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Theorem 1 (Hurwitz; 1898) Suppose there is a bilinear product on Rn with the property
that

||v ◦ w|| = ||v||||w||

Then n = 1, 2, 4, or 8.

Proof; Step 1: Pick an orthonormal basis e1, e2, . . . , en for Rn, and consider the map
v → ei ◦ v from Rn to Rn. This map is a linear transformation Ai : Rn → Rn. Since
||ei ◦ v|| = ||ei||||v|| = ||v||, it is orthogonal, so ATi Ai = I.

If r1, r2, . . . , rn are real numbers, we must have

<
∑

riAi(v),
∑

rjAj(v) > = ||(
∑
i

riei) ◦ v||2 = ||
∑

riei||2||v||2

for all v and all ri, rj , so ∑
rirj < v,ATi Ajv > =

(∑
r2i

)
||v||2

But ATi Ai = I, so this formula becomes(∑
i

r2i

)
||v||2 +

∑
i<j

(
rirj < v, (ATi Aj +ATj Ai)v >

)
=
(∑

r2i

)
||v||2

and consequently for all v, ri and rj ,∑
i<j

(
rirj < v, (ATi Aj +ATj Ai)v >

)
= 0

Fix i and j and let ri = rj = 1 and all other rk = 0. We conclude that for all i and j,

< v, (ATi Aj +ATj Ai)v > = 0
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Let S = ATi Aj +ATj Ai and notice that ST = S. Since < v + w, S(v + w) >= 0,

< v, S(v) > + < w,S(v) > + < v, S(w) > + < w,S(w) > = 0

and so
< w,S(v) > + < v, S(w) > = 0

So < ST (w), v > + < v, S(w) >=< S(w), v > + < v, S(w) >= 2 < v, S(w) >= 0. This
can only happen for all v and w if S = 0. We conclude that

ATi Aj +ATj Ai = 0

In the end, we have n linear transformations A1, A2, . . . , An satisfying ATi Ai = I and
ATi Aj + ATj Ai = 0. We will now ignore the context in which these matrices arose, and
prove directly from these equations that n = 1, 2, 4, or 8.

Proof; Step 2: If our algebra had a unit e, we could have used it as a basis element, so that
for example An = I.

We can achieve that directly by defining Bi = AiA
T
n . Then Bn = AnA

T
n = I. Moreover

BiB
T
i = AiA

T
nAnA

T
i = AiA

T
i . Finally

BiB
T
j +BjB

T
i = AiA

T
nAnA

T
j +AjA

T
nAnA

T
i = AiA

T
j +AjA

T
i = 0

We now return to the original “A” notation. So assume ATi Ai = I and ATi Aj +ATj Ai = 0
and An = I.

Then when i < n we have AiA
T
n + AnATi = 0, or Ai + ATi = 0. So ATi = −Ai. But

ATi Ai = I, so A2
i = −I. In addition when i, j < n, AiAj = −AjAi.

When n = 1, there are no such Ai. But otherwise we have det(Ai)
2 = det(−I) = (−1)n,

which can only happen when n is even.

This concludes our study of the cases n = 1, 2, 3.

Proof; Step 3: From now on, assume n ≥ 4 and n is even. We can ignore everything above
except the existence of matrices Ai for 1 ≤ i < n satisfying A2

i = −I and AiAj = −AjAi.
We even ignore An−1 because our argument requires an even number of Ai.

At this point, the character of the proof changes. Form the set of all matricesAδ11 A
δ2
2 . . . A

δn−2

n−2

where the δi are either zero or one. The number of such matrices is 2n−2. We will prove
that these matrices are linearly independent. The matrices live within the set of all n× n
matrices, which has dimension n2. So 2n−2 ≤ n2.

For even n, this inequality is true for n = 2, 4, 6, 8, and no other n. So the bulk of the
theorem follows from this independence statement.
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If there is a dependent relation between the Aδ11 A
δ2
2 . . . A

δn−2

n−2 , pick a relation∑
λδ1,...,δn−2A

δ1
1 A

δ2
2 . . . A

δn−2

n−2

with as few non-zero coefficients as possible.

We are going to employ two tricks. The first is to multiply the terms of our dependence
relation by one term Aδ11 A

δ2
2 . . . A

δn−2

n−2 on the right. The second is to multiply the terms of
our dependence relation by some fixed Ai on both the left and the right.

What happens to the terms of our dependence relation when we do one of these tricks. Let
us look at an example. Consider

(A1A3A4)(A2A3)

We can simplify using the rule AiAj = −AjAi to get the terms in the correct order. We can
simplify using the rule A2

i = −I to get rid of duplicated terms. In the above example,

(A1A3A4)(A2A3) = −A1A3A2A4A3 = A1A2A3A4A3 = −A1A2A3A3A4 = A1A2A4

Ignore signs for a moment and concentrate on the terms. Let δ indicate an n−2 tuple

(δ1, δ2, . . . , δn−2) ∈ Z2 × Z2 × . . .× Z2

If δ is such a vector, the term Aδ indicates the corresponding Aδ11 . . . A
δn−2

n−2 . If τ is another
n − 2-tuple, the generalization of the previous example and a little thought shows that
AδAτ = ±Aδ+τ . Since δ → δ + τ is a one-to-one and onto map from Z2 × Z2 × . . .× Z2 to
itself, multiplying on the right by some fixed Aδ produces a dependence relation with the
same number of terms, and the same coefficients up to signs, although the actual terms
which occur will change.

The same argument works if we multiply a relation on the left and right by the same Ai,
except that this time we’ll have the same terms, and coefficients are the same up to signs.
If some signs change while others remain the same, then we can add the original to the new
version and get a dependence relation with fewer terms, which is the desired contradiction.
We get nothing if no signs change, or if all signs change.

Employ the first trick, where δ is an (n− 2)-tuple which represents one of the terms of the
minimal dependence relation. In the new relation, this term changes to δ = (0, 0, . . . , 0) and
so one of the terms of our dependence relation is I. From now on, we assume this.

Now multiply by Ai on both the left and the right. The term I will become AiIAi = −I,
so the sign of its coefficient will change. Consequently the signs of all nonzero terms must
change, or else we could find a dependence relation with fewer nonzero terms.
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Consider terms with just one Aj . The result depends on whether i = j or i 6= j.

Ai → AiAiAi = −Ai

and
Aj → AiAjAi = −AiAiAj = Aj

Since n− 2 is even, we can find j 6= i. We conclude that no nonzero terms with one A can
occur.

Consider an expression with two terms, AiAj . If we multiply this on both sides by Ai, we
get

AiAiAjAi = −AjAi = AiAj

Since this term did not change sign, it cannot occur in our dependence relation. So no
terms with two As can occur.

Consider a term with three terms AiAjAk. Since n − 2 is even, there must be another
index m unequal to i, j, k. Then

Am(AiAjAk)Am = −AiAmAjAkAm = AiAjAmAkAm = −AiAjAkAmAm = AiAjAk

so this term cannot occur. So no terms with three As can occur.

It is now clear what happens in general. If there are an even number of Ais in a term,
we can multiply on the left and right by one of the Ai in the term and get the same term
without a sign change, which cannot happen. If there are an odd number of Ai in a term,
we can find a Am not in the term, multiply by it on the left and right, and not change the
sign of the term.

In the end, only the I term can occur with nonzero coefficient, but the resulting sum does
not equal zero.

Proof; Step 5 To finish the argument, we need only rule out n = 6.

Think of the Aj as acting on Cn rather than Rn; the matrices themselves remain unchanged.
Since A2

1 = −I, the eigenvalues of A1 are ±i. We can decompose Cn = C+ ⊕ C− where
A1 is i on the first space and −i on the second. Indeed, this direct sum contains all of Cn

because v = v−iA1(v)
2 + v+iA1(v)

2 .

Next we claim that if j > 1 then Aj(C
+) ⊂ C− and Aj(C

−) ⊂ C+. Indeed, A1Aj =
−AjA1. So A1v = iv implies

A1Ajv = −AjA1v = −Aj(iv) = (−i)Ajv

and A1v = −iv implies similarly that A1Ajv = iAjv.
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Since A2
j = −I, Aj is one-to-one and onto: C+ → C− and C− → C+. It follows that C+

and C− have the same dimension over C. So if n = 6, then C+ and C− both have complex
dimension 3.

Consider the map E = A2A3 and F = A2A4 defined on Cn. Since each Ai for i > 1
interchanges C+ and C−, these maps leaves these spaces invariant. In particular, they both
map C+ to itself. The maps are both isomorphisms. Moreover, the maps anticommute,
for

(A2A3)(A2A4) = −A3A2A2A4 = A3A4 = −A4A3 = A4A2A2A3 = −(A2A4)(A2A3)

Compute the determinants of E and F as maps from C+ to itself. We have det(EF ) =
det(FE) and

det(EF ) = det(−FE) = det(−I) det(FE)

We conclude that det)(−I) = 1, but since C+ has dimension 3, this determinant is −1.
This contradiction rules out n = 6. QED.

Remark: We will not prove it here, but an easy consequence of this result classifies extended
versions of the cross product.

Definition 1 A cross product on Rn is a product v, w → v × w such that

• The product is bilinear

• The element v × w is perpendicular to v and w

• The element v × v is zero

• If v and w are perpendicular and have length one, then ||v × w|| = 1

Remark: These axioms imply that

||v × w||2 = ||v||2||w||2 − (v · w)2

Theorem 2 On R1, the only possible cross product is v×w = 0 for all v, w. This definition
fails in all higher dimensions.

Theorem 3 There is a non-trivial cross product on Rn if and only if n = 3 or 7.

Sketch of the proof: We mimic the definition of the quaternions. Think of Rn+1 as all
< r, v > where r ∈ R and v ∈ Rn. Assuming a cross product exists on Rn, define a
product on Rn+1 by

< r, v >< s,w >=< rs− v · w, rw + sv + v × w >

Check that
|| < r, v >< s,w > ||2 = || < r, v > ||2|| < s,w > ||2
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and apply the Hurwitz theorem.

Remark A final note. The above proof constructed a series of matrices A1, . . . , An satisfying
A2
i = −I and AiAj = −AjAi. More generally, suppose the Ai are abstract symbols

satisfying these rules. Then the Ai generate an associative algebra containing 1 and all
products of the Ai, called the Clifford Algebra. An additive basis for this algebra is 1 and
all Ai1 ·Ai2 · . . . ·Aik with 1 ≤ i1 < . . . < ik ≤ n. So the dimension is 2n.

Starting at n = 0, the first few Clifford algebras are R, C, H, H ⊕H. All Clifford algebras
are semisimple, and thus sums of full matrix algebras over R, C, or H. The algebras satisfy
the following remarkable periodicity result:

Theorem 4 The Clifford algebra associated with n+8 is isomorphic to the set of all 16×16
matrices with entries in the Clifford algebra associated with n

This theorem is closely related to the Bott periodicity theorem.

The Clifford algebras are associative. Nevertheless, Hurwitz’ proof shows that they are
related to the octonions via the theory of normed division algebras.
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