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Dirac’s Belt Trick

P. A. M. Dirac, 1902 - 1984
Nobel Prize (with Erwin Schrodinger) in 1933

Formulated Dirac equation, a relativistically correct quantum
mechanical description of the electron, which predicted the
existence of antiparticles.



Dirac’s Belt Trick with Strings
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\documentclass[11pt]{amsart}

\usepackage[paper width = 6in, paperheight = 7in]{geometry}

\usepackage[parfill]{parskip}

\usepackage{graphicx}

\begin{document}

Using \TeX, we can typeset $\sqrt{ {{1 + x + x^2}

\over {e^{2x + \sqrt{5}}}}}$

and the matrix $\left( \begin{array}{cc} 2 & 5 \\

\sqrt{10} & -7 \end{array} \right)$.

According to calculus

$$\int_0^1 {2x + 3x^2}\ dx = 2 \hspace{.2in} \mbox{and}

\hspace{.2in} \int_0^\infty e^{- x^2} \ dx

= {{\sqrt{\pi}} \over 2}$$

The path of a particle in a gravitational field is given by

$\gamma_i(t)$ where $${{d^2 \gamma_i} \over {d t^2}} +

\sum_{jk} \Gamma^i_{jk} {{d \gamma_i} \over {dt}}

{{d \gamma_j} \over {dt}} = 0$$

\begin{figure}[htbp]

\centering

\includegraphics[width=2in]{MoveTest-math.jpg}

\end{figure}

\end{document}
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WWDC, Apple’s Worldwide Developer’s Conference



Gyroscopes in the iPhone and iPad

1. Announced at WWDC 2010

2. Now in iPhones and iPads

3. Actually a small chip



Secret Slide # 1

// Turn on gyroscope

motionManager = [[CMMotionManager alloc] init];

motionManager.deviceMotionUpdateInterval = 1.0 / 60.0;

[motionManager startDeviceMotionUpdates];

// Repeat as often as desired

newestDeviceMotion = motionManager.deviceMotion;

...

// Turn off gyroscope

[motionManager stopDeviceMotionUpdates];

[motionManager release];



Secret Slide # 2

NewestDeviceMotion contains three descriptions of the attitude of
the device. Use whichever is most convenient.

I Euler angles: roll, pitch, and yaw

I Rotation matrix

I Quaternion



Secret Slide # 3

// Example code using roll, pitch, yaw

double r = newestDeviceMotion.attitude.roll;

double p = newestDeviceMotion.attitude.pitch;

double y = newestDeviceMotion.attitude.yaw;

// Example code using quaterions

double q0 = newestDeviceMotion.attitude.quaternion.w;

double q1 = newestDeviceMotion.attitude.quaternion.x;

double q2 = newestDeviceMotion.attitude.quaternion.y;

double q3 = newestDeviceMotion.attitude.quaternion.z;



Roll, Pitch, and Yaw



iPad Conventions



Gimbals; Illustrations by Andrew Silke



Gimbal Lock



Rotation on an iPad



Complex Numbers
Quaternions are like complex numbers. Recall the complex rules:

I A point in the plane like (2, 3) can be written 2 + 3i . This i is
a way to keep track of the second coordinate.

I Multiply these numbers using the rule i2 = −1. For instance

(2+3i)(4+5i) = 8+10i+12i+15i2 = 8+22i−15 = −7+22i

I If c = a + bi , define c = a− bi . Then cc = a2 + b2.

I This trick allows us to divide:

2 + 3i

1 + 2i
=

(2 + 3i)(1− 2i)

(1 + 2i)(1− 2i)
=

8 + i

5
= 1.6 + 0.2i

I The distance to the origin is given by the Pythagorean
theorem:

|a + bi | =
√

a2 + b2 =
√
cc

I |c1c2| = |c1| |c2|



Rotations and Complex Multiplication

Rotations about the origin are given by complex numbers of
absolute value one. Indeed, fix c1 with |c1| = 1. Then z → c1z
preserves length because |c1z | = |c1||z | = |z |.

Rotation:

z → c1 z



Hamilton and the Discovery of Quaternions

Sir William Ronan Hamilton was a great Irish physicist and
mathematician. In 1843, Hamilton tried to define a multiplication
on three dimensional vectors. Hamilton later wrote in a letter to
one of his sons “Every morning in the early part of October 1843,
on my coming down to breakfast, your brother William Edward
and yourself used to ask me: ‘Well, Papa, can you multiply
triples?’ Whereto I was always obliged to reply, with a sad shake of
the head, ‘No, I can only add and subtract them.’ ”



The Discovery of Quaternions

Eventually Hamilton discovered that multiplication works if we
work in four dimensions. In that case, we can add, subtract,
multiply, and divide, and all the usual grade school properties
remain true except that multiplication is not commutative.
Elements of the resulting object are called quaternions.



Multiplying Quaternions

I A quaternion is formed by four numbers q0, q1, q2, q3. We
always write

q = q0 + q1i + q2j + q3k

I Multiply these numbers using Hamilton’s multiplication rules

i2 = −1 j2 = −1 k2 = −1

ij = k = −ji jk = i = −kj ki = j = −ik
I For example

(2 + 7i + j)(i +k) = 2i−7−k + 2k−7j + i = −7 + 3i−7j +k



Conjugation and Division

I If q = q0 + q1i + q2j + q3k, we define
q = q0 − q1i − q2j − q3k.

I Amazingly, qq = q20 + q21 + q22 + q23
I So we can divide using the standard trick:

1 + i

2j − k
=

(1 + i)(−2j + k)

(2j − k)(−2j + k)
=
−2j − 2k + k − j

5
=

−3j − k

5
= −3

5
j − 1

5
k



Norm

I The distance to the origin is given by the Pythagorean
theorem:

||q0 + q1i + q2j + q3k || =
√
q20 + q21 + q22 + q23 =

√
qq

I And it is still true that

||q1q2|| = ||q1||||q2||



Another Way to Write Quaternions

It is possible to think of a quaternion as a real number q0 and a
three dimensional vector q1i + q2j + q3k. To emphasize that we
have a real number and a vector, write

< r , v >

Everyone knows how to multiply two reals, or scalar multiply a
vector by a real. So it suffices to explain how to multiply two
vectors, and the formula is

< 0, v >< 0,w >=< −v · w , v × w >



Algebra with Vectors

To show the advantage of the new quaternion notation, consider
the product qq discussed earlier. This product is calculated below
using vector notation. Since v × v = 0, the result is the real
number r2 + ||v ||2 = q20 + q22 + q22 + q23 :

< r , v >< r ,−v >=< r2 + v · v , rv − rv − v × v >

I leave it to you to prove a second result: q1q2 = q2 q1.

Finally ||q1q2||2 = q1q2q1q1 = q1 q2 q2 q1. The middle two terms
give ||q2||2, which is real and so commutes with everything, so the
final product is ||q1||2||q2||2.



Boughton Bridge

William Rowan Hamilton discovered the quaternions in Dublin on
October 16, 1843, during a walk with his wife. He immediately
carved the equations on Boughton Bridge (now called Broom
Bridge). They vanished, but the bridge remains.



Rotations in Rn

Definition: A rotation about the origin in Rn is a linear
transformation R : Rn → Rn which preserves distance to the
origin, so ||Rv || = ||v || for all v .

Note: Rotations actually preserve all distances and angles in Rn.

Let SO(n) be the group of all rotations of Rn.



The Dimension of SO(n)

The dimension of SO(n) is

(n − 1) + (n − 2) + . . .+ 1 =
n(n − 1)

2

Examples:

dim SO(2) = 1
dim SO(3) = 3
dim SO(4) = 6



Quaternions as Rotations in Four Dimensions

Just as multiplication by a complex number of absolute value 1
gives a rotation of R2, so multiplication by a quaternion q1 of
absolute value 1 gives a rotation of R4, because
||q1q|| = ||q1||||q|| = ||q||. Thus we obtain a large number of
rotations of R4:

R : q → q1 q



Rotations in Four Dimensions

Unfortunately, the dimension of the unit sphere in R4 is three,
while the dimension of SO(4) is 6. So we only have half of the
rotations of R4.

Remember that multiplication is not commutative. The missing
rotations have the form R(q) = qq1 for a fixed q1 of norm one.

The most general rotation of R4 is q → q1qq2 for unit quaternions
q1 and q2.

Actually (q1, q2) = (1, 1) and (q1, q2) = (−1,−1) both give the
identity, so

SO(4) = S3 × S3/± (1, 1)



Rotations in Three Dimensions

Once we know how to rotate R4, it is easy to rotate vectors in R3.
If a rotation of R4 leaves < 1, 0 > fixed, it rotates the three
dimensional subspace of the quaternions perpendicular to < 1, 0 >.
Since q11q2 = 1 exactly when q2 = q−1

1 , we conclude that
v → qvq−1 is a rotation of the three dimensional vector v ,
considered as a quaternion < 0, v >.

If ||q|| = 1, then ||q||2 = qq = 1, so q−1 = q. Note that both
q = 1 and q = −1 give the identity map.

We conclude that SO(3) = S3/{±1} where S3 is the group of unit
quaternions. The most general rotation of R3 is v → qvq for a
unit quaternion q.



What Rotation Corresponds to < r , v >?

A unit quaternion has the form
< r , v > where r2 + ||v ||2 = 1.
Consequently r can be written
uniquely as cos θ where 0 ≤ θ ≤ π.

Theorem
If q =< cos θ, v > is a unit
quaternion, the rotation v → qvq−1 of
R3 has axis v and angle of rotation 2θ.



What Rotation Corresponds to < r , v >?

Suppose q is a unit quaternion of the form < r , v >. The
corresponding rotation maps w ∈ R3 to qwq−1 = qwq. This
equals < r , v >< 0,w >< r ,−v > and a short calculation gives
< 0, r2w + 2r(v × w) + (v · w)v + v × (v × w) >

So the unit quaternion q gives the rotation

w → r2w + 2r(v × w) + (v · w)v + v × (v × w)

If w points in the same direction as v , then v × w = 0 and we get
r2w + (v · w)v . Writing w = αv , we get r2αv + α||v ||2v =
(r2 + ||v ||2)αv = αv = w . So vectors on the line through v are
fixed, and we have a rotation with axis v .



Rotation by q =< r , v >, Continued

Suppose w is perpendicular to v . Then w is mapped to
r2w + 2r(v × w) + v × (v × w).

Let e3 be a unit vector in the direction of v . Then v = ||v ||e3.
Since r2 + ||v ||2 = 1, we can write r = cos θ and ||v || = sin θ. A
short calculation shows that the above formula maps w to

cos2 θ w + 2 cos θ sin θ (e3 × w) + sin2 θ (e3 × (e3 × w))

Let e1 and e2 be vectors perpendicular to e3, so e1, e2, e3 forms a
right handed coordinate system. Then a very short calculation
from the last formula shows that

e1 → (cos2 θ − sin2 θ)e1 + 2 cos θ sin θe2 = cos 2θ e1 + sin 2θ e2

e2 → (cos2 θ − sin2 θ)e2 − 2 cos θ sin θe1 = cos 2θ e1 − sin 2θ e2



Let’s Try It on the iPad



The Main Picture of S3

Figure: Unit Quaternions

The unit quaternions form a sphere
S3. I like to draw this as the sphere
S2, thinking of the vertical axis as the
real component of quaternions, and
the plane of the equator as 3-space. If
v is a unit vector in the equator, the
great circle through this vector from
the north pole to the south pole
corresponds to rotations about v
through angles 2θ, which trace a full
2π rotation as we move from north to
south. The north and south poles,
corresponding to < ±1, 0 >, both map
to the identity rotation.



The Key Picture



The Belt Trick in Dimension 4
Our argument also shows that you cannot remove an odd number
of twists from the belt even if you are allowed to twist it into the
fourth dimension. We just replace the previous picture of SO(3)
with the picture of SO(4) below. The initial odd twist about an
axis in R3 has the form h→ qhq and gives the top paths below. A
homotopy to actual four dimensional rotations gives the bottom
picture. But during the homotopy, both paths will continue to end
at the south pole.



Coincidences in Low Dimensions

I In 1877, Frobenius proved that the only finite dimensional
skew fields over R are R,C , and the quaternions H.

I In 1843, a friend of Hamilton named John Graves found a
product on R8 satisfying ||vw || = ||v ||||w ||. This object was
independently discovered later by Cayley. The object is known
as the octonions or the Cayley numbers. The product is not
associative.

I In 1898, Hurwitz proved that if Rn has a bilinear product
satisfying ||vw || = ||v ||||w ||, then n = 1, 2, 4, or 8.

I In 1956, John Milnor and Michael Kervaire independently
proved that if Rn has a bilinear product satisfying vw 6= 0
whenever v 6= 0 and w 6= 0, then n = 1, 2, 4, or 8.

I A cross product on Rn is a nontrivial bilinear product v × w
such that v and w are perpendicular to v × w , and
||v × w ||2 = ||v ||2||w ||2 − (v · w)2. Hurwitz’s theorem implies
that such products only exist in dimensions 3 and 7.
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More Coincidences

I The only spheres admitting continuous group structures are
S1 and S3.

I SO(4) contains a normal subgroup S3 = Spin(3) and also a
(non-normal) copy of SO(3)

I No other SO(n) contains a non-trivial normal subgroup.

I SO(4) is essentially S3 × S3 = SO(3)× SO(3).

I No other SO(n) or SU(n) has an almost product structure.
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