Frobenius' Theorem

Richard Koch

February 6, 2015
Theorem 1 (Frobenius) If a finite dimensional vector space over R has a product making it a (possibly noncommutative) field, then the resulting field is isomorphic to R, C, or H.

Proof: We give a proof by R. S. Palais, published in the American Mathematical Monthly for April, 1968.

Call the object D. Since $1 \in D, R \subset D$. If this is all of D, we are done. Otherwise let $d \notin R$ be in D. Since $\operatorname{dim}(R)<\infty$, the elements $1, d, d^{2}, \ldots$ are eventually linearly dependent. Hence there is a polynomial $P(x)$ over R such that $P(d)=0$. By the fundamental theorem of algebra, P can be factored into linear and quadratic terms, so $P_{1}(d) P_{2}(d) \ldots P_{k}(d)=0$. By field axioms, one of these terms is zero. If d satisfies a linear equation, then $d \in R$, so assume $a d^{2}+b d+c=0$. Then

$$
d=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

It follows that $\sqrt{b^{2}-4 a c} \in D$. If this is real, then d would be real. So $b^{2}-4 a c<0$ and $\sqrt{b^{2}-4 a c}=\sqrt{4 a c-b^{2}} i$ where $i \in D$ satisfies $i^{2}=-1$.

We will use this argument again, so just for the record, notice that if d is some other element not in R, we can still write $d=r_{1}+r_{2} j$ for an element j satisfying $j^{2}=-1$.
Return to the specific y used originally, and the i we produced satisfying $i^{2}=-1$. It follows that $C \subset D$. If $C=D$, we are done. So suppose C is not all of D.

If we ignore the general multiplication in D and only notice that elements in D can be scalar multiplied by elements in C on the left, we see that D is a vector space over C.

Define $T: D \rightarrow D$ by $T(x)=x i$. This is a C-linear transformation. Let

$$
\begin{gathered}
D_{+}=\{x \mid T(x)=i x\}=\{x \mid x i=i x\} \\
D_{-}=\{x \mid T(x)=-i x\}=\{x \mid x i=-i x\}
\end{gathered}
$$

Each is a subspace of D. The intersection of these subspaces is $\{0\}$ because an element in both satisfies $i x=-i x$, so $2 i x=0$ and $x=0$. The sum of the two subspaces is everything, because for any $x \in D$ we have $i \frac{x-i x i}{2}=\frac{x-i x i}{2} i$ and $i \frac{x+i x i}{2}=-\frac{x+i x i}{2} i$, so

$$
x=\frac{x-i x i}{2}+\frac{x+i x i}{2}
$$

Every element of C is in D_{+}. Conversely, if $e \in D_{+}$then e commutes with all complex numbers. The elements $1, e, e^{2}, \ldots$ are eventually linearly dependent over C, so e satisfies a polynomial $P(x)$. Factor $P=P_{1}(X) \ldots P_{k}(X)$, noting that over C, every irreducible factor is linear. So for some $i, P_{i}(X)=0$ and $e \in C$.

Notice the the product of any two elements of D_{-}is in D_{+}, for $i x=-x i$ and $i y=-i y$ implies $i x y=-x i y=x y i$.

Let y be a nonzero element of D_{-}. Then the previous paragraph shows that right multiplication by y gives a complex linear map $D_{-} \rightarrow D_{+}$which is one-to-one. Consequently, D_{-} must be one-dimensional over C. We conclude that the dimension of D over R is 4 .

Suppose again that y is a nonzero element of D_{-}. By the argument at the start of the proof, we can write $y=r_{1}+r_{2} j$ for j some element satisfying $j^{2}=-1$.

Then $y^{2} \in D_{+}$and $y^{2}=r_{1}^{2}+2 r_{1} r_{2} j-r_{2}^{2}$. This element is in C, so either $r_{1} r_{2}=0$ or else $j \in C$ and consequently $y \in C$, which is impossible. So $r_{1}=0$ or $r_{2}=0$. If $r_{2}=0, y \in R$, which is impossible. So $r_{1}=0$ and $j \in D_{-}$.

We conclude that $1, i, j, i j$ is a basic of D, since j generates D_{-}over C. Note that $i j=-j i$ by definition of D_{-}. It follows that $(i j)^{2}=i j i j=-i j j i=-1$. Define $k=i j$. Then $i^{2}=j^{2}=k^{2}=-1$. Also $i j=k=-j i$. Also $j k=j i j=-i j j=i$ and $k j=i j j=-i$. Finally $k i=i j i=-j i i=j$ and $i k=i i j=-j$. QED.

