NSymcX) (K ), then for all Y E Z and all k E K, ( Yg)h = 
(Y@g~ I)” = Yg. Thus Yg is K-invariant and contains no proper K-invariant 
subsets. That is, Yg E Z whenever Y E Z. Thus g E Sym( X)x. 

(G.4) Let S, L I G 5 Sym(X), where (ISI, ILI) = 1. Let Z and A be 
the sets of orbits of S and L, respectively. Zf G = G, = GA, then (i) 

G,z, n Gw = 1, and (ii) G acts faithful& on Z U A. 

Proof. Let Y E Z and 2 E A, where Y n 2 # 0 . Then Y n 2 is a 
block of each of the transitive groups S ’ and Lz. Consequently, I Y n Z] 
divides (1 S 1, (L ]) = 1. This proves that each member of Z has at most one 
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element of X in common with each member of A. Thus, each element of X 
is fixed by G(,, n Gta,. This proves (i) and then (ii) is immediate. 

(G.5) If Q I G I Sym( X), where Q is a q-subgroup and Q I Z(G), 
and if Z is the set of orbits of Q on X, then GCx, is a q-group. 

Proof Apply (G.4) to S = Q and any Sylow p-subgroup L of G(x), 
where p f q. Then L I GCB) f~ GChI = 1. 

Of course (G.5) is very easy to prove directly. 
For the next result, recall that a composition series for G is a sequence 

G = G, D G, D . . . D G, = 1 such that, for 1 I i I k, Giwl/G, is a 
simple group. The normal closure of a subset S of G is the group 
(SC) = (P/g E G) generated by the conjugates Sg = g-‘Sg of S in G; it 
is the smallest normal subgroup of G that contains 5’. 

(G.6) Suppose that G = G, D G, D . . . D G, = 1 is a composition 
series for G. If G, _ 1 is cyclic of order q then (Gf- 1) is a q-group, otherwise 
G,- 1 is a nonabelian simple group and (Gz- 1) is the direct product of the 
conjugates of G,-, in G. 

Proof Suppose that G,- i is cyclic of order q. By induction the normal 
closure Q of G,- i in G, is a q-group. Then for all g E G, Qg is a normal 
q-subgroup of G,. It follows that (Gf-l) = (Q’) is also a q-group. 

Now suppose that G,-, is nonabelian and let G act by conjugation on 
the set X of conjugates of G,-, in G. If Y is an orbit of G,, then by 
induction (Y) is the direct product of the members of Y. If Y, and Y, are 
distinct orbits of G,, it follows from [5, Theorem 2.151 that (Y,) f7 (Y,) = 1 
and hence that (Y,, Y,) = (Y,) x (Y,). This shows that each member of X 
is normal in (X). Since X consists of nonabelian simple groups it follows 
from [5, ibid.] that (X) is the direct product of the members of X, as 
required. 

(G.7) Suppose that G 5 S,, and that G, < G, < . . . -C G,,, = G is a 
sequence of distinct subgroups of G. Then m -C n2. 

Proof For 1 I i < m, IGi+l : G,I 2 2, so m < n log,n -C n2. 

Remarks. (i) A more detailed analysis has been carried out in [2] and 
shows that m < 2n. 

(ii) This simple result is extremely useful in later sections. All of our 
algorithms involve reductions that replace the given group by a proper 
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subgroup and then proceed by recursion to this smaller group. The result 
just proved shows that the depth of recursion is bounded above by n2. 

3. PRELIMINARIES II: ALGORITHMS 

In this section we present various known algorithms which, when applied 
to a “suitably described’ permutation group G acting on a set X of size n, 
produce subgroups or elements of G. These will be the building blocks of 
the algorithms of later sections. 

The input for an algorithm will usually include a set of generators for G, 
given as a set T of permutations of X. By means of Sims’ algorithm 
[ll, 4, 61 we can use T to find a new set, of at most n2 permutations, that 
also generate G. This can be done in a time that is polynomial in ] T ] and n. 
From now on we will assume that this reduction has been carried out, so 
that G = (I?), where (T] I n2. This is the sense in which we regard G as 
being “suitably described.” 

Most of the following algorithms can be described by saying that there is 
a procedure that “finds” a subgroup H satisfying some condition (in time 
that is polynomial in n). By “finding” H we mean that the algorithm 
produces generators for H that are realized as permutations of the underly- 
ing set. 

Our algorithms depend on the main result of [3]. Consequently, we will 
eventually need to impose restrictions on the group G. For any positive 
integer b, let CF(b) denote the class of finite groups each of whose 
composition factors is either 

(i) cyclic, 
(ii) an alternating group A, for k -< b, 

(iii) a classical group of dimension at most b, 

(iv) an exceptional group of Lie type, or 
(v) a nonabelian simple group of order at most b. 

It is shown in [3] that there is a constant c = c(b) such that, for any 
primitive group G of degree n in the class CF( b), ] G] I nc. Notice that for 
all b, CF(b) includes all solvable groups. 

Given a group G I Sym( X) = S,, each of the following constructions can 
be carried out in a time that is polynomial in n. 

(A.l) Given Y c X, find GCy) and JG,,,(. 
This is a special case of Sims’ algorithm. Details can be found in [4,6, or 

111. 
(A.2) Find all the orbits of G on X. 
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(A.3) [l] Given that G + 1 is transitive on X, find a block system 
Z f {X} such that G” is primitive. 

(A.4) Given a G-invariant partition III, find G,,,. 
This follows easily from (A.1). 

(AS) [4] Given a nonempty subset S of G, find the normal closure (SG). 
(A.6) [4] Find the derived series of G. 
(A.7) [9] Given a subgroup H of Sym( X) normalized by G, find Co< H). 

In particular, find Z(G). 
(A.8) Given that G is in CF( b), given any subgroup H I Sym( X) and 

given any f E Sym( X), find G n Hf. 

Remarks. (i) To “find” G f~ Hf means to decide whether or not this set 
is empty and, if it is nonempty, to construct generators for G n H and an 
element f’ such that G f~ Hf = (G n H)f’. 

(ii) The main result of [3] shows that the algorithm beginning on page 
61 of [8] can be used to find G n Hf. 

The following constructions are all straightforward consequences of 
(A.8). 

(A.9) Given that G is in CF( b) and that Y is a subset of X, find G y. To 
do this, find Sym( X) r and then use (A.8) to find G n Sym( X) r. Observe 
that G, = G n Sym(X), 

(A.lO) Given that G is in CF(b) and given subsets Y1 and Y, of X, 
decide if there exists g E G such that Y[ = Y,, and, if so, find such an 
element. In doing this we may assume that ] Y, ( = ] Y,] and then find 
f E Sym(X) such that Yf = Y,. Next use (A.8) to find G n (Sym(X),,)f, 
and observe that either this intersection is empty (in which case no element 
of G takes Y, to Y,) or else it equals (Gyl)g, where g E G and Y,s = Y,. 

(A.ll) Given that G is in CF( b) and given a partition fl of X, find G,. 
This generalizes (A.9) and can be obtained from (A.8) by the same 

method. The next construction is the analogous generalization of (A.lO). 
(A.12) Given that G is in CF(b) and given partitions n, and n, of X, 

decide if there exists g E G such that ng = rIz and, if so, find such an 
element. 

(A.13) Given that G is in CF(b) and given a subset S of Sym( X), find 
C,(S). 

To do this, find C,,,,,(S) and then use (A.8) to find C,(S) = G n 
c Sym(X,(S)- 

(A.14) Given that G is in CF(b) and given h, and h2 in Sym( X), decide 
if there exists g E G such that hf = h, and, if so, find such an element. 
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If hi and h, have different cycle structures, no such g exists. Otherwise 
it is possible to find f E Sym( X) such that h{ = h,. Next find C = 
C,,(,,( hi) and use (A.8) to find G I-J Cf. Either G n Cf is empty (in 
which case no element of G conjugates h, to h2) or else G n Cf = (G n 
C)g, where g E G and hg = h,. 

The next construction is a special case of [9]. The original proof in [9] 
uses the classification of finite simple groups. However, in the case of 
groups in CF( b) the classification can be avoided. We conclude this section 
with an outline of how this is done. 

(A.15) Giuen that G is in CF(b), then (i) find a set Y on which G acts 
such that 1 Y( < n and Gy is simple, and (ii) find a composition series for G. 

In (i) note that G(,) is a maximal normal subgroup of G of index at most 
n!. Thus (ii) follows from (i) by (G.7) and iteration. 

For purposes of recursion we actually find a maximal subgroup of index 
at most n in G containing a given proper normal subgroup N. First use 
(A.2) to find the set II of orbits of N and then use (A.4) to find G(u). If 
G = G,,,, then G = NG, by (G.l) and we solve the problem by recursion 
to G,. If G(,, # 1 or G, we solve the problem by recursion to G”. Thus we 
may now assume that G(u) = 1 and that N = 1. Use (A.2) to find a 
nontrivial orbit Y of G on X and use (A.3) to find a block system Z on Y 
such that Gx is a nontrivial primitive group. Then either we solve the 
problem by recursion to a smaller group or else G = G”. So from now on 
we may assume that G is primitive on X. By [3], 1 G) I nccb). Using (A.5) 
we find the normal closure of each element of G, either concluding that G 
is simple-in which case we are finished-or else finding a proper normal 
subgroup K of G. In the latter case, G = KG, (since G is primitive). If M is 
a maximal subgroup of index at most n in G,, then KM is a maximal 
subgroup of index at most n in G. 

In the preceding argument, and throughout the remainder of this paper, 
it is straightforward to check that the indicated algorithm runs in poly- 
nomial time. 

4. SYLOW SUBGROUPS 

In this section we prove three polynomial-time versions of Sylow’s 
theorem: conjugacy, existence, and embedding of p-groups. The algorithm 
that constructs a Sylow subgroup uses the conjugacy algorithm and the 
embedding algorithm uses both conjugacy and existence. 

THEOREM (4.1). There is a polynomial-time algorithm which, when given a 
group G I Sym( X) in CF( b) and Sylow p-subgroups P, and Pz of G, finds 
g E G such that I’{ = P,. 
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Proof 1. Use (A.2) to find the set II; of orbits of P, for i = 1,2. 

2. Use (A.12) to find f E G such that II{ = II,, and let Pj = P/. 
(Sylow’s theorem implies that f exists. Note that lIfI, is the set of orbits of 
(PI? Pd.> 

3. Case If, f {X}. 
3.1. Pick any YE If,, and let 2 = X - Y. 
3.1. Recursively find h E (PI, P3) such that (P;)’ = PT. 
3.3. Recursively find k E (PI, P[) such that (P,““)” = PF. Then 

Pf = P,, where g = fhk. (By construction ( Pf)Y = (P,““)’ = PT 
and (P2p)= = (P,““)” = PI”, so that (P2g, P,) is a p-group.) 

4. (From now on we may assume that P, and Pz are transitive on X.) 

5. Use (A.7) to find Z(P,) and Z(P,). 

6. Pick any element z2 # 1 of Z( Pz). Use (A.14) to find h E G such 
that z:’ E Z( P,). (By Sylow’s theorem such an element h exists. Since P, is 
transit&e, ]Z( P,)l divides n by [12, (4.3)]. For each zr E Z( PI), apply 
(A.14) to the pair zr, z2 until h is found.) 

7. Let z = zi, P4 = P;, and K = (PI, P4). Use (A.2) to find the set C 
of orbits of (z) on X. (Then z E Z( PI) n Z( P4) I Z(K).) 

8. Recursively find k E K such that (Pi)’ = PF, and let g = hk. 
Then PI = P,. (Since z E Z( K ), Ko, is a p-group by (G.5); since it is 
normal in K it is contained in every Sylow p-subgroup of K. Then 
(P,̂ )” = PF implies that Pi = P,; hence P:” = PJ = PI.) q 

COROLLARY (4.2). There is a polynomial-time algorithm which, when 
given G I S,, in CF( b), N 9 G, and a SyIow p-subgroup P of N, finds a 
subgroup H such that P 4 H and G = NH. 

Proof Let P be the given set of generators of G. For each g E J?, use 
Theorem (4.1) to find 171 E N such that (Pg)“’ = P. (Note that Pg and P 
are Sylow p-subgroups of N.) Then let P’ be the resulting set of elements 
gm (one for each g E T) and let H = (P, I?). (Then G = (T’)N, since 
g/v = gmN.) 0 

Remark. The preceding corollary is a polynomial-time version of the 
Frattini argument (G.2). However, note that we did not find NJ P): indeed 
we do not know how to find N,(P). 

THEOREM (4.3). There is a polynomial-time algorithm which, when given a 
group G < Sym( X) in CF(b) and a prime p, fin& a Sylow p-subgroup of G. 

Proof 1. Use (A.15) to find a set Y such that ( Y] I n and G ’ is a 
simple group. 

2. Use (A.l) to find M = G,,.,. 
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G 

3. Case Gy is nonabelian. 
3.1. Find H I G such that the image of H in G ’ is a Sylow 

p-subgroup. (By [3], 1 GY( I \ Y 1’ < nr for some constant c = 
c(b). Thus the following brute force approach can be used. If P 
is any p-subgroup of G ’ other than a Sylow p-subgroup, simply 
check each p-element of Gy - P until an element g is found 
that normalizes P. Replace P by (P, g). By (G.7) this process 
eventually produces a Sylow p-subgroup.) 

3.2. Recursively find a Sylow p-subgroup of H, and hence of G. 
(Since H ’ is a p-group while GY is not, H < G. Also, H 
contains a Sylow p-subgroup of G since it contains M and 
induces a Sylow p-subgroup of G ‘.) 

4. Case G ’ has prime order q. Let g be one of the given generators of 
lying in G - M. 

4.1. Recursively find a Sylow p-subgroup P of M. 
4.2. Use Theorem (4.1) to find m E M such that (Pg)” = P. 
4.3. Find the Sylow p-subgroup (h) of (gm). Then (P, h) is a 

Sylow p-subgroup of G. (The element Mg = Mgm of G/M has 
order q. If q # p, then h E M and P is already a Sylow 
p-subgroup of G. If q = p, then Mh has order p and (P, h) is 
a p-group properly containing P. Since G = M(h), it follows 
that (P, h) is a Sylow p-subgroup of G.) 0 

In [7] an unsuccessful attempt was made to find the largest normal 
p-subgroup O,,(G) of a given group G I S,,. When G E CF(b), this can 
now be done. 

COROLLARY (4.4). There is a polynomial-time algorithm which, when 
given a group G I Sym( X) in CF(b) and a prime p, finds O,(G). 

Proof. 1. Use Theorem (4.3) to find a Sylow p-subgroup P of G. 

2. For each of the given generators g of G, find Hg and test if H 
equals HR. (Use A.1) to find 1 HI and 1 (H, Hs) ) .) 

3. If HR # H, use (AX) to find H n Hg. Replace H by H n Hs and 
return to Step 2. (By (G.7) H becomes O,(G) after at most n2 replace- 
ments.) 0 

THEOREM (4.5). There is a polynomial-time algorithm which, when given a 
group G < Sym( X) in CF(b) and a p-subgroup K of G, finds a Sylow 
p-subgroup of G containing K. 
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Proof We may assume that K is not a Sylow p-subgroup of G. By 
(G.7) it suffices to find a p-subgroup of G properly containing K: 

1. Case G is intransitive on X. 
1.1. Let Y be any orbit of G, and let Z = X - Y. 
1.2. Recursively find a Sylow p-subgroup of GY containing K ‘, and 

use (A.l) to find its preimage T in G. 
1.3. Recursively find a subgroup P of T whose image in TZ is a 

Sylow p-subgroup containing K’. Then P is a Sylow p-sub- 
group of G. (The groups (P, K)Y and (P, K)= are both 
p-groups.) 

2. (We may assume that G is transitive on X.) Use (A.2) to find the set 
lI of orbits of K on X. Then use (All) to find Gn. Use (Al) to test if 
G,, -c G. 

3. Case G,, < G. Recursively find a Sylow p-subgroup of G, properly 
containing K. (By (G.3), N,(K) I Gn. Also, a Sylow p-subgroup of 
N,( K ) properly contains K as K is not a Sylow p-subgroup of G.) 

4. (We may assume that G, = G.) Use Theorem (4.3) to find a Sylow 
p-subgroup of G”, and use (A.l) to find its preimage T in G. If T < G, 
recursively find a Sylow p-subgroup of T that contains K. 

5. (We may assume that Gn is a p-group.) 
6. Case G” # 1. 

6.1. Find a normal subgroup of G” of index p and use (A.4) to find 
its preimage M in G. 

6.2. If K is not a Sylow p-subgroup of M, recursively find a Sylow 
p-subgroup of M containing K. 

6.3. (We may assume that K is a Sylow p-subgroup of M.) Use 
Theorem (4.3) to find a Sylow p-subgroup P of G. Then use 
Theorem (4.1) to find m E M such that K = (P 17 M)“. (Since 
M is normal in G and P is a Sylow subgroup of G, it follows 
that P n M is a Sylow subgroup of M.) Then K < P”. 

7. Case G” = 1. (Here K is transitive on X since G = Go, is transi- 
tive on X.) 

7.1. Use (A.7) to find Z(K). For each I # 1 in Z(K), use (A.13) 
and (A.l) to find CJz) and 1 C&z)I. (Since K is transitive on 
Z, (Z( K)( divides n by [12, (4.3)].) 

7.2. Find z f 1 in Z(K) such that a Sylow p-subgroup of C,(z) 
has order greater than 1 KI. (The group K is a proper normal 
subgroup of a p-group L 5 G and so K n Z(L) # 1. If 1 # z 
E K n Z(L), then z E Z(K) and K < L I C,(z).) 

7.3. Case C,(z) < G. Recursively find a Sylow p-subgroup of C,(z) 
properly containing K. 
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7.4. Case C,(z) = G. Use (A.2) to find the set Z of orbits of (z) on 
X. Recursively find a Sylow p-subgroup of G’ containing K ‘, 
and use (A.4) to find its preimage P in G. Then P is a Sylow 
p-subgroup of G containing K. (By (G.5), Go, is a p-group. 
Consequently, P is also a p-group.) 0 

5. HALLSUBGROUPS 

Let v be a set of primes. A group H is a r-group if every prime divisor 
of (H] belongs to r. A Hall v-subgroup of a group G is a a-subgroup H 
such that no prime divisor of ] G : H ] belongs to r. A subgroup of G is a 
Hall subgroup if and only if its order and index are relatively prime. 

In this section we will prove analogues of the results of Section 4 for Hall 
m-subgroups of solvable groups. (The existence and conjugacy of Hall 
s-subgroups of solvable groups is a basic result due to P. Hall; cf. 
[5, Section 6.6.41.) 

THEOREM (5.1). There is a polynomial-time algorithm which, when given a 
solvable group G I Sym( X), a set Q of primes and Hall r-subgroups HI and 
Hz of G, finds g E G such that H.f = Ht. 

ProoJ 1. Use (A.6) to find the derived group G’ of G. 

2. Find a group M such that G’ I M < G and 1 G : M( is a prime q. 
(Since G/G’ is abelian, this is straightforward-observe that it is just 
another version of Steps 1 and 2 of Theorem (4.3).) 

3. Recursively find m E M such that (HI f~ M)” = HI f~ M. (Since 
M 5 G and HI is a Hall subgroup of G, Hj is a Hall subgroup of M.) 

4. If q E ?r, then m is the desired element. 
5. If q E ?r, use Theorem (4.3) to find Sylow q-subgroups Qi of Hi for 

i = 1,2. (These are Sylow q-subgroups of G.) Next use Theorem (4.3) to 
find h E (HI, Hr) such that QFh = Q,. Let g = mh. 

(Since HI n M = H,” n M is a normal subgroup of (HI, Hr), we have 
Hmh = (( HT n M)Qy)h = (HI n h4)Qrh = HI.) 0 2 

COROLLARY (5.2). There is a polynomial-time algorithm which, when 
given a solvable group G I S,,, N SJ G, and a Hall subgroup K of N, fin& a 
subgroup H such that K 9 H and G = NH. 

Proof. Proceed as in Corollary (4.2). q 
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THEOREM (5.3). There is a polynomial-time algorithm which, when given a 
solvable group G < Sym( X) and a set n of primes, finds a Hall r-subgroup 
of G. 

ProofI 1. Use Steps 1 and 2 of Theorem (5.1) to find M _a G with 
1G : MI a prime q. We may assume that q E 7. 

2. Proceed as in Steps 4.1, 4.2, and 4.3 of Theorem (4.3) to obtain a 
Hall r-subgroup P of M and a q-element h E G - M normalizing P. Then 
(P, h) is a Hall r-subgroup of G. (For, G = M(h).) 0 

COROLLARY (5.4). There is a polynomial-time algorithm which, when 
given a solvable group G s Sym( X) and a set 7~ of primes, finds the largest 
normal r-subgroup O,(G) of G. 

Proof Proceed exactly as in Corollary (4.4). 0 

Remark. The proofs of Theorems (4.3), (4.9, and (5.3) worked from the 
top down: a maximal normal subgroup was used (in conjunction with 
Theorems (4.1) and (5.1)). In earlier proofs of those results we worked from 
the bottom up, starting with a normal q-subgroup or a normal subgroup 
that was a direct product of nonabelian simple groups. The present proofs 
are much simpler to understand, and also significantly shorter. However, 
the proof of Theorem (4.5) does not generalize to the case of rr-subgroups 
of K. (Steps 3 and 6.1 of Theorem (4.5) can fail.) Therefore, the remainder 
of this section is a last vestige of the former approach. It seems likely that 
further group-theoretic algorithms in more complicated situations will 
require both of the methods. In any event, it appears that the bottom up 
approach allows somewhat more delicate arguments. We leave it to the 
reader to decide which method is preferable. 

The main idea is to arrange to use (G.4 (ii)) with 12 u A ( < n. 

THEOREM (5.5). There is a polynomial-time algorithm which, when given a 
solvable group G 5 Sym( X), a set n of primes and a r-subgroup K of G, 
finds a Hall Ir-subgroup of G containing K. 

Proof We may assume that K is not a Hall r-subgroup of G. It suffices 
to find a 7r-subgroup of G properly containing K. 

1. Use Step 1 of Theorem (4.5) to reduce to the case in which G is 
transitive on X. 

2. Use (A.6) to find the derived series of G, and let q be a prime 
dividing the order of its last nontrivial term. Let L be the smallest term that 
is not a q-group. 
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3. Construct a q-group Q and an r-group R of G such that q # r, 
1 # Q 9 G and Q Z QR a G. Do this as follows. 

3.1. Case L is the last term of the derived series. Find the Sylow 
q-subgroup Q and the Sylow r-subgroup R z 1 of L for some 
r # q. (Since L is abelian, this is straightforward.) 

3.2. Case L is not the last term of the derived series. Let Q = L’ and 
use Theorem (4.3) to find a Sylow r-subgroup R f 1 of L for 
some r # q. 

4. Use (A.2) to find the set Z of orbits of R on X, and use (A.ll) to 
find G,. Use (A.l) to test if G, = G. 

5. Case G, = G. Use (A.2) to find the set A of orbits of Q on X. 
Recursively find a Hall n-subgroup of G’“*. (By (G.4@)), G acts faith- 
fully in Z u A. Since G is transitive on X we have IZ 1 I n/r, 1 A( s n/q 
and hence 12 U Al < n.) 

6. (From now on we may assume that G, < G.) Use (A.ll) to find 
(QK),, then use Theorem (5.3) to find a Hall a-subgroup K, of (QK),. 

7. Recursively find a Hall Ir-subgroup H of G, containing K,. (Recall 
that G, < G.) 

8. (Note that by (G.2) and (G.3) G = QRNJR) = QGZ and therefore 
QK = Q(QK)r. Thus QK = QK,.) 

9. Case q E rr. In this case QH is a Hall Ir-subgroup of G containing 
K. (Since G = QG,, QH is a Hall n-subgroup of G containing QK,.) 

10. Case q 4 7~. Use Theorem (5.1) to find g E QK such that Klg = K. 
Then Hg is a Hall r-subgroup of G containing K. (Since q 4 n, both K 
and K, are Hall a-subgroups of QK = QK,, so that Theorem (5.1) can be 
applied. Moreover, Hg 2 Kb = K. Finally, since G = QGs, both H and 
Hs are Hall r-subgroups of G. 0 

6. THESCHUR-ZASSENHAUSTHEOREM 

Another standard group-theoretic result is the Schur-Zassenhaus theo- 
rem [S, Theorem 6.2.11: if N 9 G and (INI, IG/NI) = 1, then there is a 
subgroup K of G such that G = NK and N n K = 1 (i.e., a complement to 
N in G), and any two such subgroups are conjugate in G. In standard 
proofs (of the conjugacy part) of this theorem it is assumed that either N or 
G/N is solvable. By the Feit-Thompson Theorem, this is always the case. 

In this section we will obtain polynomial-time versions of this theorem. 
The conjugacy part is very easy. 

THEOREM (6.1). There is a polynomial-time algorithm which, when given a 
groupGISym(X)inCF(b),asubgroupN_aGsuchthat((N(,)G/NJ)=l, 
and two complements HI and H, to N in G, fin& g E G such that Hj = HI. 
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Proof Use Steps 1, 2, and 3 of Theorem (4.1) to reduce to the case in 
which HI and Hz are transitive on X. In this situation JX] divides ] HI 1, so 
that (IX], IN]) = 1. Moreover, as N is a normal subgroup of G, each orbit 
of N on X has length dividing both (N] and IX]. Thus N = 1 and 
H,=H,. 0 

LEMMA (6.2). There is a polynomial-time algorithm which, when given a 
group G I Sym( X) in CF(b) and a normal subgroup N such that 
(INI, JG/NI) = 1 and G/N IS a direct product of nonabehan simple groups 
W/N,. . . , W,/N, finds a complement to N in G. 

Proof 1. Case m = 1. (We will use the notation of [5, p. 2211.) 
1.1. For each coset (Y of N in G, find a coset representative x, E G. 

(By [3] and (G.7) ]G/N] is bounded by a power of IX], so this 
can be done in polynomial time.) 

1.2. Let r be the set of cosets corresponding to a set I of generators 
for G. For each coset (Y and each 6 E I;, calculate f (a, S) = 
x;/x,x8 and then let g(6) = II, f(a, 6). 

1.3. Use (A.6) to find the derived group N’ of N. (By the 
Feit-Thompson Theorem, N is solvable, so that N # N’.) 

1.4. Find an integer r such that rlG/NI = 1 (mod IN/N’]). 
1.5. If N’ = 1, the elements x,g(&)- (where 6 E I) generate a 

complement to N in G. If N’ # 1, replace G by the group 
generated by N’ and the elements x,g(6)-‘, then return to Step 
1.1. (The proof of Theorem 6.2.1 in [5] shows that this proce- 
dure constructs a complement to N.) 

2. Case m > 1. 
2.1. Find a complement K, to N in W,. 
2.2. Use (A.13) to find C&K,). 
2.3. Recursively find a complement L to C,(K,) in Co(K,). Then 

K, L is a complement to N in G. (Since K, I C,( K,), recursion 
can be applied. By the Schur-Zassenhaus theorem, there is a 
complement K to N in G such that K > K,. Then K = G/N, 
so that K = K, X M for some group M. Clearly, M is a 
complement to C,(K,) in C&K,). By the Schur-Zassenhaus 
theorem, L and M are conjugate in C,( K,). Thus K,L behaves 
as desired.) 0 

THEOREM (6.3). There is a polynomial-time algorithm which, when given a 
group G I Sym( X) in CF(b) and a subgroup N _a G such that I N( and 
(G/N/ are relatively prime, finds a complement to N in G. 
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Proof. 1. (We may assume that N # G.) Use (A.15) to find a composi- 
tion series for G. Let L be the smallest term not contained in N. (Use (A.l) 
to compare IN1 with I( L, N) 1.) Use (A.5) to find M = ((NL)G). (By 
(G.6) applied to G/N, either M/N is an r-group for some r or it is a direct 
product of nonabelian simple groups.) 

2. Use either Theorem (4.3) or Lemma (6.2) to find a complement R 
to N in M. 

3. For each of the given generators g of G, apply Theorem (6.1) to the 
subgroups R and Rg of M to find m E M such that g’ = gm normalizes 
R. Let H be the subgroup of G generated by R and the elements g’ just 
found. (Since gM = g’M, we have G = MH = NRH = NH.) 

4. If H < G, recursively find a complement K to H n N in H. Then 
K is a complement to N in G. 

5. (We may assume that R g G.) Use (A.2) to find the set Z of orbits 
of R on X. 

6. Recursively find a complement to Nz in Gz, and use (A.4) to find 
its preimage T in G. Then T is a complement to N in G. For, since 
(I R(, 1 NJ) = 1, R _a G, and N _a G, it follows from (G.3) and (G.4) that 
N 02 = 1. Then I&., n N = 1 and TX n Nz = 1, so that T n N = 1. 
(Clearly Gz = N”T’ implies G = NT.) Cl 

7. CONCLUDINGREMARKS 

(i) We have already mentioned that we do not have a polynomial-time 
algorithm for finding N,(R) when R 5 G. We cannot even solve this 
problem when G is solvable and R is elementary abelian. 

(ii) Several other standard group-theoretic results are consequences of 
Theorems (6.1) and (6.3). For example, if G E CF(b) and G is Ir-solvable, 
then Hall ?r-subgroups can be found in polynomial time, and any given one 
can be conjugated to any other one in polynomial time (cf. [5, Section 6.31). 
There are also polynomial-time versions of standard results on relatively 
prime actions [5, Theorem 6.2.2 (i)-(iii)]. 

(iii) In [9, 71 it is shown that the following can be accomplished in 
polynomial time (given G I S, as usual). 

(A.15’) Find a composition series for G. 

(A.16) Given that G is simple and given a prime p, find a Sylow 
p-subgroup of G. 

Neither algorithm was needed in previous sections. Both depend upon 
the classification of finite simple groups. 
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Consider the following problems (given G I S,): 

SYLOW EXISTENCE. Given a prime p, find a Sylow p-subgroup of G. 

SYLOW CONJUGACY. Given Sylow p-subgroups P, and P2 of G, find an 
element of G conjugating Pz to P,. 

INTERSECTION. Given G, H I S,, and f E S,,, find G IT Hf. 

Clearly, this paper has been primarily concerned with the first two of 
these problems, while the last problem contains the basic tool (A.8) as a 
special case. Of course, given au algorithm for intersection, it is trivial to 
obtain analogues of (A.9)-(A.14). 

The importance of intersection was made clear in [8]: the graph isomor- 
phism problem is polynomial-time reducible to intersection. In view of the 
proofs in the present paper, it is not surprising that Sylow existence and 
Sylow conjugacy are polynomial-time reducible to intersection. The proofs 
are identical to those of Theorems (4.1) and (4.2), except that (A.15’) and 
(A.16) must be inserted at the appropriate points. 

In fact, the proof of Theorem (4.2) shows that Sylow existence is 
polynomial-time reducible to Sylow conjugacy. 

(iv) The argument in Theorem (4.2) can be pushed slightly further in yet 
another way. All that is needed is a “local” version of the intersection 
property. Assume that there is an O(nc) algorithm forJinding E f-7 Hf 
whenever the following conditions all hold: K I G, K -+ K is a homomor- 
phism from K onto a subgroup of F of Sym( Y) for some set Y for which 
1 YI < n, H I Sym( Y), and f E Sym( Y). If G has the above property and 
p is a prime, then a Sylow p-subgroup of G can be found in polynomial 
time. (The proof involves minor modifications of the proof of Theorem 
(4.2) using (A.15’) and (A.16).) 

For example, the above local intersection property holds when G is 
known to have a subgroup of polynomial index belonging to CF(b). A 
typical way this can occur is when the pointwise stabilizer of some set of 
2001 points is in CF(b). 
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