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Chapter 1

Introduction

The aim of this course is to prove the Lefshetz Fixed Point Theorem. This result is used
in a second set of notes on Compact Lie Groups to prove that any two maximal tori are
conjugate.

The notes are based on the classic book Differential Forms in Algebraic Topology by Raoul
Bott and Loring W. Tu, but cover only the first portion of that book. Anyone looking at
these notes should obtain that book and read the clear and beautiful treatment there and
the remaining two thirds of the book not covered here at all.

The notes exist because I wanted to tie down the Lefshetz Formula, which is only treated
in an exercise of Bott and Tu. Their book omits a few other details, like the proof that a
good cover always exists, and the treatment of Thom Transversality, but has a wealth of
additional information I didn’t need in a direct march to the Lefshetz Formula.

We first outline the development. Suppose we have a C∞ manifold M . We define differen-
tial forms on M and the d operator, and prove Poincare’s lemma. As a consequence, we
get an exact sequence of sheaves

0→ R→ Λ0 → Λ1 → . . .→ Λn → 0

The corresponding sequence of global sections is not necessarily exact. It’s cohomology
groups are the de Rham cohomology groups of M :

Hk(M) =
{k forms ω | dω = 0}

{ω = dλ | λ is a k − 1 form}

If f : M → N is a C∞ map, f induces a pullback map from forms on N to forms on M :
ω → f⋆(ω) and this induces a map f⋆ : Hk(M) ← Hk(N). We will prove that when f
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CHAPTER 1. INTRODUCTION 4

and g are C∞ maps homotopic by a C∞ homotopy, then f⋆ = g⋆ on deRham cohomology
groups.

The vector space H0(M) contains all locally constant real valued function. Such functions
are constant on connected components of M . So H0(M) has dimension the number of
connected components of M .

If ω is an n-form with compact support on an open set in Rn, we can compute∫
ω =

∫ ∞

−∞
. . .

∫ ∞

−∞
w12...n(x1, . . . , xn) dx1 . . . dxn

If we change to new coordinates, ω changes by multiplying ω by the Jacobian of the coor-
dinate change, and the integral changes by multiplying the integrand by the absolute value
of this Jacobian. By definition, M is oriented if it has a coordinate cover by coordinates
related to each other by positive Jacobians. If we insist on integrating using oriented coor-
dinate systems, then integration of n-forms is well-defined on an oriented manifold.

If M is oriented and compact, we can choose a finite partition of unity φi subordinate to
an oriented coordinate cover and define∫

M
ω =

∑∫
Ui

φiω

This is easily seen to be independent of the partitian of unity. Moreover, Stokes formula
shows that ∫

M
dλ = 0

Consequently, integration over M defines a linear map

Hn(M)→ R

and we will prove that this map is an isomorphism when M is connected. If M has finitely
many components, each with an orientation, we get a similar isomorphism Hn(M)→

∑
R

where the sum is taken over the components.

Next we obtain the Mayer-Vietoris sequence. Suppose U and V are open subsets of M .

These induce inclusion maps U ∩ V i1−→ U j1−→ U ∪ V and U ∩ V i2−→ V j2−→ U ∪ V, which in
turn induce maps in cohomology going the reverse directions:

Hk(U ∪ V)
j⋆1−→ Hk(U)

i⋆1−→ Hk(U ∩ V)

and

Hk(U ∪ V)
j⋆2−→ Hk(V)

i⋆2−→ Hk(U ∩ V)
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Then it is possible to define maps

Hk(U ∪ V) D←− Hk−1(U ∩ V)

making the following sequence exact.

· · ·
i⋆1−i⋆2←−−− Hk+1(U ∪ V) D←− Hk(U ∩ V)

j⋆1+j
⋆
2←−−−− Hk(U)⊕Hk(V)

i⋆1−i⋆2←−−− Hk(U ∪ V) D←− · · ·

We will use this result to compute the cohomology of spheres, and to prove that if M is
compact, then each Hk(M) is finite dimensional.

There is a natural product on forms, the wedge product. It is easy to see that this product
induces a multiplication H i(M)⊗Hj(M)→ H i+j(M).

We then use the Mayer-Vietoris sequence to prove two classical results from algebraic
topology, the Kunneth Formula and the Poincare Duality Theorem. Suppose M and N
are C∞ manifolds. We can define a map∑

i+j=k

H i(M)⊗Hj(N)→ H i+j(M ×N)

as follows: the projections pM : M × N → M and pN : M × N → N induce maps

H i(M)
p⋆M−−→ H i(M × N) and Hj(N)

p⋆N−−→ Hj(M × N). Follow these maps with a wedge
product H i(M × N) ⊗ Hj(M × N) → H i+j(M × N). Our first theorem, the Kunneth
Formula, asserts that the sum of such maps is an isomorphism.

As for the duality theorem, Poincare originally defined the homology groups by triangulating
the space; in particular for surfaces he cut the surface into a finite number of points,
lines, and triangles. Poincare then noticed that for each such triangulation there is a dual
triangulation: replace each triangle by the point in its center, and replace each line between
triangles by the dual line between the centers of these triangles, and finally replace each
vertex by the triangle formed by these dual lines. This ultimately led Poincare to prove
that for an n−dimensional oriented manifold, Hk and Hn−k are isomorphic.

We will use the Mayer-Vietoris sequence to prove a cohomological version of this result.
Suppose M is a compact, oriented manifold. If ω represents an element of H i(M) and τ
represents an element of Hn−i(M) then ω ∧ τ induces an element of Hn(M) and we can
integrate this element to form the real number∫

M
ω ∧ τ

This gives a bilinear map
H i(M)⊗Hn−i(M)→ R
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The duality theorem asserts that this map is non-degenerate. If ω represents a non-zero
element of H i(M), then there is a τ ∈ Hn−i(M) such that this real number is non-
zero.

It follows that our map induces a one-to-one map from H i(M) to the dual space of
Hn−i(M), and a one-to-one map from Hn−i(M) to the dual space of H i(M). Because
these vector spaces are finite dimensional, it immediately follows that both of these maps
are isomorphisms, and thus that H i(M) and Hn−i(n) have the same dimension.

Notice carefully that these spaces are not canonically isomorphic. Instead H i(M) and the
dual space of Hn−i(M) are canonically isomorphic. This is the correct way to use the
Poincare duality theorem.

Next suppose that K is a compact oriented submanifold of M of dimension k. If ω is a
k-form on M , the inclusion map i : K → M induces a k-form i⋆(ω) on K, and this form
can be integrated over K to form a number

∫
K i

⋆(ω). In this way we obtain a map

Hk(M)→ R

induced by

ω →
∫
K
i⋆(ω)

This map belongs to the dual space of Hk(M) and thus by Poincare duality corresponds
to an element

τK ∈ Hn−k(M)

We say this is the class dual to K.

Suppose next that we have two compact oriented submanifoldsK and L ofM , of dimensions
k and l. We can form τK and τL, the elements dual to these submanifolds, and then form
their wedge product τK∧τL of degree (n−k)+(n−l). Finally, we can form the Poincare dual
of this product, which is a linear map Hk+l−n(M) → R. Amazingly, this map is defined
by the intersection K ∩ L. Thus the wedge product in deRham cohomology corresponds
to intersections of submanifolds.

However, there are subtle complications. For instance, K ∩ L need not be a manifold. If
K and L are submanifolds of a manifold M which intersect at a point p, we say that these
spaces intersect transversally at p if their tangent spaces at p satisfy Tp(K) + Tp(L) =
Tp(M). This sum will usually not be direct; instead the intersection of the two tangent
spaces should be the tangent space of K ∩ L. If the intersection is transversal, then the
intersection of Tp(K) and Tp(L) will have dimension k + l − n. It K and L intersect
transversally at each of their intersection points, the implicit function theorem shows that
their intersection is a submanifold of dimension k + l − n.



CHAPTER 1. INTRODUCTION 7

Notice that the de-Rham element defined by a submanifold depends on i : K → M and

the induced map Hk(K)
i⋆−→ Hk(M), which only depends on i up to homotopy. So we

are free to modify K by a homotopy. According to the Thom transversality theorem, if
K and L are submanifolds of M , we can find an arbitrarily small homotopy of iK so that
after applying this homotopy, the two submanifolds intersect transversally. Incidentally, if
k + l− n < 0, this homotopy will lead to submanifolds K and L which do not intersect at
all.

We will prove this Thom transversality theorem, and then prove that intersection corre-
sponds to wedge product.

These ideas can then be applied to prove the Lefshetz Fixed Point Theorem. Suppose
f :M →M is a C∞ map from the compact oriented manifold M to itself. Then f induces
f⋆ : Hk(M)← Hk(M) and we can compute the Lefshetz number

L(f) =
∑

(−1)ktrace
(
Hk(M)

f⋆←− Hk(M)
)

The Lefshetz Fixed Point Theorem asserts that this number is the number of fixed points
of f , if they are properly counted.

To count properly, we must first replace f by a homotopic map which has only finitely
many fixed points, each transversal. This last condition means that f⋆ at a fixed point
never leaves a non-zero vector fixed. Then we compute det(f⋆ − I). If this number is
positive, the fixed point counts positively, and otherwise it counts negatively.

Lefshetz’s theorem follows by applying the previous intersection theory to M ×M . Select
the diagonal submanifold of M ×M and the graph of f in M ×M . These submanifolds
intersect exactly at fixed points of f . By Thom’s theorem, we can find a small homotopy
so all intersection points are transverse. It then follows that these points are isolated
fixed points, and det(f⋆ − I) ̸= 0. Thus their intersection consists of a finite number of
points with signs. We can compute the sum of these signs cohomologically using the wedge
product, and this calculation will yield the Lefshetz number of f .

To repeat, the primary reference for these notes is Raoul Bott and Loring W. Tu’s wonderful
book Differential Forms in Algebraic Topology, published by Springer in their Graduate
Texts in Mathematics Series. This book sometimes skips over easy but crucial results, like
the finite dimensionality of the deRham groups for compact manifolds. I mainly wanted
to place emphasis on the Lefshetz result.



Chapter 2

Partitions of Unity

2.1 Construction of C∞ Functions

A central idea in topology is to cut spaces into simple pieces and then control reassembly
of the pieces. In the deRham theory, this cutting is done using partitions of unity.

In complex analysis, a small piece of a holomorphic function completely determines the
function: the theory is very rigid. We now show that this is false for C∞ functions: their
theory is very flabby.

Suppose (x1, . . . , xn) is a local coordinate system with coordinates defined at least on the
ball of radius 3 about the origin. We will find a C∞ function in these coordinates which
is identically one on the ball of radius 1, rapidly falling to zero between the balls of radii
1 and 2, and identically zero beyond radius 2.

Start with

f(x) =

{
e−1/x2 for x > 0

0 for x ≤ 0

This function is certainly C∞ except possibly at the origin. We will prove that all deriva-
tives are continuous near the origin and zero at the origin. Notice first that f (k) =
e−1/x2P (1/x) for x > 0 where P is a polynomial that depends on k, by easy induction. If
we define f (k)(0) = 0, then

f (k+1)(0) = lim
h→0

e−1/h2P (1/h)− 0

h

and this vanishes because limh→0
1

hme1/h
2 = 0 for any positive integer m. Details are left

to the reader.

8



CHAPTER 2. PARTITIONS OF UNITY 9
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Figure 2.1: f(x)

Let g(x) = f(x)f(1− x)
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Figure 2.2: g(x)

Let h(x) =
∫ x
0 g(t) dt∫ 1
0 g(t) dt
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Figure 2.3: h(x)
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Let k(x) = h(2− x)
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1.0

Figure 2.4: k(x)

Let φ(x1, . . . , xn) == k(
√
x21 + . . .+ x2n

Figure 2.5: k(x)

2.2 Partitions of Unity

From now on, all C∞ manifolds are assumed to have a countable basis. Clearly, we can
select this basis such that each open basis set is in one coordinate system in which the
coordinates are centered at the origin and extend out to radius 3. We can also assume
that when we restrict these open sets so the coordinates only extend out to radius 1, the
resulting open sets again form a basis.

With the technicalities out of the way, we come to the central idea. A partiton of unity is
a countable collection of C∞ functions φi on a C∞ manifold M , such that

• 0 ≤ φi ≤ 1

• each point m ∈ M has an open neighborhood V such that only finitely many φi are
nonzero somewhere in V

•
∑
φi = 1 on M

Notice that the third condition makes sense because of the second condition.
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When constructing a partition of unity, we can replace the third condition with the weaker
assertion that whenever m ∈ M , there is an i such that φi(m) ̸= 0. Indeed, given such a
system, define ψi =

φi∑
j φj

.

When we use partitions of unity, we always start with an open cover Uα of M , whose open
sets define “the small pieces of a dissection of M”. We then introduce a partition of unity
φi such that the set where a particular φi is non-zero is contained in one Uα. It may
intersect others, but it is wholly inside some particular Uα.

In the discussion that follows, it is useful to consider the case where M is the union U ∪ V
of two open circles shown below.

Figure 2.6: U ∪ V

Theorem 1 If Uα is an open cover, we can construct a partition of unity φi subordinate
to this cover and indexed by a different index set, such that each φi has compact support.

Proof: Since manifolds are locally compact, each m ∈ M has an open neighborhood Um
with compact closure. Our manifolds have a countable basis. Throw away basic sets which
are not inside any Um. The remaining sets still form a countable basis, because any open
U is the union of U ∩Um over all m ∈ U and U ∩Um is a union of basic subsets. Therefore
we can assume that each basic subset has compact closure.

We now claim that we can find compact sets Ki and open sets Ui withM = ∪Ki and

K1 ⊂ U1 ⊂ K2 ⊂ U2 ⊂ . . .

Indeed make a list of basic sets and let K1 be the closure of the first of these. This is a
compact set, so it is covered by a finite union of basic open sets taken in order until enough
are chosen. Call the closure of this set K2. It is compact, so it is covered by a finite union
of basic open sets taken in order from the first until enough are selected. Continue.

We now sketch the rest of the proof before filling in gaps. Cover K1 by a finite number
of “coordinate bump functions,” all with support in U1. Cover K2 − Int(K1) by a finite
number of similar bump functions, all with support in U2. Cover K3 − Int(K2) by bump
functions, all with support in U3 − K1. Cover K4 − Int(K3) with bump functions, all
with support in U4 − K2. Continue. Only finitely many bump functions have support
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intersecting K1. Only finitely many bump function supports intersect K2. Etc. Since the
union of the Ki is all of M , every point of M has an open neighborhood on which only
finitely many bump functions are non-zero, and every point of M is in a set in which at
least some bump functions are nonzero. This concludes the proof, modulo clarification of
the construction of bump functions.

The previous step reduces the argument down to the situation K ⊂ U where K is a single
compact set inside a single open set. If m ∈ K, we can find a coordinate system near
m taking m to the origin and defined in some small open neighborhood about m which
is inside U . Recall that we started with an open cover Uα; by shrinking the coordinate
system for m, we can assume it is entirely contained in one such Uα. By magnifying just
the image of these coordinates in Rn, but not the coordinates in M , we can suppose the
coordinate image contains a ball of radius 3, and thus construct a bump function near m
which is 1 very near m and vanishes before it reaches the limits of the small coordinate
neighborhood. Finally, using compactness, a finite number of these bump functions are
non-zero on all of K. QED.

Theorem 2 If Uα is a countable open cover, we can construct a partition of unity subor-
dinate to this cover and indexed by the α, with φα only non-zero inside Uα.

Remark: In short, if we want the index set of the partition of unity to be the index set
of the covering, then we cannot require that each φi have compact support. The previous
picture gives an example where this restriction holds.

Proof: The second theorem follows easily from the first. First select a partition of unity φi
subordinate to the covering such that each φi has compact support. The α are countable,
so order them and work by induction. For the first α1, consider all φi with support in Uα1

and take their sum. For the next α2, consider all unused φi with support in Uα2 and take
their sum. Continue. Since each φi has support in some Uα, eventually all φi will be used.
The result clearly follows.



Chapter 3

deRham Cohomology

3.1 Differential Forms

Suppose m ∈M is a point in a C∞ manifold. A k tensor at m is a function

T (X1, . . . , Xk)→ R

from ordered k-tuples of tangent vectors to R, linear in each argument if the other argu-
ments are held fixed.

For example, a 1-tensor at m is just a dual tangent vector at m. A 2-tensor is a map
T (X,Y ) linear in each variable. Such a map can be decomposed into symmetric and skew-
symmetric pieces. This decomposition is independent of coordinate choices; the two pieces
are irreducible and cannot be further decomposed:

T (X,Y ) = S(X,Y ) + Λ(X,Y ) =
T (X,Y ) + T (Y,X)

2
+
T (X,Y )− T (Y,X)

2

Tensors of higher degree decompose into several pieces, but the most important are the
symmetric tensors S(X1, . . . , Xk) which are invariant under permutation of the tangent
vectors, and the skew-symmetric tensors Λ(X1, . . . , Xk) which are invariant up to sign
sgn(σ) under a permutation σ of the vectors.

We make the set of symmetric tensors of all degrees, and the set of skew-symmetric tensors
of all degrees, into algebras by defining products on the two sets. In both cases, the product
just multiplies the values of two tensors together, but the result then has to be forced to
be symmetric, or skew. We denote the two products by “⊙” and “∧” and define them as

13
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follows:

(T1⊙T2)(X1, . . . , Xk, Xk+1, . . . , Xl) =
1

(k + l)!

∑
σ

T1(Xσ(1), . . . , Xσ(k))T2(Xσ(k+1), . . . , Xσ(k+l))

(T1∧T2)(X1, . . . , Xk, Xk+1, . . . , Xl) =
1

(k + l)!

∑
σ

sgn(σ)T1(Xσ(1), . . . , Xσ(k))T2(Xσ(k+1), . . . , Xσ(k+l))

Once we have these definitions, it is common for authors to spend time carefully developing
and proving theorems which assert that the symmetric tensors form an associative, commu-
tative algebra, and that the skew-symmetric tensors form an associative, anti-commutative
algebra. These results then lead to a natural basis for the algebras in terms of a basis of
the tangent space. Interested readers can invent these theorems and their somewhat tricky
proofs for themselves, or look them up in books. I find it better to just state the final
coordinate forms and proceed immediately to the deeper theory, and that is what we will
do below.

Here’s a final word about the symmetric case. A symmetric tensor S(X1, . . . , Xk) is com-
pletely determined by the expressions S(X, . . . ,X), which are homogeneous polynomials
of degree k in the coefficients of the vectors. At several spots in differential geometry, a
natural polynomial expression appears, and geometers reinterpret it as a sum of symmetric
tensors of degrees one through n, and then use these tensors to construct crucial geometric
objects. But these ideas must be left to another course, so for now we concentrate on
skew-symmetric tensors.

A skew-symmetric tensor of degree k is usually called a differential form of degree k. It is
common for these differential forms to be defined not just at one point m, but instead at
each m ∈ U for an open set U , or on all of M .

Suppose we have a coordinate neighborhood, with coordinates x1, . . . , xn. Then at each
point, a basis of the tangent space is given by ∂

∂x1
, . . . , ∂

∂xn
. We denote the dual basis by

dx1, . . . , dxn. Thus dxi

(
∂
∂xj

)
= δij .

Then it turns out that a basis of the k-forms is given by dxi1 ∧ dxi2 ∧ . . . ∧ dxik where
i1 < i2 < . . . < ik. Thus every k-form can be written uniquely as

ω =
∑

i1<...<ik

ωi1...ikdxi1 ∧ . . . ∧ dxik

where the ωi1...ikdxi1 are real numbers, or functions of the coordinates if the form is defined
in an open neighborhood. By definition, ω is C∞ if each ωi1...ik(x1, . . . , xn) is C

∞.

The rules for dealing with the wedges are simple: we allow such expressions even if two
indices are equal or the indices are not increasing, but then we can interchange two indices
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provided we change the sign of the expression, and in particular if two indices are equal,
then the expression is zero.

The notation suggests the correct rule for changing coordinates. Suppose we have new
coordinates yi(x1, . . . , xn). It is easy to check from our definition that dyi =

∑ ∂yi
∂xj

dxj .

So ∑
i1<...<ik

ωj1,...,jk(y1, . . . , yn)dyi1 ∧ . . . ∧ dyik =

∑
i1<...<ik

∑
i1,...,ik

∂yi1
∂xj1

. . .
∂yik
∂xjk

ωj1,...,jk

(
yi(x1, . . . , xn)

)
dxj1 ∧ . . . ∧ dxjk

Here the j1, . . . , jk need not be increasing, so the wedge rules must be applied.

3.2 Tangent Vectors

Suppose m ∈ M is a point in a C∞ manifold. There is an easy coordinate-free definition
of the tangent vectors at m, given by identifying a vector X with a resulting directional
derivative X(f).

To be precise, let C∞
m be the set of germs of C∞ functions at m. A tangent vector at m

is a linear map X : C∞
m → R which satisfies

X(fg) = X(f)g(m) + f(m)X(g)

In particular, X(f) is defined if f is C∞ in some open neighborhood ofm, andX(f) = X(g)
if f = g on some smaller open neighborhood of m.

Suppose x1, . . . , xn is a local coordinate system near m and (X1, . . . , Xn) are n real num-
bers. Define a tangent vector X =

∑
Xi

∂
∂xi

via the following formula. This clearly satisfies
the definition for a tangent vector.

X(f) =
∑

Xi
∂f

∂xi
(m1, . . .mn)

Conversely, every tangent vector has this form. Indeed, suppose f is C∞ nearm. Then

f(x)− f(m) =

∫ 1

0

d

dt
f(tx+ (1− t)m) dt =

∑∫ 1

0

∂f

∂xi
(tx+ (1− t)m) dt (xi −mi)

Apply X to both sides of this formula. Note that X(1) = X(1 · 1) = X(1) · 1 + 1 ·X(1) =
2X(1), so X(1) = 0 and for any constant c, X(c) = 0. Thus X applied to the left side of
the displayed formula is X(f). The right side of this formula is a sum of products, where
the first term in each product is an integral and the second term is xi −mi. The value of
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the integral when x = m is ∂f
∂xi

(m) and the value of the second term when x = m is zero.
So the product rule applied to the right side gives∑ ∂f

∂xi
(m)X(xi −mi)

But X(xi −mi) = X(xi) −X(mi) = X(xi), which is a real number we shall call Xi. We
have thus proved that for any f , X(f) has the following desired form:

X(f) =
∑

Xi
∂f

∂xi
(m)

3.3 The d Operator

Suppose f is C∞ on an open set U . We define a differential 1-form df on U by

df(X) = X(f)

Recall that a 1-form is a cotangent vector, and thus is determined by its value on any
tangent vector. Our formula determines this value.

Next we determine the formula for df in local coordinates. We know that df =
∑
ωi dxi for

certain real coefficients ωi. Recall that the dxi are a dual basis to the basis ∂
∂xi

. Thus

df(X) =
(∑

ωidxi

)(∑
Xj

∂

∂xi

)
=
∑

ωiXi

and by definition this is

df(X) = X(f) =
∑

Xi
∂f

∂xi

We conclude that ωi =
∂f
∂xi

and thus

df =
∑ ∂f

∂xi
dxi

So our d operator is the gradient operator of advanced calculus. Notice that its value is
a cotangent vector rather than a standard vector; the two objects transform differently
under a coordinate change.
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Theorem 3 Let Λk be the vector space of k-forms on a manifold. There is a unique way
to define differential operators

d : Λk → Λk+1

such that the following properties hold:

1. on 0-forms, d is the previously defined map f → df

2. d(λ ∧ τ) = dλ ∧ τ + (−1)deg λλ ∧ dτ

3. d2 = 0

Proof: The second and third properties imply that d(dxi1 ∧ . . . ∧ dxik) = 0. So

d

 ∑
i1<...<ik

ωi1...ikdxi1 ∧ . . . ∧ dxik

 =
∑
j

∑
i1<...<ik

∂ωi1...ik(x1, . . . , xn)

∂xj
dxj ∧dxi1 ∧ . . .∧dxik

Note that k is out of order with the xi1 , . . . , xik , so our wedge rules need to be applied to
write the final expression in proper form.

I leave the verification that this formula has the desired properties to the reader. In
particular, the proof that d2 = 0 is worth the effort.

Given that the formula satisfies the conditions of the theorem, it follows that it is indepen-
dent of coordinate changes. Indeed, if we have two coordinate systems, then we have two
formulas which both satisfy these conditions, but we proved that the conditions uniquely
determine d.

3.4 Examples

Special cases of these d operators occur in advanced calculus, and in the theory of electricity
and magnetism. In these applications, a standard coordinate system has already been
chosen, so the distinction between vectors and dual vectors is usually disregarded.

Dimension 1: Here 0-forms ω(x) and 1-forms ω(x)dx are essentially functions and the
sequence Λ0 → Λ1 → . . .→ Λn becomes

{functions}
d
dx−−→ {functions}

Dimension 2: Here 0-forms ω(x, y) and 2-forms ω12(x, y)dx∧dy are essentially functions,
and 1-forms ω1(x, y)dx+ω2(x, y)dy are essentially vector fields. The first d operator is the
gradient, and the second sends ω1(x, y)dx+ ω2(x, y)dy to

∂ω1

∂x
dx ∧ dx+

∂ω1

∂y
dy ∧ dx+

∂ω2

∂x
dx ∧ dy + ∂ω2

∂y
dy ∧ dy =

(
∂ω2

∂x
− ∂ω1

∂y

)
dx ∧ dy
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So the standard sequence becomes

{functions f}
∂f
dx
, ∂f
dx−−−−→ {vector fields (X,Y )}

∂Y
∂x

− ∂X
∂y−−−−−→ {functions g}

Dimension 3: Here 0-forms and 3-forms are essentially functions, and 1-forms and 2-
forms are essentially vector fields. Indeed in this second case a 1-form is Xdx+Y dy+Zdz
and a 2-form is Xdy ∧ dx+ Y dz ∧ dx+Zdx∧ dy. A short calculation then shows that the
d operators become curl, gradient, and divergence:

{functions f} grad−−−→ {vector fields (X,Y, Z)} curl−−−→ {vector fields (X,Y, Z)} div−−→ {functions g}

Dimension 4: Here 0-forms and 4-forms are essentially functions, and 1-forms and 3-forms
are essentially vector fields. For the first time we get a new kind of object, 2-forms, with six
components. If we agree to call the coordinates x, y, z, and t and label the six components
Ex, Ey, Ez and Bx, By, Bz, then the 2-form can be identified with the electromagnetic field
and each of the d maps becomes a standard operator in Maxwell’s theory of electricity and
magnetism. Indeed half of Maxwell’s equations four equations appear naturally, and the
other half appear with just a little more work.

Intermission: It is useful to summarize Maxwell’s theory of electricity and magnetism
before continuing. According to this theory, space is permeated with two vector fields, the
electric field E and the magnetic field B. If a particle with charge e and velocity vector v
moves in this field, the force on the particle is

F = e E +
e

c
v ×B

The cross product term may be unexpected. When I was a student, I worked at the
Harvard cyclotron. The cyclotron has a gigantic magnet with poles about eight feet across
separated by a gap of a foot; this magnet created a field B pointing downward from the
top pole to the bottom one. Protons were injected at very high speed horizontally into
the space between the magnets. This caused a force v × B pointing inward toward the
center, which forced the particles to rotate in a circle. Twice in each rotation, a mechanism
increased the energy of the protons, until they were ejected with enormous energy. That
cyclotron existed because of the term v ×B.

If you took a course in electricity and magnetism, you may be familiar with D and H rather
than E and B. When solid material is placed in an electrical field, the electrons in the
material are slightly displaced by the field, and this creates a force from the material which
modifies the electric and magnetic fields. When the theory of electricity and magnetism
is developed piece by piece from experiment, these modified fields are taken into account,
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leading to formulas about D and H. In empty space there are no such materials, and the
more fundamental fields E and B take their place.

Getting back to the theory, we have explained how particles react to the electromagnetic
field. We next explain how the field is created from these particles. Putting the two ideas
together, we find that moving charges create a field, which expands outward with the speed
of light and eventually sets other particles into motion. The resulting theory automatically
satisfies the theory of relativity.

To describe the creation of the fields, we no longer think of particles as individual point
charges, but instead imagine they are spread out in space. So suppose the charge density of
the particles is given by a function ρ, and the charge and velocity density is given by a vector
field J . Then the Maxwell equations which govern the theory are the following:

div B = 0

curl E = −1

c

∂B

∂t

div E = 4πρ

curl B =
1

c

∂E

∂t
+

4π

c
J

Dimension 4, continued:

In the theory of relativity, the form x2+y2+z2−c2t2 plays a significant role. Consequently,
it is convenient to think of the basis vectors for Λ1 as dx, dy, dz, c dt. This explains factors
of c scattered about the following formulas.

Let us start with the map d from 3-forms to 4-forms. It is convenient to write a 3-form as
a pair (ρ, J) where ρ is a function and J is a vector field. This expression is an abbreviation
for the following 3-form; notice the extra c terms promised in the previous paragraph.

ρ dx ∧ dy ∧ dz + c Jxdy ∧ dz ∧ dt+ c Jydz ∧ dx ∧ dt+ c Jzdx ∧ dy ∧ dt

A brief calculation shows that d applied to this form gives the following 4-form:

−∂ρ
∂t
dx∧ dy ∧ dz ∧ dt+ c div (J) dx∧ dy ∧ dy ∧ dt =

(
−1

c

∂ρ

∂t
+ div J

)
c dx∧ dy ∧ dz ∧ dt

This corresponds to the function −1
c
∂ρ
∂t +div J . So d from 3-forms to 4-forms maps

(ρ, J)→ −1

c

∂ρ

∂t
+ div J

We explain the significance of this result later.
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Next consider the map d from 2-forms to 3-forms. We think of a 2-form as a pair of vector
fields (E,B) called the electic and magnetic fields. Specifically

cExdx ∧ dt+ cEydy ∧ dt+ cEzdz ∧ dt+Bxdy ∧ dz +Bydz ∧ dx+Bzdx ∧ dy

A brief calculation then shows that d: (E,B)→ (ρ, J) maps this form to the 3-form

(E,B)→
(
divB,

1

c

∂B

∂t
+ curl E

)
In particular, if ω is the 2-form representing the electromagnetic field, the equation dω = 0
is equivalent to the two equations divB = 0 and curlE = −1

c
∂B
∂t , which are the first two

Maxwell equations.

Now consider the map d from 1-forms to 2-forms. It is convenient to write a 1-form as a
pair (ϕ,A) where ϕ is a function and A is a vector field. So ω = c ϕdt+Axdx+Aydy+Azdz
and then a brief calculation shows that d: (ϕ,A)→ (E,B) is the map

(ϕ,A)→
(
− 1

c

∂A

∂t
+ grad ϕ, curl A

)
We always have d2 = 0. A consequence is that if we are given ω, then we can find λ with
dλ = ω only if dω = 0. In the next section, we will discover that the converse is often
true as well. Let us apply that converse to electromagnetic theory. The 2-form ω = (E,B)
satisfies dω = 0 by half of Maxwell’s equations. So we expect to be able to find a 1-form
λ = (ϕ,A) with dλ = ω. Expanding and using the above displayed formula, this would
give

E = grad ϕ− 1

c

∂A

∂t
and B = curl A

In fact, the physicists do exactly this, calling (ϕ,A) the vector potential for the electro-
magnetic field (for historical reasons, physicists often replace ϕ by −ϕ). An advantage
is that only four components need be determined, rather than the six components of the
electromagnetic field.

Finally, consider the map from functions to 1-forms. Call our function f and our 1-form
(ϕ,A). Then the map is

f →
(
1

c

∂f

∂t
, grad f

)
If we modify the vector potential by the element on the right, we will not change the electro-
magnetic field because d2 = 0. Physicists call the addition of this expression to the vector
potential a gauge transformation, and ingeniously choose f to simplify some calculations.
Notice that if the sign of ϕ is changed, then the gauge transformation becomes

ϕ→ ϕ− 1

c

∂f

∂t
and A→ A+ grad f
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So far, the entire theory of differential forms works for an arbitrary C∞ manifolds, with ar-
bitrary local coordinates. This means, incidentally, that the electricity and magnetism dis-
cussed so far is invariant under arbitrary coordinate changes: Galileon relativity, Einstein
relativity with Lorentz transformations, and even general curvilinear coordinates.

But the deeper theory of Riemannian geometry introduces a metric tensor which is positive-
definite, and explores consequences of this metric. Similarly, Einstein introduced a metric
tensor which is nondegenerate but not positive-definite, dx2+dy2+dz2−c2dt2, and required
that physics be invariant under transformations preserving this metric.

It turns out that in either case, the metric allows us to define a map ⋆ : Λk → Λn−k. If
dx, dy, dz are orthogonal coordinates in 3-space, then ⋆(dx) = dy∧dz, ⋆(dy) = dz∧dx, and
⋆(dz) = dx ∧ dy. We essentially used this idea earlier in discussing the three dimensional
theory.

Because of the extra c and the sign change, ⋆ is slightly more complicated in the 4-
dimensional relativistic case. We only describe ⋆ : Λ2 → Λ2. It turns out that

cExdy ∧ dz + cEydz ∧ dx+ cEzdx ∧ dy +Bxdx ∧ dt+Bydy ∧ dt+Bzdz ∧ dt
⋆−→

−cBxdy ∧ dz − cBydz ∧ dx− cBzdx ∧ dy + Exdx ∧ dt+ Eydy ∧ dt+ Ezdz ∧ dt

In our earlier terminology, the star operator sends (E,B) to (−B,E). Let us apply d to
this new 2-form. We obtain the answer from our earlier calculation by interchanging E
and B and changing one sign:

(−B,E)→
(
div E,

1

c

∂E

∂t
− curl B

)
According to the second pair of Maxwell equations, these terms equal(

4πρ,−4π

c
J

)

Recall again that d2 = 0. It follows that d applied to
(
ρ,−1

cJ
)
must be zero. We computed

the d-map on 3-forms at the beginning of this discussion, so we can just read off the
answer:

−1

c

∂ρ

∂t
+ div

(
− 1

c
J
)
= 0 and so

∂ρ

∂t
+ J = 0

This last result is a famous equation in electricity and magnetism called the continuity
equation. It implies that charge is never created, but simply moves around. Indeed dρ

dt
measures the increase of the charge in a region, and J measures the flow of curve out of
this region, so dρ

dt = −J asserts that the increase of charge is entirely due to this flow.
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We have shown that every 4-dimensional d map arises in a natural way in the theory of
electricity and magnetism. Of course Maxwell invented the theory in a completely different
way starting with the experiments of Faraday and others. It came as a great surprise that
the theory explained light as waves in the electromagnetic field; the original equations
contained more mundane constants in place of c.

Faraday’s experiments did not suggest the term 1
c
∂E
∂t in the final Maxwell equation, so

initially it was not part of Maxwell’s theory. When Maxwell performed our last calculation,
he found that ∂ρ

∂t + J was not zero, and thus that charge could be created out of thin air.
Finding this improbable, he discovered that he could fix the problem by adding the extra
term.

In his lectures on Physics, Richard Feynman has an interesting remark about this step. He
writes:

It was not yet customary in Maxwell’s time to think in terms of abstract
fields. Maxwell discussed his ideas in terms of a model in which the vacuum was
like an elastic solid. He also tried to explain the meaning of his new equation
in terms of the mechanical model. There was much reluctance to accept his
theory, first because of the model, and second because there was at first no
experimental justification. Today, we understand better that what counts are
the equations themselves and not the model used to get them. We may only
question whether the equations are true or false. This is answered by doing
experiments, and untold numbers of experiments have confirmed Maxwell’s
equations. If we take away the scaffolding he used to build it, we find that
Maxwell’s beautiful edifice stands on its own. He brought together all of the
laws of electricity and magnetism and made one complete and beautiful theory.

3.5 Maps Applied To Vectors and k-Forms

Let φ :M → N be a C∞ map from one manifold to another, and suppose p ∈M . If X is
a tangent vector at p, we define φ⋆(X) to be the tangent vector at φ(p) defined by

φ⋆(X)(f) = X(f ◦ φ)

The notation has been chosen to make the obvious coordinate form of this map obvious.
Indeed let xi be coordinates onM and yj be coordinates on N , and let the coordinate form
of φ be given by functions yj(x1, . . . , xn). Suppose X =

∑
Xi

∂
∂xi

. Then

φ⋆(X)(f ◦ φ) =
∑

Xi
∂

∂xi
(f(yj(x1, . . . , xn))) =

∑
Xi

∂f

∂yj

∂yj
∂xi
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from which we conclude that

φ⋆(X) =
∑
j

(∑
i

Xi
∂yj
∂xi

)
∂

∂yj

If we let p vary and try to define φ⋆ of a vector field on M , we run into trouble because
some points in N may not be images of anything in M, and other points in N may come
from more than one point of M . So there is no such concept in the theory.

Now suppose X1, . . . , Xk are tangent vectors at p ∈ M , and ω is a k-form at φ(p). (We
have slightly changed the notation; Xi is a vector, not a component of a vector.) We can
then define a pullback form φ⋆(ω) at p ∈M by

φ⋆(ω)(X1, . . . , Xk) = ω(φ⋆(X1), . . . , φ
⋆Xk)

This is clearly a k−form at p.

But this time, letting p vary makes perfect sense, so if ω is a k-form on all of N , then
φ⋆(ω) is a k-form on all of M . This is one of the reasons that dealing with dual vectors
and forms is nicer than dealing with vectors and their tensor products.

The notation immediately gives the coordinate form of this pullback map. Indeed it is easy
to see that dyj =

∑ ∂yj
∂xi
dxi, and so

φ⋆

 ∑
j1<...<jk

ωj1,...,jk(yj)dyj1 ∧ . . . ∧ dyjk

 =

∑
j1<...<jk

∑
i1,...,ik

∂yj1
∂xi1

. . .
∂yjk
∂xik

ωj1,...jk(yj(x1, . . . , xn)dxi1 ∧ . . . ∧ dxik

In this sum, we must sum over all possible xi and apply the “wedge rules” to simplify to
increasing xi form.

Theorem 4
φ⋆(ω ∧ τ) = φ⋆(ω) ∧ φ⋆(τ)

dφ⋆ = φ⋆d

Proof: The first case is left to the reader and follows easily from the earlier sum defining the
wedge product. To prove the second result, then, it suffices to prove that dφ⋆(f) = φ⋆(df)
and dφ⋆(dyj) = φ⋆(ddyj) = 0. But

dφ⋆(f) = d(f ◦ φ) =
∑
i,j

∂f

∂yi

∂yi
∂xj

dxj φ⋆(df) = φ⋆
(∑ ∂f

∂yi
dyi

)
=
∑
i

∑
j

∂yj
∂xi

∂f

∂yi
dxi
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and

dφ⋆(dyj) = d

(∑
i

∂yj
∂xi

dxi

)
=
∑
i,k

∂2yj
∂xi∂xk

dxk ∧ dxi

This expression is zero because the second partial is symmetric in i, k and the wedge is
skew-symmetric in i, k.

3.6 Poincare’s Lemma

If ω is a k-form, we cannot find a k− 1-form λ with dλ = ω unless dω = 0 because d2 = 0.
The equation dλ = ω is a differential equation, and dω = 0 is an integrability condition
for this equation. According to Poincare’s lemma, it is the only integrability condition;
there may be other global topological requirements before we can find λ, but no other local
differential requirements.

Theorem 5 Suppose ω is a k-form defined on an open rectangular box U of Rn. If dω = 0,
then there is a k − 1-form λ on U with dλ = ω.

Proof: Call the coordinates x1, . . . , xn and write ω = dx1 ∧ τ1 + τ2 where no term in τ2 has
a dx1. Each coefficient of τ1 can be integrated in the x1 direction; replace these coefficients
by their indefinite integrals and call the result λ. If we compute dλ, we obtain all the
terms in dx1 ∧ τ1 and other terms, none of which involve dx1. Consequently we may write
ω = dλ + ω1 where no term in ω1 has dx1 and dω1 = 0. But if a differential form ω1 has
no terms containing dx1 and dω1 = 0, then the coefficients of ω1 must be independent of
x1. So now we have written ω = dλ+ ω1 where ω1 is a form in Rn−1.

Continue this argument by induction. This time ω1 = dλ1 + ω2 where dω2 = 0 and the
coefficients of ω2 are functions only of x3 and higher. Continue. Eventually ω is a sum of
dλi. QED.

3.7 The deRham Cohomology Groups

If ω is a k-form on a manifold M and dω = 0, it does not necessarily follow that there is a
k − 1-form λ on M with dλ = ω. For example, suppore M = R2 − (0, 0) and let

ω =
−y

x2 + y2
dx+

x

x2 + y2
dy

The easiest way to see that dω = 0 is to notice that it is the gradient of arctan y
x when

x ̸= 0 and the gradient of − arctan x
y when y ̸= 0. In both cases, then, our form is the

gradient of arctan θ where θ is the standard angle of polar coordinates. But this is not a
single valued function. Indeed, if ω were globally the gradient of λ, then λ would have to
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be a function which continuously increases as we circle the singularity at the origin, which
is impossible.

So ω only equals dλ if it satisfies dω = 0 and additional global topological conditions. The
deRham cohomology groups capture these additional global conditions.

Definition 1 Let M be a C∞ manifold. The deRham cohomology groups are the groups
(actually real vector spaces)

Hk(M) =
{k forms ω | dω = 0}

{ω = dλ | λ is a k − 1 form}

Definition 2 Let φ :M → N be a C∞map. Since dφ⋆ = φ⋆d, φ⋆ induces a map

φ⋆ : Hk(M)← Hk(N)

Example 1: Suppose k = 0. Then H0(M) = {0 functions f | df = 0}. Such a function
is locally constant, and thus constant on each connected component of M . So if there are
only finitely many components,

H0(M) =
⊕

components of M

R

Example 2: Suppose k = n. Consider a typical n-form

ω = ω1,...,n(x1, . . . , xn)dx1 ∧ dx2 ∧ . . . ∧ dxn

If this n− form has compact support, and exists in a single coordinate system which we
can imagine extends in all directions to infinity, we can form∫

. . .

∫ ∞

−∞
ω1,...,ndx1 . . . dxn

If we change to new coordinates y1, . . . , yn, then the n − form changes through multipli-
cation by

det

(
∂yj
∂xi

)
and the integral changes through multiplication by∣∣∣∣det(∂yj∂xi

)∣∣∣∣
Thus the integral is almost independent of coordinate changes, and we can fix that with a
definition.
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Definition 3 An orientation on a C∞ manifold M is an open cover by coordinate systems
such that whenever (x1, . . . , xn) and (y1, . . . , yn) are systems in the orientation,

det

(
∂yj
∂xi

)
> 0

Two orientations are equivalent if their union is again an orientation. If M has an orien-
tation, it is said to be orientable.

Remark: If M is connected, it is easy to prove that it either has no orientations, or else
exactly two orientations up to equivalence.

Example 2, continued: Let M be an oriented, compact manifold. Choose a coordinate
cover by oriented coodinate systems, and choose a partition of unity φi subordinate to
this covering. Since M is compact, we can assume that there are only finitely many φi,
each with compact support inside a coordinate system defining the orientation. If ω is an
n-form, define∫

M
ω =

∑
i

∫
. . .

∫
φi(x1, . . . , xn) ω1,...,n(x1, . . . , xn)dx1 . . . dxn

It is easy to check that this expression is independent of the particular coordinates defining
the orientation and of the choice of partition of unity. Indeed, given two such choices, take
the union of the coordinate systems in both, and replace the two partitions of unity by the
set of products of their elements. This is a new choice, and it is easy to prove that it gives
the same integral as either of the original choices.

Theorem 6 If M is compact and oriented, and λ is an n − 1-form,
∫
M dλ = 0. Conse-

quently, integration induces a well-defined map

Hn(M)

∫
M ω
−−−→ R

Remark: If M is connected, we will later prove that this map is an isomorphism.

Proof: Since
∑
φi = 1 and this is a finite sum,∑

φidλ = dλ = d(
∑

φiλ) =
∑

d(φiλ)

Consequently ∫
M

∑
φidλ =

∫
M

∑
d(φiλ) =

∑∫
M
d(φiλ)

so it suffices to prove the theorem in one coordinate system in which λ has compact
support.
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But
∫
dλ in one coordinate system equals∫

. . .

∫ ∞

−∞

∑
i

∂

∂xi
λ1...̂i...n(x1, . . . , xn) dxi ∧ dx1 ∧ . . . ∧ ˆdxi ∧ . . . ∧ dxn

where the hat indicates an omitted symbol. We are free to perform the n required integra-
tions in any order. For the ith term, integrate first with respect to xi. Since λ has compact
support, this will involve integrating the derivative of a function from a spot where the
function equals zero to another spot where the function equals zero. Hence that particular
integral is zero. Similarly each term separately integrates to zero.

3.8 Homotopy Invariance of Induced Maps

Definition 4 Suppose M and N are C∞ manifolds and let φ0 and φ1 be C∞ maps from
M to N . We say these maps are C∞homotopic if there is a C∞ map

h : (−ϵ, 1 + ϵ)×M → N

such that h(0,m) = φ0(m) and h(1,m) = φ1(m).

Theorem 7 Suppose φ0 and φ1 :M → N are C∞homotopic. Then

φ⋆0 = φ⋆1 : H
k(M)← Hk(N)

Proof: Let i0 and i1 : M → ∗(−ϵ, 1 + ϵ) × M be the maps sending m respectively to
0×m and 1×m. Notice that i0 and i1 are homotopic in a trivial manner. The following
sequences

φ0 :M
i1−→ (−ϵ, 1 + ϵ)×M h−→ N

φ1 :M
i0−→ (−ϵ, 1 + ϵ)×M h−→ N

induce

φ⋆0 : H
k(M)

i⋆0←− Hk((−ϵ, 1 + ϵ)×M)
h⋆←− Hk(N)

φ⋆1 : H
k(M)

i⋆1←− Hk((−ϵ, 1 + ϵ)×M)
h⋆←− Hk(N)

These diagrams show that it suffices to prove that i⋆0 = i⋆1. The central idea of the proof
of this fact is to construct a series of maps Lk : Λk−1(M)← Λk((−ϵ, 1 + ϵ)×M) with the
property that

d ◦ L+ L ◦ d = i⋆1 − i⋆0
Suppose we know these maps. If ω ∈ Λk((−ϵ, 1 + ϵ) ×M) defines an element of deRham
cohomology, then dω = 0 and consequently

(d ◦ L+ L ◦ d)ω = d(Lω) = i⋆1(ω)− i⋆0(ω)
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so that these last two elements are equivalent and define the same element of Hk(M).

Next we define L. If ω is a k-form on (−ϵ, 1 + ϵ)×M , then this form has terms involving
dt and other terms with no dt. Ignore the second kind of term, and map the first kind
ωi1,...,ik−1

(t, x1, . . . , xn) dt ∧ dxi1 ∧ . . . ∧ dxik−1
to(∫ 1

0
ωi1,...,ik−1

(t, x1, . . . , xn)dt

)
dxi1 ∧ . . . ∧ dxik−1

To finish the proof, it suffices to compute dL+Ld on a fixed k-form. Such forms are sums
of terms, and it suffices to consider each individual term. Consider first the case when
a term has no dt and thus equals ω(t, x1, . . . , xn)dxi1 ∧ . . . ∧ dxik . Then L of this term
is zero, so dLω = 0. We must compute Ldω. The only term of dω not killed by L is
∂ω(t,x1,...,xn)

∂t dt ∧ dxi1 ∧ . . . ∧ dxik and L of this term is(∫ 1

0

∂ω(t, x1, . . . , xn)

∂t
dt

)
dxi1 ∧ . . . ∧ dxik =

ω(1, x1, . . . , xn)dxi1 ∧ . . . ∧ dxik − ω(0, x1, . . . , xn)dxi1 ∧ . . . ∧ dxik = i⋆1ω − i⋆0ω

Finally suppose a term has a dt and thus equals ω(t, x1, . . . , xn)dt ∧ dxi1 ∧ . . . ∧ dxik−1
.

Then

Ldω = L

(
−
∑
k

∂ω

∂xk
dt ∧ dxk ∧ dxi1 ∧ . . . ∧ dxik−1

)
= −

∑
k

(∫ 1

0

∂ω

∂xk
dt

)
dxk∧dxi1∧. . .∧dxik−1

and

dLω = d

(∫ 1

0
ω dt

)
dx1 ∧ . . . ∧ dxik−1

=(∫ 1

0

∂ω

∂t
dt

)
dt ∧ dxi1 ∧ . . . ∧ dxik−1

+
∑
k

(∫ 1

0

∂ω

∂xk
dt

)
dxk ∧ dxi1 ∧ . . . ∧ dxik−1

So

dLω + Ldω =

(∫ 1

0

∂ω

∂t
dt

)
dt ∧ dxi1 ∧ . . . ∧ dxik−1

=

ω(1, x1, . . . , xn)dt∧dxi1∧ . . .∧dxik−1
−ω(0, x1, . . . , xn)dt∧dxi1∧ . . .∧dxik−1

= i⋆1(ω)−i⋆0(ω)



Chapter 4

The Mayer-Vietoris Sequence

4.1 The Sequence

The following important theorem allows us to compute cohomology groups of M by stitch-
ing small pieces of M together and examining the changing behavior of the groups.

Suppose U and V are open subsets ofM . These induce inclusion maps U∩V i1−→ U j1−→ U∪V
and U ∩ V i2−→ V j2−→ U ∪ V, which in turn induce maps in cohomology going the reverse
directions:

Hk(U ∩ V)
i⋆1←− Hk(U)

j⋆1←− Hk(U ∪ V)

and

Hk(U ∩ V)
i⋆2←− Hk(V)

j⋆2←− Hk(U ∪ V)

Theorem 8 (Mayer-Vietoris) It is possible to define maps D as below

Hk(U ∪ V) D←− Hk−1(U ∩ V)

making the following sequence exact.

· · ·
i⋆1−i⋆2←−−− Hk+1(U ∪ V) D←− Hk(U ∩ V)

j⋆1−j⋆2←−−−− Hk(U)⊕Hk(V)
i⋆1+i

⋆
2←−−− Hk(U ∪ V) d←− · · ·

Part 1 of Proof: Select a partition of unity φU and φV for U ∪ V so that φU is non-zero
only in U and φV is nonzero only in V. (See the last result in the section on partitions of
unity for details.)

Using this partition of unity, we prove that each of the following sequences is exact:

0←− Λk(U ∩ V)
j⋆1−j⋆2←−−−− Λk(U)⊕ Λk(V)

i⋆1+i
⋆
2←−−− Λk(U ∪ V)←− 0

29
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Much of this is trivial. Exactness on the right is the assertion that a form ω on U ∪ V
vanishes just in case its restrictions to U and V both vanish. Exactness in the center is the
assertion that a form on U and a separate form on V can be glued together to make a form
on U ∪ V just in case both of their restrictions to U ∩ V are equal.

Finally, exactness at the left is proved using our partition of unity. Suppose ω is a form on
U ∩ V. Then φV ω modifies ω on the intersection so that it extends to zero on the rest of
U and remains C∞. Similarly φU ω modifies ω in the intersection so it can be extended to
zero on the rest of V while remaining C∞. Take the element in Λk(U)⊕Λk(V) which equals
φV ω in the left term and −φU ω in the right term. It maps by j⋆1 − j⋆2 to (φV + φU )ω = ω
on U ∩ V.

Intermission: Some readers may still be dubious that the extension of φV ω on U ∩ V to
be zero on the rest of U is still C∞. We will fill in details of that argument. Recall that we
started with a countable partition of unity φi such that each element has compact support
inside either U or V, and such that every point has an open neighborhood on which only
finitely many φi are nonzero. We normalized so

∑
φi = 1. Then we let φU be the sum of

all φi with support inside U and φV be the sum of the remaining elements.

Consider then φV ω =
∑

some i φiω. Each φi in this sum has compact support in V and
thus vanishes before it reaches the boundary of V and thus before it reaches the portion of
U which is not in U ∩V. So φiω remains C∞ if it is extended from U ∩V to be zero in the
rest of U . The sum of these extensions is C∞ because each point has an open neighborhood
where only finitely many of these terms is nonzero.

Part 2 of Proof:

Surprisingly, the rest of the proof is abstract homological algebra and diagram chasing. By
definition, a cohomological complex is a chain of vector spaces and d maps such that d2 is
always zero.

. . . A3 d←− A2 d←− A1 d←− A0 ←− 0

For any such complex, we can form the cohomology groups (actually vector spaces) just as
we did in the deRham theory.

Suppose we have a diagram as on the next page consisting of vectical complexes A,B,C
and horizontal short exact sequences, such that the diagram commutes. Then it is possible

to define D : Hk(C)
D−→ Hk+1(A) making the analogue of the Mayer-Vietoris sequence

exact.
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xd xd xd
0 ←−−−− Ck+1 j←−−−− Bk+1 i←−−−− Ak+1 ←−−−− 0xd xd xd
0 ←−−−− Ck

j←−−−− Bk i←−−−− Ak ←−−−− 0xd xd xd
0 ←−−−− Ck−1 j←−−−− Bk−1 i←−−−− Ak−1 ←−−−− 0xd xd xd

←− Hk+1(A)
D←− Hk(C)

j←− Hk(B)
i←− Hk(A)←−

This is one of those arguments where you cannot go wrong if you keep your wits about
you. We will try a few cases and leave the rest to the reader. First we define D. Suppose
c ∈ Ck induces an element in Hk(C). Then dc = 0 and c = j(b). By commutativity of
the diagram, j(db) = 0, so db = i(a) where a ∈ Ak+1. This a defines Dc ∈ Hk+1(A). But
we need to show that da = 0 to prove that a defines an element of cohomology. Clearly
ddb = 0, so by commutativity ida = 0. Since i is one-to-one, da = 0.

Let us prove exactness at Hk(B). First ji = 0 because ji = 0 in the complex diagram.
Conversely, suppose b ∈ Bk represents an element of Hk(B) which maps to zero in Hk(C).
Then j(b) = dc for some c ∈ Ck−1. This c equals jb̂ for some b̂ ∈ Bk−1. Then jdb̂ = djb =
dc = jb. So b ∈ Bk and db̂ ∈ Bk map to the same element, and therefore their difference
comes from Ak. So b − db̂ = ia. This element a represents an element of Hk(A) because
ida = dia = d(b−db̂) = 0 and i is one-to-one. But b and b−db̂ represent the same element
of H(B), and this element comes from Hk(A), proving exactness. Whew.

Remark: For later use, it is convenient to have an explicit definition of D in the Mayer-
Vietoris case. We are to start with a form ω defining an element of Hk(U ∩V). The general
definition calls for writing this element as j1(ω1)− j2(ω2) where ω1 is a form on U and ω2

is a form on V. Indeed ω = φVω − (−φU )ω. We are then told to take d of this element
and discover that it comes from a form on U ∪ V. Indeed dω = 0 = d (φVω) + d (φUω) on
U ∩ V, so the two forms agree up to sign and we can define

Dω =

{
d φVω on U
−d φUω on V
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4.2 Cohomology Groups of Spheres

It M is a single point, clearly H0(M) = R and Hk(M) = 0 for k ̸= 0.

Suppose U is contractible to a point. We then get maps

{point} i−→ U j−→ {point} i−→ U

where the map ji is the identity, and the map ij is homotopic to the identity. It follows
that both compositions in the following sequence as isomorphisms, and thus Hk(U) has
the same cohomology as a point.

Hk({point}) i⋆←− Hk(U) j⋆←− Hk({point}) i⋆←− Hk(U)

Now consider the various spheres. Start with S1, the ordinary circle. Let U be the upper
half of the circle plus a little extra at the endpoints, and let V be the lower half of the circle
plus a little extra. Then U and V are contractible and have the cohomology of a point.
Also U ∩V consists of small open intervals about (−1, 0) and (1, 0), and thus is contractible
to two points. We easily write down the Mayer-Vietorus sequence as follows:

0⊕ 0←− H(S1)
D←− R⊕R

j⋆1−j⋆2←−−−− R⊕R
i⋆1+i

⋆
2←−−− H0(S1)←− 0

We know that H0(S1) = R. The image in the right copy of R ⊕ R must have dimension
one, so the kernel of the map from this space to the left copy of R⊕R must have dimension
one; it follows that H1(S1) = R. Clearly all higher Hk(S1) are zero because there are no
higher forms in one dimension.

Theorem 9 The only non-zero cohomology groups of the n-dimensional sphere are

H0(Sn) = R Hn(Sn) = R

Proof: Suppose n is at least two. Let U be the upper hemisphere of the sphere, plus a
little more, and let V be the lower hemisphere, plus a little more. Then U ∩ V is an open
neighborhood of the equator, and is contractible to this equator, which equals Sn−1. So
the Meyer-Vietoris sequence is

0← Hn(Sn)← Hn−1(Sn−1)← 0⊕ 0← Hn−1(Sn)← Hn−2(Sn−1)← 0⊕ 0

← . . .← H1(Sn)← H0(Sn−1)← R⊕R← R← 0

Work by induction on n starting with n = 2. At the right of the sequence, Sn−1 is connected
so H0(Sn−1) = R. We conclude that H1(Sn) = 0. The sequence shows that for larger k,
Hk(Sn) is isomorphic to Hk−1(Sn−1). The result immediately follows.

Remark: Here is a famous application:
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Theorem 10 (Brouwer) Let Bn be the unit ball in Rn, n ≥ 1. Suppose f : Bn → Bn is
continuous. Then f leaves at least one point fixed.

Proof:

Our theory deals with C∞ maps, so the first step is to replace f with a similar C∞

map.

Assume the theorem false for f . Then ||f(x) − x|| has a positive minimum value c on
the closed ball. Use the Stone-Weierstrass theorem to approximate f on the ball by a
polynomial P (x), so ||f(x) − P (x)|| < c/3. Replace P (x) by P (x)/(1 + c/3), noting that
the resulting map sends the closed ball back inside itself. We claim that P (x)/(1 + c/3)
also has no fixed points in the ball. And, of course, this function is C∞.

Indeed

||f(x)− P (x)/(1 + c/3)|| ≤ ||f(x)− P (x)||+ ||P (x)− P (x)/(1 + c/3)|| ≤

c/3 + (1 + c/3)(1− 1/(1 + c/3)) ≤ 2c/3.

So

||x− P (x)/(1 + c/3)|| ≥ ||x− f(x)|| − ||f(x)− P (x)/(1 + c/3)|| ≥ c− 2c/3 = c/3 > 0

From now on, replace P (x)/(1+ c/3) by f(x), but assume that f is C∞ in a neighborhood
of the ball.

Since f has no fixed points, we can define a map g : Bn → Sn−1 by drawing a line from
f(x) to x and continuing this line until it hits the boundary of the ball at g(x). Notice that

g : Sn−1 → Sn−1 is the identity. We thus obtain Sn−1 i−→ Bn g−→ Sn−1 and this composition
is the identity. So

Hn−1(Sn−1)
i⋆←− Hn−1(Bn)

g⋆←− Hn−1(Sn−1)

is the identity map. This is impossible because the left and right groups are R and the
group in the center is 0.

Remark: To make this completely rigorous, we must replace Bn with a slightly larger
contractible open set, since our theory deals with manifolds and Bn isn’t a manifold. Our
map f comes from a polynomial and is certainly defined on a slightly larger open set. The
remaining details are left to the reader.

Remark: We proved that H1(S1) = R. If (r, θ) are polar coordinates in the plane, then θ
is a coordinate system on the circle. The generator of H1(S1) is dθ. Notice that θ is not
globally defined on the circle; said another way, it is a multiple-valued function. Therefore
dθ is not zero in cohomology.
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Remark: Clearly R2 − {0} has the homotopy type of S1 and thus the same cohomology
groups. This time the generator of H1 is

ω =
−y

x2 + y2
dx+

x

x2 + y2
dy

4.3 Good Coverings, Part 1

We now seek to prove several crucial results about deRham cohomology using the Mayer-
Vietoris sequence. In all cases, we will start with a finite covering of M by contractible
open Ui and work by induction to prove the results for U1 ∪ . . . ∪ Uk until we reach the
complete union. To make this method work, it is not enough that the Ui be contractible;
all possible intersections Ui1 ∩ . . . ∩ Uij also need to be empty or contractible.

Definition 5 A good covering of a C∞ manifold M is a covering by open sets such that

• each open set is diffeomorphic to Rn

• each finite intersection Ui1 ∩ . . . ∩ Uik is either empty or else diffeomorphic to Rn

The question then arises whether such a cover exists. To get an idea of how to proceed,
consider the torus T 2 and think of it as R2 modulo the integer lattice, so two points in
R2 are equivalent if their components differ by integers. In this case, we can let the Ui be
open disks smaller than the lattice. These disks are convex: any two points can be joined
by a straight line in the disk. It then follows trivially that intersections are also convex. In
particular, these intersections are star-shaped and thus diffeomorphic to Rn.

Unfortunately, it doesn’t make sense to talk about convex open sets in a manifold. However,
if we give our manifold a Riemannian structure, then we can replace straight lines by
geodesics. Using these geodesics, we will prove that any second countable C∞ manifold
has a good cover. This result is false for arbitrary topological manifolds, so the proofs we
give are somewhat subtle.

If M is a C∞ manifold with a countable base, it is possible to define a Riemannian metric
onM . Such a metric is a positive definite inner product ⟨X,Y ⟩ on each tangent space such
that the metric varies from point to point in a C∞ manner.

Once such a metric is present, we can define the length of a parameterized curve γ(t),
where a ≤ t ≤ b, by ∫ b

a

√〈
dγ

dt
,
dγ

dt

〉
dt

We then obtain geodesics by applying the calculus of variations to this length integral.
This yields a differential equation whose solutions minimize length between points, at least



CHAPTER 4. THE MAYER-VIETORIS SEQUENCE 35

locally. In practice we minimize energy rather than length, and consequently solutions
minimize length locally and are traced with fixed speed.

d2γi
dt2

+
∑

Γij1j2
dγj1
dt

dγj2
dt

= 0

To be clear, a geodesic is a solution of this equation, whether or not it minimizes curve
length. On the sphere S2, for example, geodesics are great circles, and the minimal path
between two points is the short portion of the great circle through them. But the opposite
longer portion is still a geodesic even though it does not minimize length. If the two points
are poles, then infinitely many great circles pass through them, all minimizing length.

If we multiply the parameter t by a constant, we get another geodesic with the same length
which just moves faster or slower. It is thus convenient to talk about equivalence classes
of geodesics modulo such reparameterization.

Definition 6 An open set U is said to be geodesically convex if any pair p, q of points in
U can be joined by exactly one shortest geodesic, up to equivalence, and this geodesic lies
entirely in U .

Theorem 11 Every point p in a Riemannian manifold M has a geodesically convex open
neighborhood.

Remark: This result was first proved in 1932 by G. H. C. Whitehead. The proof below is
taken from differential geometry notes by Ben Andrews at Australian National University,
available on the web.

Remark: Note that finite intersections of geodesically convex open sets are either empty
or else again geodesically convex. Consequently they satisfy the main condition for a good
covering. In part 2, we will prove that each is diffeomorphic to Rn.

Proof: The geodesic equation is second order, so its solutions are determined by two
boundary conditions, γ(0) = q and dγ

dt (0) = X. The general form of the local existence
theorem applies to these boundary conditions, and guarantees that there are solutions
γq,X(t) defined for q ∈ U , ||X|| < δ, |t| < η and C∞ in all of these variables. Here U is an
open neighborhood of p.

Suppose λ is a constant, and notice that γ(λt) also satisfies the geodesic equation, but
with boundary condition γ′(0) = λX. In other words, γp,X(λt) = γp,λX(t). Hence we may
shrink the size of X by shrinking δ and simultaneously increasing η. So assume that η = 2
and geodesics given by the existence theorem are defined for |t| < 2.

Fix q to be the initial p of the theorem, and define exp(X) : D ⊂ Tp(M) → M by
exp(X) = γp,X(1). This map is defined on a domain D consisting of tangent vectors with
norm less than δ.
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The exponential map is easy to understand geometrically. It maps straight lines through
the origin in the tangent space to geodesics through p in M because exp(tX) = γp,tX(1) =
γp,X(t).

We claim that the exponential map is a local diffeomorphism from an open neighborhood
of 0 ∈ Tp(M) to an open set in M . This will follow from the inverse function theorem if
we can show that exp⋆(0) is nonsingular. To show this, take a path τ(t) in Tp(M) with
derivative X at t = 0. Form the path exp(τ(t)) and take the derivative of this path at
t = 0. This derivative is exp⋆(X). But one easy τ is τ(t) = tX and then exp(tX) = γX(t)
and the derivative of this path at t = 0 is X. So exp⋆ is the identity map and the inverse
function theorem applies.

From now on, assume δ is small enough that the exponential map defined on the ball of
radius δ about the origin in Tp(M) is a diffeomorphism.

Lemma 1 The geodesics exp(tX), 0 ≤ t ≤ t1 ≤ 1 minimize the length of any differentiable
curve from one endpoint to the other. They are the unique geodesics of smallest length
between their endpoints, up to equivalence.

Idea of the proof: These geodesics are the images of radial lines in a polar coordinate system
on Tp(M) and an induced polar coordinate system on the image of the ball of radius δ.
The length of any radial line is the length of the geodesic, and other lines between the
endpoints are longer because they also move in the angular direction.

Details of the proof: Think of Sn−1 as the vectors of unit length in Tp(M). Define a map
Sn−1 × (0, δ) → Tp(M) by s × t → t s. This defines a polar coordinate system on a
neighborhood of 0 in Tp(M) and exp maps this to a polar coordinate system on an open
neighborhood of p in M . The key fact we need about these coordinates is that curves on
M formed by fixing s and moving t are perpendicular to curves on M formed by fixing t
and moving s.

To show this, consider first the geodesic γ(t) = exp(tX). The tangent vectors along this
curve give a vector field along the curve. Let ∇ be the covariant derivative associated
with the Riemannian metric and recall that the tangent field of a geodesic is parallel, i.e.,
∇γ′(t) = 0. Also d

dt < γ′(t), γ′(t) >= 2 < ∇γ′(t), γ′(t) >= 0, so the length of these tangent
vectors is constant.

Now let s(u) be a path in Sn−1 ⊂ Tp(M) and consider the surface λ(t, s) = exp(ts(u)). If
we fix t, we have a curve in s and we can take ∂

∂s to get a tangent field on the surface.

Similarly by fixing s we have a curve in t and can form ∂
∂t . Then

d

dt
<
∂λ

∂t
,
∂λ

∂s
>=< ∇t

∂λ

∂t
,
∂λ

∂s
> + <

∂λ

∂t
,∇t

∂λ

∂s
>
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The first of these terms vanishes because each curve is a geodesic, so

d

dt
<
∂λ

∂t
,
∂λ

∂s
>=<

∂λ

∂t
,∇t

∂λ

∂s
>

Recall that
∇XY −∇YX = [X,Y ]

In our case the partials commute and the bracket is zero, so

d

dt
<
∂λ

∂t
,
∂λ

∂s
>=<

∂λ

∂t
,∇s

∂λ

∂t
>=

1

2

d

ds
<
∂λ

∂t
,
∂λ

∂t
>

But the length of ∂λ
∂t is constant in t and equals the length of s(u), i.e., 1, when t = 0.

So the expression on the right is zero and < ∂λ
∂t ,

∂λ
∂s > is constant. When t = 0, λ(t, s) =

exp(ts(u)) = p and the partial with respect to u is zero. Thus < ∂λ
∂t ,

∂λ
∂s > is always

zero.

The proof of the lemma follows immediately. We sketch the idea with a picture and then
provide an equivalent formula.

Figure 4.1: Radial and Spherical Components

The picture above shows a radial curve from p to q and another more general curve be-
tween these points. Each small segment of the general curve consists of two perpendicular
motions, one in the radial direction and one in the perpendicular spherical direction. If
we just add up the radial changes, we get the length of the radial geodesic, so the general
curve is longer. If the general curve backtracks in the radial direction before reaching q,
it is longer still because length is the sum of |dr| rather than the sum of dr. If the radial
curve leaves the image of the exponential map before returning to end at q, it is longer
still because exp is a diffeomorphism on a ball of radius δ in Tp(M) and the general curve
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would therefore cross the image of this the boundary sphere of this ball and have length
greater than δ.

Symbolically, our general curve can be defined by introducing a parameter u and letting
both t and s be functions of u, as in λ(t(u)s(u)). Recall that when t is fixed, the derivative
of this expression was ∂λ

∂s . When t also depends on u, the derivative is ∂λ
∂t

dt
du + ∂λ

∂s . Since
these vectors are orthogonal, Symbolically, this argument amounts to the formula∫ t1

0

∣∣∣∣∣∣ d
du
λ(t(u)s(u))

∣∣∣∣∣∣ dt = ∫ t1

0

∣∣∣∣∣∣∂λ
∂t

dt

du
+
∂λ

∂s

∣∣∣∣∣∣du ≥ ∫ t1

0

∣∣∣∣∣∣∂λ
∂t

dt

du

∣∣∣∣∣∣ dt
This last expression is the length of just the radial pieces of the curve, which equals
the length of the geodesic if there is no backtracking. This completes the proof of the
lemma.

Lemma 2 If p ∈ M , there is an open neighborhood of p in which any two points can be
jointed by a unique geodesic of smallest length.

Proof: Apply the inverse function theorem again, but this time to the full map

{ (q, Y ) |q ∈ U , Y ∈ Tq(M), ||Y || < δ} →M ×M

given by (q, Y ) → q × γq,Y (1). Here U is an open neighborhood of p, and the norm of Y
is computed using the Riemannian metric. The derivative of this map at p × 0 is again
an isomorphism, so the inverse function theorem gives an open neighbborhood of p× 0 on
which the map is a diffeomorphism to its open image W in M ×M .

In particular, if we fix q, then the map is a diffeomorphism to the slice of this image in
M×M with first element q, which is an open set inM . It follows from our previous analysis
that for each fixed q, the geodesic expp,Y (t) minimizes distance from q to its endpoint and
is the unique such geodesic, whenever the ending t is less than or equal to one.

Let Uϵ be the ball of points in M whose distance from p is less than ϵ. This U is the set
of endpoints of geodesics exp(tX) for t < ϵ. Select ϵ small enough that Uϵ × Uϵ is an open
neighborhood of the image of (p, 0) insideW. Our map is onto this set. So whenever q and
r are in Uϵ, there is a geodesic from q to r which minimizes distance between these points,
and that geodesic is unique.

This proves the lemma.

To complete the proof of the main theorem of this section, we must still show that if ϵ is
small enough, and if care was used in the previous constructions, then the geodesic from q
to r whose existence is guaranteed by lemma 2 is entirely inside Uϵ.

Before giving the details of this final argument, we sketch the idea. Recall that coordi-
nates can be chosen near a point p making the Riemannian metric gijdxidxj equal δij at
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p. Said another way, any Riemannian metric is infinitesimally Euclidean in appropriate
coordinates.

We can produce a neighborhood Uϵ which is close to Euclidean. So the geodesics from q
to r which interest us essentially look like those in the following picture.

Figure 4.2: Geodesics from q to r

Notice that these geodesics, which are straight lines in Euclidean geometry, are furthest
from p at the endpoints, and closer to p between these points. Since our Uϵ is a ball of
radius ϵ as measured in the Riemannian metric, these geodesics are entirely within the ball.
We will show that when we choose coordinates making gij(p) = δij , then in a sufficiently
small ϵ ball the distance from a point on the geodesic to p in convex and thus furthest from
p at one or the other endpoint. This will complete the proof.

Select an orthonormal basis for Tp(X) and consider geodesically normal coordinates near
p on M generated by this basis. Thus if X =

∑
xiei, we assign (x1, . . . , xn) as coordinates

of exp(X). Notice that the length of the geodesic γp,X(t), 0 ≤ t ≤ 1 is the integral of
the length of the tangent vector to the curve between 0 and 1. These tangent vectors are
parallel along the curve and all have the same length, namely ||X||, so this distance is

||X|| =
√∑

x2i .

Next consider the Christoffel symbols Γkij . We claim they all vanish at the origin. Indeed
∂
∂xi

is the tangent to the geodesic exp(tei) and this vector field is parallel along the geodesic,

so ∇ ∂
∂xi

∂
∂xi

= 0 along this entire geodesic, and thus certainly at the origin.

Very temporarily, we write ∂i for ∂
∂xi

. Then ∇∂i∂i = ∇∂j∂j = ∇∂i+∂j (∂i + ∂j) = 0
because all are derivatives along geodesics of their tangent fields. At the origin, we have
∇∂i∂j +∇∂j∂i = 0. But ∇XY −∇YX = [X,Y ] and [∂i, ∂j ] = 0. We conclude that at the

origin, ∇∂i∂j = 0, but this expression equals
∑

k Γ
k
ij∂k. So all Γkij = 0 at the origin.

Recall that we have an ϵ ball about p, and any q and r in this ball can be joined by a
unique geodesic of smallest length, γ(t). But we do not know that this geodesic stays in the
ball as it moves between its endpoints. That is what we want to prove. We will actually
prove that the second derivative of the distance from p to γ(t) squared is positive. So this
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distance squared is convex up, and the largest value that this function takes must be at
an endpoint (why?), where the distance is at most ϵ. So the distance is always less than ϵ
and the geodesic remains in our ball, as desired.

Here, then, is the calculation. Write γ(t) in coordinates as (x1(t), . . . , xn(t)).

d2

dt2
d(p, γ(t))2 =

d2

dt2

∑
xi(t)

2 = 2
d

dt

∑
xi(t)

dxi
dt

=

2
∑(

dxi
dt

)2

+ 2
∑

xi(t)
d2xi
dt2

However, γ is a geodesic, so it satisfies

d2xi
dt2

+
∑

Γijk
dxj
dt

dxk
dt

= 0

and therefore this expression equals

2
∑(

dxi
dt

)2

− 2
∑

xi(t)

(∑
Γijk

dxj
dt

dxk
dt

)

Recall that Γijk = 0 at the origin. We will show in the ”cleanup” phase of the proof that
we can guarantee ∣∣∣∑xiΓ

i
jkξ

jξk
∣∣∣ < 1

2

∑
(ξk)2

by choosing
∑

(xk)
2 < 2η for an appropriate η > 0. Putting this into the above calculations,

we obtain

d2

dt2
d(p, γ(t))2 = 2

(∑(
dxi
dt

)2

−
∑

xi

(∑
Γijk

dxj
dt

dxk
dt

))
≥ 2

(∑(
dxi
dt

)2

− 1

2

∑(
dxi
dt

)2
)
≥ 0

and the proof is complete.

Here’s the cleanup phase! Once we bound ||x||, the terms xiΓ
i
jk can be made as small as

we like by sticking close to p. Say each such term is at most K. Also |ξjξk| ≤ max(ξi)2 ≤∑
(ξi)2, so

∣∣∣∑xiΓ
i
jkξ

jξk
∣∣∣ is at most

(number of terms)×K ×
∑

(ξi)2

and we can make the coefficient at most 1
2 by sticking close enough to p.

But there is one more complication. We are working in a ball Uϵ centered at p. We want
to prove that the geodesic γ, proved to exist earlier, stays in this ball. To do that, we



CHAPTER 4. THE MAYER-VIETORIS SEQUENCE 41

differentiated using a coordinate system for the ball. But how can we do that if our γ
might leave the ball?

Notice that γ is the shortest possible path from q to r, and q and r are in Uϵ. One possible
path from q to r is the geodesic from q back to p, followed by the geodesic from p to r.
The maximal length of this path is 2ϵ. So we will be in fine shape if our calculations work
for paths of length at most 2ϵ.

Look, then, at the entire argument of this section. The argument can be rearranged as
follows. First, consider the following map.

{ (q, Y ) |q ∈ U , Y ∈ Tq(M), ||Y || < δ} →M ×M

By the existence theorem for differential equations, this map will be defined on some open
neighborhood U of p and for some positive δ. Then by the inverse function theorem, it will
be a diffeomorphism on a smaller U and smaller δ.

Next choose orthonormal coordinates for Tp(M) and choose a number, which we will call 2ϵ,
such that geodesic normal coordinates coming from the exponential map exist for geodesics
of length 2ϵ. In particular, each radial geodesic is the unique shortest geodesic from p to
its endpoint for lengths up to 2ϵ. Choose this 2ϵ small enough that the ball of radius 2ϵ is
inside the smaller U of the previous paragraph.

Then look at the required estimate for the Γijk and shrink ϵ if necessary so this estimate
holds in the ball of radius 2ϵ.

Then shrink ϵ even further so Uϵ × Uϵ ⊂ M ×M is in the image of the diffeomorphism of
the first paragraph of this summary.

Notice now that any two points q, r in Uϵ can be joined by a geodesic starting at q and
minimal and with length at most 2ϵ. Hence our calculation applies and shows that such a
geodesic is entirely inside Uϵ. Whew. QED.

4.4 Good Coverings, Part 2

We now want to prove that any geodesically convex set is diffeomorphic to Rn. The
geodesically convex sets produced by the previous section are balls of radius ϵ about p and
the result is obvious for them. But we want to apply the result to intersections of such
balls, and these no longer need be balls. However, if p ∈ U , then every point in U can
be connected to p by a unique geodesic, so the sets are ”star-shaped.” But the picture of
a star-shaped open set on the next page shows that it is not obviously diffeomorphic to
Rn.

Theorem 12 Every geodesically star-shaped open set is diffeomorphic to Rn.
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Figure 4.3: Star Shaped

Remark: An open set is geodesically star-shaped with respect to a point p if every point in
the open set can be connected to p by a geodesic in U which is the unique shortest geodesic
joining the two points.

In this case, we can consider the exponential map from Tp(M) to U and discover that U
is diffeomorphic to its preimage in Tp(M). So without loss of generality, we may suppose
that M is Rn and U is star-shaped with respect to Euclidean geometry, i.e., every point
can be connected to p by a straight line in U . So it suffices to prove

Theorem 13 Let U be an open set in Rn, 0 ∈ U , such that U is star-shaped with respect
to 0. Then U is diffeomorphic to Rn.

Remark: Before giving details, we sketch the idea. Typically, star shaped regions are proved
contractible by pulling the set back to the center along radial lines at constant speeds. The
previous picture shows that this cannot work in all cases, since adjacent radial lines have
different lengths and thus will be assigned different speeds. So instead, we vary the speed
at which points on a given radial line move during the homotopy. We do this by finding a
function φ on U so that φ(q) gives the speed of a point on a radial line as it passes near q
during the homotopy.

Remark: The following proof is from the book “Calcul Differentiel” by Gonnord and Tonel,
1998. The proof is a translation by Erwann Aubry. See https://mathoverflow.net/

questions/4468/what-are-the-open-subsets-of-mathbbrn-that-are-diffeomorphic-

to-mathbb/212595#212595.

Lemma 3 There is a C∞ function φ on Rn which is positive on U and zero off U .

Proof: Our arguments on partitions of unity easily give this result, but we sketch the
argument again.

https://mathoverflow.net/questions/4468/what-are-the-open-subsets-of-mathbbrn-that-are-diffeomorphic-
https://mathoverflow.net/questions/4468/what-are-the-open-subsets-of-mathbbrn-that-are-diffeomorphic-
to-mathbb/212595#212595
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Start by finding a sequence K1 ⊂ U1 ⊂ K2 ⊂ U2 ⊂ . . . with union U , where the Ki are
compact and the Ui are open.

Consider the set of open balls Bi ⊂ Ci with the same rational center and rational radii
bi < ci and such that the closure of Ci is in U . These Bi form a countable basis for the
topology of U . Moreover, each Bi supports a C∞ bump function on all of Rn which is
identically one on Bi and vanishes off Ci.

Cover K1 by a finite number of Bi whose corresponding Ci are in U1. Cover K2 by a finite
number of Bi whose corresponding Ci are in U2. Cover K3 − U1 by a finite number of Bi
whose corresponding Ci are in U3 −K1. Continue.

In the end we have a countable number of Bi and corresponding bump functions such
that each Ki is in the support of only finitely many functions and yet the sum of all these
functions is nonzero on all of U and certainly zero off this set.

QED.

Next we introduce the central idea of the proof. Define f : U → Rn by

f(x) =

1 +(∫ ||x||

0

dt

φ(t x
||x||)

)2
 · x

This map leaves the origin fixed and sends a ray through x to another ray through x. The
key point is that it maps each maximal ray in U to a full ray from 0 to ∞. Why? When
φ is large, the integral is small, but the extra “1” guarantees that the output ray moves
anyway. When φ is small, the integral is large, but if the input ray exists at both endpoints,
the output ray still only moves a finite amount. The key point is that if the input ray ends
at a boundary point of U , then φ and all of its derivatives vanish at this boundary point,
so just before the boundary, φ is very small and almost flat. This forces the integral to
diverge, and thus the output ray goes to infinity.

Here are the details. We might as well study just one ray, say the ray through the real
number x. Then

f(x) =

[
1 +

(∫ x

0

dt

φ(t)

)2
]
· x

Even the final x is irrelevant and only the parameter inside the square brackets matters.
The only question is whether this expression goes to infinity if x = A is a boundary point of
U . But we can apply the mean value theorem to φ at A to obtain φ(t)−φ(A) = φ′(ξ)(t−A).
Since φ(A) = 0, we get φ(t) = φ′(ξ)(t−A). We know that φ(t) > 0 and t < A, so φ′(ξ) is
negative.
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We also know that φ′(A) = 0, so φ′(ξ) must be bounded in absolute value near A, say by a
positive constant c. So φ(t) < c|t−A| and near A the integral is bounded below by∫ A

A−δ

dt

c|t−A|)

and this blows up.

To prove that the map is a diffeomorphism, it is enough to prove that it has a local C∞

inverse, and this holds if the Jacobian of the map is non-zero. Since our map preserves the
spherical coordinate of rays we need only look at the radial component. But the derivative

of f(x) =

[
1 +

(∫ x
0

dt
φ(t)

)2]
· x with respect to x is always positive. QED.

4.5 Cohomology Groups of Compact M Are Finite Dimen-
sional

Theorem 14 Let M be a compact C∞ manifold. Then each Hk(M) is finite dimensional.

Proof: This theorem is true more generally for any M with a finite good cover. The idea
of the proof is to inductively show that U1 ∪ . . . ∪ Uk has finite dimensional cohomology.
Taking more and more unions, we ultimately reach M itself.

Thus the theorem to be proved by induction says that a manifold M , compact or not, has
finite dimensional cohomology if it has a good cover by k open sets. We prove this by
induction on the number k of such sets. If there is only one, then the set is contractible
and we are done.

Consider now the induction step when U = U1∪ . . .∪Uk has finite dimensional cohomology
and we form U ∪ V. Note that U ∩ V satisfies the induction step because it is covered by
the geodesically convex open sets Ui∩V. So in the Mayer-Vietoris sequence, all terms have
finite dimensional cohomology except U ∪V. Since these are isolated in the sequence, their
cohomology groups must also be finite dimensional.

For example, suppose A
j←− B i←− C is exact and A and C are finite dimensional. Then the

image of i is finite dimensional in B and equal to the kernel of j. So B modulo this kernel
injects into A and must be finite dimensional. Thus B itself must be finite dimensional.
QED.

4.6 Products in deRham Cohomology

Recall that we can compute the wedge product ω ∧ λ of an i-form and a j-form. It is easy
to see that λ ∧ ω = (−1)i jω ∧ λ and d(ω ∧ λ) = (dω) ∧ λ+ (−1)iω ∧ (dλ). It immediately
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follows that the wedge product induces a product in cohomology:

H i(M)×Hj(M)
∧−→ H i+j(M)

4.7 The Kunneth Formula

Suppose M and N are C∞ manifolds. The projection maps πM : M × N → M and
πN : M × N → N induce cohomology mapw π⋆M : H i(M) → H i(M × N) and π⋆N :
Hj(N) → Hj(M × N). Combining these maps with the wedge product then produces a
map

∑
i+j=kH

i(M)⊗Hj(N)→ Hk(M ×N).

Theorem 15 (Kunneth) If one of M and N is compact, then the map below is an iso-
morphism. More generally, it is an isomorphism if one of M and N has a finite good
cover. ∑

i+j=k

H i(M)⊗Hj(N)→ Hk(M ×N)

Proof: As in the previous proof, we assume that M is covered by a finite number of
contractible open sets with the property that the intersection of some of these sets is
always contractible or empty. We work by induction on the number of open sets in the
covering. If we have just one set, then U × N can be deformed to N , so both sides have
the same cohomology, which is implied by the Kunneth formula when H0(U) = R and
Hk(U) = 0 for k ≥ 1.

Tensoring an exact sequence of vector spaces over R with a fixed real vector space preserves
exactness. This essentially gives the elaborate diagram on the next page, where U is
the union of k open sets of the good covering and V is one additional open set of the
covering.

We must prove that this diagram commutes. The only question is in the square at extreme
left because it involves the D operator used to define the long exact sequence for the
Mayer-Vietoris sequence.

After the diagram commutes, all vertical arrows are isomorphisms by induction except
those for H i(U ∪ V)⊗Hj(N), so these maps are also isomorphisms by the 5-lemma. This
completes the proof of the induction step. But we must fill in these two details.

We do this on the page following the elaborate diagram.
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∑ H
i (
U
)
⊗
H
j
(N

)
∑ H

i+
1
(U
∪
V
)
⊗
H
j
(N

)
←−
−−
−
∑ H

i (
U
∩
V
)
⊗
H
j
(N

)
←−
−−
−

⊕
←−
−−
−
∑ H

i+
1
(U
∪
V
)
⊗
H
j
(N

)
∑ H

i (
V
)
⊗
H
j
(N

)
  y∧

  y∧
  y∧

  y∧
H
k
(U
×
N
)

H
k
+
1
(U
∪
V
×
N
)

←−
−−
−

H
k
((
U
∩
V
×
N
)

←−
−−
−

⊕
←−
−−
−

H
k
(U
∪
V
×
N
)

H
k
(V
×
N
)
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Lemma 4 (The 5 Lemma) Suppose we have a commutative diagram with exact hor-
izontal sequences as below, and suppose f, g, i, j are isomorphisms. Then h is also an
isomorphism.

A
φB←−−−− B

φC←−−−− C
φD←−−−− D

φE←−−−− Eyf yg yh yi yj
A′ φB′←−−−− B′ φC′←−−−− C ′ φD′←−−−− D′ φE′←−−−− E′

Proof: Suppose h(c) = 0. Then φC′h(c) = 0, so gφC(c) = 0. Since g is an isomorphism,
φC(c) is zero, so c = φDd for d ∈ D. Then φD′i(d) = 0, so i(d) comes from e′ ∈ E′. By
isomorphism of the rightmost down arrow, there exists e ∈ E with j(E) = e′. So φE′j(e) =
i(d) = iφEe. Since i is an isomorphism, φE(e) = d. So c = φD(d) = φDφE(e) = 0.

Suppose c′ ∈ C ′. Then φC′c′ = g(b) because g is an isomorphism. But φB′g(b) =
φB′φC′c′ = 0, so fφB(b) = 0. But f is an isomorphism, so φB(b) = 0, and hence b = φC(c).
Then φC′h(c) = φC′(c′), so c′−h(c) = φD′(d′) for some d′ ∈ D′. Since i is an isomorphism,
d′ = i(d) for d ∈ D. But then hφD(d) = c′ − h(c) and so h(φD(d) + c) = c′. Hence h is
onto. QED.

Remark: Finally we prove the left square on the previous large diagram is commutative.
We start with an element of

∑
H i(U ∩V)⊗Hj(N) in the upper right corner. We can deal

with each element of this sum separately, so ignore the sum sign. A representative of the
element looks like ω ⊗ τ . This element maps left to an element of H i+1(U ∪ V) ⊗Hj(N)
via the D map, and a representative of the image is d(φVω)⊗ τ on U and d(−φUω)⊗ τ on
V. We then map downward, getting d(φVω) ∧ τ on U and d(−φUω) ∧ τ on V.

If we go around the square the other way, then we take the wedge first and then compute
D. This gives d (φV(ω ∧ τ)) on U and d (−φU (ω ∧ τ)) on V.

The two expressions are equal because d(ω ∧ τ) = (dω) ∧ τ + (−1)degωω ∧ dτ and in our
case dτ = 0.

However, an alert reader will notice that φV and φU came from a partition of unity on U∪V
in the first case, and a partition of unity on (U ×N) ∪ (V ×N) in the second case.

We could form a partition of unity for (U ∪ V) × N by starting with a partition of unity
τi for (U ∪ V) with compact supports, each support in either U or V, and finding a similar
partition of unity σj for N . Then the set of all products τiσj is a partition of unity for the
product of the two spaces. Then we’d find a partition of unity with just two elements, one
for U × N and one for V × N , in the standard way. Namely, let the first function be the
sum of all τiσj with the support of τi inside U , and let the second function be the sum of
all the remaining products. But then the first product is φU and the second is φV , neither
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dependent on N , and so identifying the partitions of unity for U ∪ V and for (U × V)×N
is justified. QED.

Example 1: The standard torus is S1 × S1, so the Kunneth Formula tells us that

H0(torus) = R

H1(torus) = R⊕R

H2(torus) = R

Example 2: The cohomology groups for S3×S5×S8 are the following: Hk = 0 except for
k = 0, 3, 5, 8, 11, 13, 16. All of these particular groups are R exceptH8, which is R⊕R.

4.8 Poincare Duality

Suppose M is an oriented compact C∞ manifold of dimension n. Recall that integration
over M induces a map

Hn(M)

∫
M ω
−−−→ R

Suppose ω ∈ Hk(M) and τ ∈ Hn−k(M). Then we can form ω ∧ τ and apply the previous
map to get a number ∫

M
ω ∧ τ

Theorem 16 (Poincare Duality) IfM is an oriented, compact, n-dimensional C∞ man-
ifold, the map

Hk(M)×Hn−k(M)

∫
M ω∧τ
−−−−−→ R

is nondegenerate. Hence if the cohomology class represented by ω is not zero, we can find
a class τ such that the above integral is not zero.

Corollary 1 If M is an oriented, compact, n-dimensional, C∞ manifold,

dimHk(M) = dimHn−k(M)

Proof: The map defined above induces a map Hk(M) →
(
Hn−k(M)

)⋆
and the duality

theorem asserts that this map is one-to-one. Since these cohomology groups are finite
dimensional, each has the same dimension as its dual. So

dimHk(M) ≤ dim
(
Hn−k(M)

)⋆
= dimHn−k(M)

For the same reason, dimHn−k(M) ≤ dimHk(M) and the result follows.
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Corollary 2 The induced maps below are isomorphisms:

Hk(M)→
(
Hn−k(M)

)⋆
Hn−k(M)→

(
Hk(M)

)⋆
Proof: This follows from the previous argument.

Remark Although Hk(M) and Hn−k(M) have the same dimension and thus as isomorphic,
there is no canonical isomorphism between them. So it is better to think of each as
canonically isomorphic to the dual of the other.

Remark: We will prove this profound result using our standard argument involving good
coverings and the Mayer-Vietoris theorem, but there is a catch. The theorem is false for
non-compact manifolds, and the intermediate manifolds in the Mayer-Vietoris argument
are non-compact.

So we have to generalize the theorem to cover certain non-compact manifolds. This requires
introducing a new version of the deRham cohomology groups.

Definition 7 A differential form ω has compact support if the closure of the set where it
is non-zero is compact.

Remark: Notice that when ω has compact support, so does dω. This allows us to define the
deRham cohomology groups with compact support, Hk

c (M) in the standard way, but using
only forms with compact support. Notice that Hk

c (M) = Hk(M) if M is compact.

Notice that H i(M) ⊗ Hj
c (M) −→ H i+j

c (M) is well-defined. Indeed if ω ∈ H i(M) is an
arbitrary i form, and τ ∈ Hj

c (M) is a form with compact support, then ω ∧ τ has compact
support.

Notice also that if M is oriented but possibly non-compact,

Hn
c (M)

∫
m ω
−−−→ R

is well-defined, because we can integrate a form with compact support over any set.

Theorem 17 (Generalized Poincare Duality) IfM is an oriented, n-dimensional C∞

manifold with a finite good covering, then the map

Hk(M)×Hn−k
c (M)

∫
M ω∧τ
−−−−−→ R

is nondegenerate. Hence if the cohomology class represented by ω is not zero, we can find
a class τ such that the above integral is not zero, and if τ represents a non-zero element,
we can find ω such that the above integral is not zero.
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Remark We will prove this by generalizing the Mayer-Vietoris sequence to compact coho-
mology, and using the standard induction on the number of open sets in the good covering.
To get started, we need to prove the result when M is a single good open set. This will
require a lemma:

Lemma 5 Hn
c (R

n)

∫
m ω
−−−→ R is an isomorphism, and all other Hk

c (R
n) are zero.

Remark: We postpone the proof to the following section, but notice that Poincare duality
is than a corollary for one good open set. Indeed, the only nonzero Hk(Rn) is H0(Rn), the
set of constant functions on Rn, and H0(Rn)×Hn

c (R
n)→ R is the map f ×ω →

∫
M f ×ω,

which is clearly nondegenerate by the above results.

Next we need Mayer-Vietoris for compactly supported cohomology. Suppose i : U → V
is an inclusion map. This map induces Λkc (U) → Λkc (V) because if ω is a k − form with
compact support in U , then it can be extended to the rest of V by zero.

If, then U and V are open sets, we get a sequence, unexpectedly going backward:

0→ Λkc (U ∩ V)
j1−j2−−−→ Λkc (U)⊕ Λkc (V)

i1+i2−−−→ Λkc (U ∪ V)→ 0

This sequence is exact. Exactness at the left is trivial. The composition of the two maps
at the center is zero. Conversely suppose ω is a form with compact support on U and τ
is a form with compact support on V and when these forms are extended by zero then
ω + τ = 0. Then ω is non-zero if and only if τ is non-zero, and both can only happen in
U ∩ V and on this set one form is the negative of the other. This proves exactness in the
middle.

Finally, we must prove that the map on the right is onto. Find a partition of unity φU
and φV . If ω has compact support on U ∩ V, consider φUω and φVω. We claim these have
compact support in U and V respectively. Their sum is (φU + φV)ω = ω, so the map on
the right is onto.

Why does φUω have compact support in U? Since the two φ are a partition of unity, they
are defined on U ∪ V, as is ω. The support of the product is contained in the union of the
support of φU and the support of ω, and thus is in U . Finally, this support is a closed
subset of a compact set, being contained in the support of ω. But a closed subset of a
compact set is compact.

It follows as earlier that there is an induced long exact sequence in cohomology with
compact supports. On the next page, we place this sequence below the regular Mayer-
Vietoris sequence. An equivalent way to write the diagram is to replace the vector spaces
in the bottom sequence by their duals, and this can be an easier way to see what needs to
be done. We also show that diagram.
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H i(U)

H i+1(U ∪ V) ←−−−− H i(U ∩ V) ←−−−− ⊕ ←−−−− H i(U ∪ V)

H i(V)

⊗ ⊗ ⊗ ⊗

Hn−i
c (U)

Hn−i−1
c (U ∪ V) −−−−→ Hn−i

c ((U ∩ V) −−−−→ ⊕ −−−−→ Hn−i
c (U ∪ V)

Hn−i
c (V)y∫

U∪V

y∫
U∩V

y∫
U +

∫
V

y∫
U∪V

R R R R

H i(U)

H i+1(U ∪ V) ←−−−− H i(U ∩ V) ←−−−−
j⋆1−j⋆2

⊕ ←−−−−
i⋆1+i

⋆
2

H i(U ∪ V)

H i(V)y y y y(
Hn−i
c (U)

)⋆(
Hn−i−1
c (U ∪ V)

)⋆ ←−−−−
D⋆

(
Hn−i
c ((U ∩ V)

)⋆ ←−−−−
j⋆1−j⋆2

⊕ ←−−−−
I⋆1+i

⋆
2

(
Hn−i
c (U ∪ V)

)⋆
(
Hn−i
c (V)

)⋆
When we earlier proved that Hk(M) is finite dimensional for compact M . we actually
proved more. Namely we proved by induction that if we have a finite cover by good sets,
then all Hk(Ui1 ∪ . . . ∪ Uik) are finite dimensional. Now that we have a Mayer-Vietoris
sequence for compactly supported cohomology, the same proof shows that compactly sup-
ported cohomology groups are finite dimensional on manifolds with a finite good cover.
This proof definitely uses our result about Hk

c (R
n), which has been stated above but not

yet proved.

Note that if U → V → W is an exact sequence of finite dimensional vector spaces, then
U⋆ ← V ⋆ ← W ⋆ is also exact. The proof is easy. So the bottom sequence in the second
diagram is exact.
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The proof of Poincare duality is now easy. We will prove that the vertical arrows in the
second diagram are all isomorphisms, and that will complete the proof. We do this by
induction in the number of open sets in a good cover of U . If we have a single U , it is
diffeomorphic to Rn and the result follows from explicit calculations of cohomology of Rn.
Otherwise we apply the 5-lemma to the diagram. Four vertical arrows are isomorphisms
by induction, so the left vertical arrow is also an isomorphism.

But this still does not complete the argument because we need to show that the diagram is
commutative. This is easy for the two squares on the right. For example, take the square
on the right and start with ω on U ∪ V. Mapping down gives a map from Hn−i(U ∪ V)
to R given by

∫
U∪V ω ∧ τ . On the other hand, mapping ω to the left gives ω|U and ω|V .

Mapping these down gives two maps which could be applied to the images of τ in Hn−i(U)
and in Hn−i(V). By an earlier lemma, these images are φUτ and φVτ . The sum of the two
maps is then ∫

U
ω|U ∧ φUτ +

∫
V
ω|V ∧ φVτ

The first integrand vanishes off U and the second vanishes off V, so we can perform both
integrals over U ∪ V and this clearly gives∫

U∪V
ω ∧ (φU + φV)τ =

∫
U∪V

ω ∧ τ

We leave the even easier proof in the middle square to the reader.

Finally we tackle the left square of the bottom diagram. Start with ω on the top-right
corner of the square. It maps down to a map from Hn−i(U ∩ V) to R. If τ is an element
of this group, the map assigns

∫
U∩V ω ∧ τ to this element.

The same ω maps left by the D map, which writes ω = φVω+φUω; the first extends to all
of U and the second extends to all of V; on the intersection, dω = 0, so dφVω = −dφUω.
Define Dω as dφVω on U and as −dφUω on V.

This drops down to a map defined on Hn−i−1(U ∪ V). Let σ define an element of this
group. Then applying the map gives ∫

U∪V
Dω ∧ σ

On the bottom of this square, a map from dual spaces goes left because the map from
cohomology groups goes right. So we need to suppose Dσ = τ and prove that

∫
U∩V ω∧τ =∫

U∪V Dω ∧ σ.

Said another way, our task is to prove that∫
U∩V

ω ∧Dσ =

∫
U∪V

Dω ∧ σ
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Thus we need to compute Dσ where σ has compact support in U ∪ V. Recall that we
write σ = φUσ + φVσ where the left extends to all of U and the right extends to all of
V. This sum is in Λk(U) ⊕ Λk(V). We map these to dφUσ and dφVσ and notice that the
sum of these terms is dσ and thus vanishes on the intersection. So the first term and the
negative of the second term agree on U ∩ V and come from applying j1 − j2 to an element
of cohomology for U ∪ V. This element equals dφUσ on U and dφVσ on V.

Since σ has compact support inside U ∩V, integrating either of these expressions over U ∪V
is the same as integrating over U ∩V. Since the two expressions agree on this intersection,
we can pick one of them and just integrate that. So∫

U∪V
ω ∧Dσ =

∫
U∩V

ω ∧ d(φVσ)

However, dσ = 0, so this last integral is just∫
U∩V

ω ∧ (dφV) ∧ σ = (−1)degω
∫
U∩V

(dφV) ∧ ω ∧ σ

Now dω = 0, so d(φVω) = d(φV) ∧ ω + 0, and we can rewrite the result as follows. Note
that ω has compact support in U ∩ V, so it makes no difference whether we integrate over
U ∩ V or U ∪ V

(−1)degω
∫
U∪V

(dφVω) ∧ σ

On the other hand, Dω = dφVω = −dφVω, so this integral is

(−1)degω
∫
U∪V

(Dω) ∧ σ

as required; notice that we need only worry about U ∩ V because ω and dω vanish off this
set.

Remark: The only trouble with this last calculation is that we only obtained commutativity
up to a sign. But this do not matter in applying the 5-lemma, as the reader can readily
check.

Corollary 3 Suppose M is a connected, compact, oriented, n-dimensional C∞ manifold.
Then the map ∫

m
ω : Hn(M)→ R

is an isomorphism.

Remark: This corollary follows immediately from Poincare Duality. But our proof of
duality isn’t yet complete; the final details will be proved in the next section. Thus we are
not allowed to use the corollary in that section.
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4.9 Hk
c (R

n)

Notice that R0 is a single point, so H0
c (R

0) = 0 and all other Hk
c (R

0) = 0. We will now
prove by induction on n that

Theorem 18 For n ≥ 1

• Hn
c (R

n) = R

• Hk
c (R

n) = 0 for all other k

Proof: We will prove that there are natural isomorphisms Hk
c (R

n ×R)→ Hk−1
c (Rn). The

above result follows immediately.

Define a map f : Λk(Rn×R)→ Λk−1(Rn) as follows. A form on Rn×R is a sum of terms
of the form ω(x1, . . . , xn, t)dxi1 ∧ . . . ∧ dxik . If none of the dxi are dt, let

ω(x1, . . . , xn, t)dxi1 ∧ . . . ∧ dxik → 0

If one of the dxi, say the last, is dt, let

ω(x1, . . . , xn, t)dxi1 ∧ . . . ∧ dxik−1
∧ dt→

(∫ ∞

−∞
ω(x1, . . . , xn, t) dt

)
dxi1 ∧ . . . ∧ dxik−1

The integral exists because our forms have compact support. Clearly the forms in the
image of f still have compact support.

Notice that f(dω) = d(f(ω)). Indeed, if ω has no dt, then the only term that matters when
computing f(dω) is the term when we differentiate with respect to t and

f(dω) = f

(
∂ω

∂t
(−1)kdxi1 ∧ . . . ∧ dxik ∧ dt

)
= (−1)k

(∫ ∞

−∞

∂ω

∂t
dt

)
dxi1 ∧ . . . ∧ dxik

Since ω has compact support, the integral vanishes and so f(dω) = 0. Trivially d(f(ω)) =
0.

If ω contains a dt, then the only terms in dω which matter when computing f(dω) are those
involving partials with respect to di because dt ∧ dt = 0. Then f replaces each of these
partials with the integral of the partial with respect to t. As for d(f(ω)), it first integrates
ω with respect to t and then takes partials of these integrals. The integral is a definite
integral with respect to t, so the coefficient no longer depends on t. All other terms involve
and integral and a partial, which can be done in either order. So f(dω) = d(f(ω)).

Define a second map g : Λk−1(Rn) → Λk(Rn × R) as follows. Let φ(t) be a C∞ function
with compact support and integral one, and form φ(t) dt. Define g(ω) = ω ∧ φ(t) dt.
Clearly ω ∧ φ(t)dt has compact support. Note that g(dω) = d(g(ω). Indeed both g(d(ω))
and d(g(ω)) have terms generated by differentiation by xj where xj ̸= t. The terms on both
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sides are the same because it doesn’t matter if we wedge the answer with φ(t) dt before or
after differentiating. On the other hand, neither side has terms obtained by differentiating
a coefficient with respect to t. That is because the original ω doesn’t depend on t, and
when we differentiate φ(t) dt with respect to t, we get dt ∧ dt = 0.

It follows that f induces f : Hk
c (R

n × R) → Hk−1
c (Rn) and g induces g : Hk−1

c (Rn) →
Hk
c (R

n ×R). We have f(g(ω)) = f(ω ∧ φ(t) dt) = ω
(∫
φ(t) dt

)
= ω.

Unfortunately, g◦f is not the identity, but we will show that it is cohomologically equivalent
to the identity. This is the only difficult step.

Define K : Λkc (R
n × R) → Λk−1

c (Rn × R) as follows. As earlier, let t be the coordinate of
the last R. If a term ω in a form has no dt, let K(ω) = 0. If a term has a dt, then recall
the function φ(t) introduced in the definition of g above, and let

K(ω) =

(∫ t

−∞
ω(x1, . . . , xn, u) du−

∫ ∞

−∞
ω(x1, . . . , xn, u) du

∫ t

−∞
φ(u) du

)
dxi1∧. . .∧dxik−1

We claim that dK −Kd = id − g ◦ f up to sign. It immediately follows that g ◦ f is the
identity in cohomology, and thus that f and g are isomorphisms.

First, suppose that a term ω has no dt. Then

(dK −Kd)ω = −(−1)kK∂ω

∂t
dxi1 ∧ . . . ∧ dxik ∧ dt =

(−1)k−1

(∫ t

−∞

∂ω

∂u
du−

∫ ∞

−∞

∂ω

∂u
du

∫ t

−∞
φ(u)du

)
dxi1 ∧ . . . ∧ dxik =

(−1)k−1ω dxi1 ∧ . . . ∧ dxik = (−1)k−1(id− g ◦ f)(ω)

Finally, suppose a term ω has a dt term. Then

(dK−Kd)ω = d

[(∫ t

−∞
ω(x1, . . . , xn, u) du−

∫ ∞

−∞
ω(x1, . . . , xn, u) du

∫ t

−∞
φ(u) du

)
dxi1 ∧ . . . ∧ dxik−1

]

−K

∑
j

∂ω

∂xj
dxj ∧ dxi1 ∧ . . . ∧ dxik−1

∧ dt

 =
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∑
j

[(∫ t

−∞

∂ω

∂xj
(x1, . . . , xn, u) du−

∫ ∞

−∞

∂ω

∂xj
(x1, . . . , xn, u) du

∫ t

−∞
φ(u) du

)
dxj ∧ dxi1 ∧ . . . ∧ dxik−1

]
+

[
ω −

(∫ ∞

−∞
ω(x1, . . . , xn, u) du

)
φ(t)

]
dt ∧ dxi1 ∧ . . . ∧ dxik−1

−

∑
j

[(∫ t

−∞

∂ω

∂xj
(x1, . . . , xn, u) du−

∫ ∞

−∞

∂ω

∂xj
(x1, . . . , xn, u) du

∫ t

−∞
φ(u) du

)
dxj ∧ dxi1 ∧ . . . ∧ dxik−1

]
=

(−1)k−1

[
ω −

(∫ ∞

−∞
ω(x1, . . . , xn, u) du

)
φ(t)

]
dxi1∧. . .∧dxik−1

∧dt = (−1)k−1(id−g◦f)(ω)

QED.



Chapter 5

The Lefshetz Fixed Point Theorem
(1)

5.1 The Easy Lefshetz Fixed Point Theorem

At this point we are about half way to our ultimate goal. We understand the cohomological
language used to capture the central ideas, but other hard work is required.

Solomon Lefshetz was born in Moscow, but his parents moved to Paris shortly afterward.
He later received an engineering degree in Paris, and then emigrated in 1905 to the United
States. In 1907 he lost both hands in an industrial accident, so he switched to mathematics.
His first position was in Nebraska, and then he spent 11 years at Kansas. There he produced
fundamental work in algebraic geometry and algebraic topology, and was recruited to
Princeton in 2024, where he worked until retirement.

In the early 1900’s, algebraic topology emerged as a separate field, with notable results like
the Brouwer Fixed Point theorem and the theory of degrees of maps f : Sn → Sn. During
this period, Lefshetz found a beautiful generalization of both of these results. Suppose X
is a nice space, say a finite simplicial complex, and f : X → X is a continuous map. Such
an f induces vector space homomorphisms f⋆ : Hk(X,R) → Hk(X,R), and the trace of
each of these homomorphisms is a real number. Form the alternating sum

L(f) =
∑

(−1)ktrace(f⋆ : Hk → Hk)

This number has become known as the Lefshetz number of f . Lefshetz proved:

Theorem 19 (Easy Lefshetz Fixed Point Theorem) If X is a finite simplicial com-
plex and f : X → X is a continuous map with L(f) ̸= 0, then f has a fixed point.

57
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For example, suppose X is the closed n−dimensional ball. Then H0(X,R) = R and
Hk(X,R) = 0 for k > 0: moreover, f⋆ : H0(X,R)→ H0(X,R) is the identity map. So for
any f we have L(f) = 1, and f has a fixed point. Therefore Lefshetz’ result generalizes
the Brouwer Fixed Point theorem.

Suppose X = Sn. Then f⋆ : H0 → H0 is the identity and by definition f⋆ : Hn → Hn,
which is a map R→ R, is multiplication by a number called the degree of f , or deg(f). So
L(f) = 1+(−1)ndeg(f). It follows that f has a fixed point unless deg(f) = (−1)n−1. Since
an antipodal map A has no fixed points, deg(A) = (−1)n−1. In particular, the antipodal
map is not homotopic to the identity if n is even. If n is odd, the antipodal map is
homotopic to the identity via

h(t, x) = ((cos t)x0 + (sin t)x1,−(sin t)x0 + (cos t)x1,

(cos t)x2 + (sin t)x3,−(sin t)x2 + (cos t)x3, . . .)

Suppose X is a connected Lie group. Note that the Lefshetz number is a homotopy in-
variant. The Lefshetz number of the identity map is just the Euler characteristic χ(X).
If τ is a path starting at the identity and ending at another point, then left translation
by τ is a homotopy from the identity to a map with no fixed points. Consequently the
Lefshetz number of either map is zero. It follows that the Euler characteristic of a compact
connected Lie group must be zero. For instance, the only compact 2-manifold which can
be given a Lie group structure is the torus.

Outline of the Proof of the Easy Lefshetz Theorem: The easy version of the theorem
is not difficult to prove. Put a metric on X, and assume f : X → X has no fixed
points. Then there is a δ > 0 such that every x ∈ X moves by at least δ, that is,
d(x, f(x)) ≥ δ.

By the simplicial approximation theorem, the map f is homotopic, via a homotopy which
moves each point by less than δ/2, to a simplicial map, provided we replace the simpli-
cial complex by a sufficiently subdivided subcomplex. Hence we may assume that f is a
simplicial map which moves every simplex. Note that f then induces maps f⋆ : Ck → Ck
which move every simplex and thus have trace zero.

Because each Ck is finite dimensional, we can form a Lefshetz number of the chain complex
C0 ← C1 ← C2 ← . . ., using the obvious formula∑

(−1)ktrace(Ck(X)→ Ck(X))

This number is zero since all traces are zero.

The proof of the easy Lefshetz theorem then reduces to a simple lemma: the Lefshetz
number of the complex f⋆ : Ck → Ck equals the Lefshetz number of the induced homology
groups f⋆ : Hk → Hk.
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5.2 The Hard Lefshetz Fixed Point Theorem

Suppose f : [0, 1] → [0, 1] is a continuous map. We can draw the graph of f in the plane,
and superimpose the graph of g(x) = x. This gives the pictures below, for various f . In a
movie he once made about the fixed point theorem, Lefshetz said that a substantial portion
of his career was a consequence of studying this picture.

Figure 5.1: f : [0, 1]→ [0, 1]

Figure 5.2: f : [0, 1]→ [0, 1]

Note that at a fixed point, f(x) = x = g(x), so the fixed points are the points where the
two graphs intersect. Each map above has at least one fixed point, and indeed according
to the Brouwer Fixed Point theorem, each continuous map has a fixed point.

The picture suggests a simple proof of the Brouwer Fixed Point theorem in this case. If
f(0) = 0 or f(1) = 1, then we certainly have a fixed point, so suppose neither result is true.
Then the diagonal line divides the box [0, 1]× [0, 1] into two pieces and f starts in one of
the pieces and ends in the other. Thus it must cross the diagonal at least once.
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The first three pictures, and the previous rough proof, suggest that a more powerful result
is true. Since the graph starts above the diagonal line and ends below the line, it must
cross the line an odd number of times. Recall, incidentally, that the Lefshetz number of f is
1. Perhaps the Lefshetz number counts the number of fixed points and therefore crossings,
except that a crossing from top to bottom counts positively and a crossing from bottom
to top counts negatively. This turns out to be true and its generalization to all compact
manifolds is the Hard Lefshetz Theorem.

But the final picture shows that we must be careful, because the graph of f can touch
the line without crossing it. If we have two differentiable curves in the plane which meet
at a point p, we say that they cross transversally at p if the tangent lines to the two
curves at p have different slopes. If we have two differentiable curves in the plane, then
after an arbitrarily small homotopy of one of the curves, all intersection points will be
transversal. Since the Lefshetz number is a homotopy invariant, homotopies will not change
its value. The theorem we are after says that the Lefshetz number counts fixed points, i.e.,
intersections of the graph of f with the diagonal line, provided we count with a sign which
is determined by the way the tangents to the graphs cross when touching and provided all
fixed points are transversal.

All of this generalizes. If f :M →M is a smooth map from a compact, oriented manifold
to itself and the Lefshetz number of f is not zero, then f has a fixed point. Indeed, L(f)
counts the number of fixed points, provided we assign ±1 to each fixed point in a manner to
be described shortly, and provided all fixed points are transversal in a sense to be described.
We will outline the proof here, and then fill in theoretical details in future chapters. The
essential idea of the proof is to replace [0, 1] × [0, 1] by M ×M and replace the graphs
of f(x) and g(x) by {p × f(p) ∈ M ×M} and the diagonal {p × p ∈ M ×M}. Each of
these is a submanifold of M ×M and these submanifolds induce cohomology classes in
H⋆(M ×M).

This works more generally. Suppose K and L are any two submanifolds of M which
intersect transversally. ThenK∩L is again a submanifold, so it induces a third cohomology
class. The crucial theorem says that the class attached to this intersection is the cup
product of the classes attached to K and L.

In the special case of the fixed point theorem, the intersection is just the finitely many
fixed points of f , and the cohomology class of this intersection counts these fixed points
with signs. And that is the content of the Lefshetz theorem.

We now describe this story in more detail.

Let M be a fixed compact, oriented, C∞ manifold. Suppose K is also compact, oriented,
and C∞ and suppose f : K →M is a C∞ map. IfM has dimension n and K has dimension
k, then f induces a map f⋆ : Hk(K) ← Hk(M). We earlier used the orientation of K to
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define an integral of k-forms on K and resulting map R

∫
K ω
←−−− Hk(K). Putting these maps

together, we have

R

∫
K ω
←−−− Hk(K)

f⋆←− Hk(M)

Thus we get an element of the dual space
(
Hk(M)

)⋆
associated with the manifold K. By

the Poincare duality theorem, this element is duel to an element of Hn−k(M), called the
cohomology class dual to K.

In particular, these considerations hold when K is a submanifold of M . Note that the
initial map from R← Hk(M) is completely defined by K and the inclusion map f , but the
dual element is only defined up to cohomology, and thus has many representatives. The
crucial fact we will prove in the following sections is that one representative is an n − k
form which has support in an arbitrarily small open neighborhood of K.

Suppose now that we have two compact, oriented, C∞ manifolds of dimensions k and l,
where L is a submanifold of M and f : K →M is a C∞ map. The image of f and L will
intersect if k+ l is sufficiently large; and we would like to understand the generic situation.
If k + l < n, then locally K defines a k dimensional surface in M and L defines an l
dimensional surface and there is at least one extra dimension not in the direction of either
surface. By pulling K in this direction, we can entirely remove the intersection. Thus if
k + l < n, we do not expect that K and L will intersect. For instance, two lines in R3

should not intersect generically.

But suppose that k + l ≥ n. At an intersection point, the two surfaces may share some
tangent directions. For instance, if two 2-dimensional surfaces intersect in R3, we expect
them to intersect along a curve, so their tangent spaces will share the line tangent to that
curve. The two surfaces might be completely tangent at the intersection point, so that
the sum of their tangent planes is two-dimensional; generically, however, we expect the
surfaces to be as disjoint as possible, intersecting only in a curved line, and with tangent
planes intersecting in a line.

IfK and Lmeet at p, we say they meet transversally if Tp(K)+Tp(L) = Tp(M), so that they
fill out as many dimensions as possible. For this to happen, we must have k+ l ≥ n.

We will prove the following:

Theorem 20 (Thom Transversality Theorem) If f : K → M is C∞, and if L ⊂ M
is a submanifold, both compact, and if k < n and l < n, then after an arbitrarily small
homotopy of f , K is also a submanifold of M and the two submanifolds meet transversally.

In this case, K ∩ L is also a compact submanifold of M , of dimension n− k − l.

Remark: Note that if k + l < n, then this theorem asserts that after an arbitrarily small
homotopy, K and L do not intersect.
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Finally, we will prove:

Theorem 21 (Main Theorem of Intersection Theory) Suppose K, f , and L are as
above, then after an arbitrarily small homotopy of f , K is also a submanifold and it inter-
sects L transversally. Then if dK , dL, and dK∩L are dual to the submanifolds of dimensions
n− k, n− l, and k + l − n, we have

dK ∧ dL = dK∩L

Remark: Note that dK ∧ dL has degree (n− k) + (n− l) = 2n− (k + l) = n− [(k + l)− n]
which is the correct dimension for a form dual to a manifold of dimension (k+ l)−n.

Note that K ∩ L is commutative in K and L, while dK ∧ dL is commutative or anticom-
mutative depending on the degrees of dK and dL. Hence this theorem is really true “up to
sign.”

5.3 Calculation of the Lefshetz Number

The previous section described difficult assertions about intersection theory in cohomol-
ogy. But the calculations needed to obtain the Lefshetz theorem from them are fairly
straightforward and we’ll do that calculation now.

Assume the fundamental theorem of intersection theory. Then the number of such points,
properly counted, is the wedge product of the class dual to the graph of f and the class
dual to the diagonal. In this section, we will compute this wedge product and show that
it equals the Lefshetz number of f .

Let {ωi} and {τj} be dual bases for H⋆(M), and let π1, π2 : M ×M →M be the obvious
projections. Then {π⋆1(ωi) ∧ π⋆2(τj)} is a basis of H⋆(M ×M) by the Kunnuth Fomula.
The Poincare dual of the diagonal [∆] can therefore be written∑

αijπ
⋆
1(ωi) ∧ π⋆2(τj)

We now compute the integral of π⋆1(τk)∧ π⋆2(ωl) over ∆ (the switch of order is deliberate).
The map i : M → ∆ by m → m ×m is a diffeomorphism, and i ◦ π1 and i ◦ π2 are both
the identity, so the integral of our element over ∆ is the integral of i⋆ of the element over
M , and thus

∫
M τk ∧ ωl. Thus it equals (−1)|τk||ωl|δkl.

On the other hand, by definition of the Poincare dual of [∆], we have∫
∆
π⋆1(τk)×π⋆2(ωl) =

∫
M×M

π⋆1(τk)∧π⋆2(ωl)∧η∆ =
∑
ij

∫
M×M

π⋆1(τk)∧π⋆2(ωl)∧αijπ⋆1(ωi)∧π⋆2(τj)
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=
∑
ij

∫
M×M

αij .(−1)|ωi||ωl|π⋆1(τk ∧ ωi) ∧ π⋆2(ωl ∧ τj)

=
∑
ij

∫
M×M

αij .(−1)|ωi|(|ωl|+|τk|)π⋆1(ωi ∧ τk) ∧ π⋆2(ωl ∧ τj)

In this integral, the term π⋆1(ωi ∧ τk) involves the coefficients of the first M in M ×M and
the remaining term involves coefficients of the second M in the product. Consequently we
can integrate the first term over the first M and integrate the second term over the second
M and multiply. The first integral is δik and the second is δlj and when we sum over i and
j, we obtain

αkl(−1)|ωk|(|ωl|+|τk|)

Comparing the two calculations, we conclude that (−1)|τk||ωl|δkl = αkl(−1)|ωk|(|ωl|+|τk|), and
therefore that αkl = (−1)|ωk|δkl. So d∆ =

∑
i(−1)|ωi|π⋆1(ωi) ∧ π⋆2(τi).

Proof, continued: We now repeat essentially the same calculation to obtain dG.

As before, we compute the integral of π⋆1(τk) ∧ π⋆2(ωl) over G. The map i : M → ∆ by
m→ m× f(m) is a diffeomorphism, and i ◦ π1 = id and i ◦ π2 = f . Let f⋆(ωi) =

∑
βijωj

where this is a sum over j so |ωi| = |ωj |. Then∫
G
π⋆1(τk) ∧ π⋆2(ωl) =

∫
M
i⋆π⋆1(τk) ∧ i⋆π⋆2(ωl) =

∫
M
τk ∧ f⋆(ωl) =

∫
M
τk ∧

∑
i

βliωi

This equals ∫
M

∑
i

(−1)|τk||ωi|βliωi ∧ τk = (−1)|τk||ωk|βlk

Write the Poincare dual of [G] as dG =
∑
γijπ

⋆
1(ωi)∧ π⋆2(τj). By definition of the Poincare

dual of [G], we have∫
G
π⋆1(τk)×π⋆2(ωl) =

∫
M×M

π⋆1(τk)∧π⋆2(ωl)∧dG =
∑
ij

∫
M∧M

π⋆1(τk)∧π⋆2(ωl)∧γijπ⋆1(ωi)∧π⋆2(τj)

=
∑
ij

∫
M×M

γij .(−1)|ωi||ωl|π⋆1(τk ∧ ωi) ∧ π⋆2(ωl ∧ τj)

=
∑
ij

∫
M×M

γij .(−1)|ωi(||ωl|+|τk|)π⋆1(ωi ∧ τk) ∧ π⋆2(ωl ∧ τj)

In this integral, the term π⋆1(ωi ∧ τk) involves the coefficients of the first M in M ×M and
the remaining term involves coefficients of the second M in the product. Consequently we
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can integrate the first term over the first M and integrate the second term over the second
M and multiply. The first integral is δik and the second is δlj and when we sum over i and
j, we obtain

γkl(−1)|ωk|(|ωl|+|τk|)

Comparing results, we obtain (−1)|τk||ωk|βlk = γkl(−1)|ωk|(|ωl|+|τk|). So γkl = (−1)|ωk||ωl|βlk
and

dG =
∑

(−1)|ωi||ωj |βjiπ
⋆
1(ωi) ∧ π⋆2(τj)

Proof, concluded: Now form the following integral, where again i : M → G is the map
i(m) = m× f(m), a diffeomorphism:∫

∆
dG =

∫
M

∑
ij

(−1)|ωi||ωj |βjii
⋆π⋆1(ωi) ∧ i⋆π⋆2(τj)

This equals ∑
ij

(−1)|ωi||ωj |βji

∫
M
ωi ∧ τj =

∑
i

(−1)|ωi|βii = L(f)

However, if ∆ andGmeet transversally, then the definition of the dual class to ∆ gives∫
∆
ωG =

∫
M×M

ωG ∧ d∆

for all ωG and consequently

L(f) =

∫
∆
dG =

∫
M×M

dG ∧ d∆

so the intersection number is the Lefshetz number of f up to sign.

A special case of the theorem proved at the end of this document states that

dG ∧ d∆ = dG∩∆

When G and ∆ are transverse, this is just a finite set of points P on M ×M , namely all
p× p where p is a fixed point of f . Let g be a function on M ×M which is identically 1.
By definition of the dual class, ∫

P
f =

∫
M×M

dG∧∆

The first expression is
∑

p∈P ±f(p) where ± depends on the orientation assigned to each
p. We will determine this sign at the end of these notes. Consequently we have

L(f) =
∑
p∈P
±1



Chapter 6

The Thom Transversality
Theorem

6.1 Measure Theory

Recall the beginning of a typical analysis course in measure theory. By definition, an open
box is a subset of the form (a1, b1) × (a2, b2) × . . . × (an, bn), and the volume of this box
is
∏
|bi − ai|. If A is an arbitrary subset of Rn, we can cover it by a countable number of

open boxes Bi and form
∑
vol(Bi).

Definition 8 The greatest lower bound of such sums over all countable coverings is called
the measure of A and denoted m(A).

This measure generalizes length, when n = 1, area, when n = 2, and volume, when n = 3
and allows us to compute these numbers for much more general sets than those considered
in ordinary calculus.

Measure is usually computed using the following results, rather than directly from the
definition.

Theorem 22

• 0 ≤ m(A) ≤ ∞

• if A1 ⊂ A2, then m(A1) ≤ m(A2)

• if B is an open box, then m(B) = vol(B)

• if T is a translation, then m(T (A)) = m(A)

• if A is a disjoint union of countably many sets Ai, then m(A) =
∑
m(Ai)

65
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Most of these are trivial to prove; one is more difficult and will be proved below. The
last property is by far the most important, but it is in a different league: it is not true in
general. More about it in a moment.

Proof: We sketch the proof of the third item, which is the only tricky result in the first
four items. If suffices to prove the result for closed boxes, because if B is open we can
find closed B1 and B2 with B1 ⊂ B ⊂ B2; the result for closed boxes would then give
vol(B1) ≤ m(B) ≤ vol(B2) and the result would follow by taking limits as B1 and B2

approach B.

So assume B closed. Note that m(B) ≤ vol(B) since we can cover B by a single rectangle
with volume as close to vol(B) as we like.

By compactness, a cover of B by open boxes has a finite subcover. We give the remaining
argument in two dimensions, but it clearly generalizes. If we extend the sides of the finite
subcover, we obtain a mesh dividing B into rectangles. By simple algebra, the sum of
the areas of the mesh rectangles equals the area of B. Each open mesh rectangle belongs
to at least one rectangle in the subcover, so the sum of the mesh areas is at most the
sum of the areas of the rectangles in the subcover and thus vol(B) ≤

∑
vol(Ri). So

vol(B) ≤ m(B).

Figure 6.1: Measure equals Volume

Remark: We now turn to the requirement that if A is a disjoint union of countably many
sets Ai, then m(A) =

∑
m(Ai). This is the essential property of a measure. We must

restrict to countable unions because otherwise the result is trivially false, since every set is
a disjoint union of isolated points, each of which has measure zero.

Lemma 6 If A = ∪Ai is a countable union, not necessarily disjoint,

m(A) ≤
∑

m(Ai)

Proof: Suppose ϵ > 0. Find a countable cover of Ai by rectangles Rij such that∑
j

vol(Rij) ≤ m(Ai) +
ϵ

2i+1
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Then theRij form a countable cover of A = ∪Ai of total volume
∑

ij vol(Rij) ≤
∑
m(Ai)+ϵ

so
m(A) ≤

∑
ij

vol(Rij) ≤
∑

m(Ai) + ϵ

This holds for all ϵ > 0 and thus also for ϵ = 0, QED.

Remark: If the union in the lemma is disjoint, we might hope that the inequality would
become an equality. Examples to be given in the next section show that this is false.
So we must restrict attention to certain “nice” sets, called measurable sets. It will turn
out, however, that virtually all sets are measurable; counterexamples require the axiom of
choice.

The definition below is due to Cartheodory. The motivation for this definition will be given
in the following section.

Definition 9 (Cartheodory) A set A is measurable if for any set S we have

m(S) = m(S ∩A) +m(S −A)

Theorem 23 If Ai are a countable family of disjoint measurable sets, then m(∪Ai) =∑
m(Ai).

Proof: Let S = A1 ∪ A2 and apply the definition of measurability of A2. Thus m(S) =
m(S ∩A2) +m(S −A2) and so m(A1 ∪A2) = m(A2) +m(A1).

Now apply the definition of measurability of A3 to S = A1 ∪A2 ∪A3:

m(S) = m(S ∩A3) +m(A−A3) = m(A3) +m(A1 ∪A2)

So by the previous result, m(A1 ∪ A2 ∪ A3) = m(A1) + m(A2) + m(A3), and in general
m(∪Ai) =

∑
m(Ai) for finite disjoint unions.

Now consider the sum of a countable disjoint union
∑∞

i=1m(Ai). If this sum is infinite,
then either one of the terms m(Aj) is infinite or else finite sums

∑n
i=1m(Ai) = m(∪ni=1Ai)

grow arbitrarily large. In the first case, Aj ⊂ ∪∞i=1Ai and so m(∪∞i=1Ai) = ∞. In the
second case, A1 ∪ . . . ∪ An ⊂ ∪Ai and so

∑n
i=1m(Ai) ≤ m(∪∞i=1Ai); since the left side is

unbounded, m(∪∞i=1Ai) is infinite, and the result is true.

Finally, suppose
∑∞

i=1m(Ai) converges to a finite sum. Then for any ϵ > 0 we can find N
such that

∑∞
i=N+1m(Ai) < ϵ. Then A1 ∪ . . . ∪AN ⊂ ∪∞i=1Ai and so

N∑
i=1

m(Ai) ≤ m(∪∞i=1Ai) ≤
∞∑
i=1

m(Ai) ≤
N∑
i=1

m(Ai) + ϵ

Since ϵ is arbitrary,
∑∞

i=1(Ai) = m(∪∞i=1Ai). QED.

Remark: It remains to show that there are lots of measurable sets.
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Theorem 24 Measurable sets satisfy the following properties:

• any set with measure zero is measurable

• Rn is measurable; if A is measurable, so is Ac = Rn −A

• if Ai is a countable collection of measurable sets, then ∪Ai is measurable

• Open boxes are measurable

• Arbitrary open and closed sets are measurable

Remark: Using these results, many other measurable sets can be constructed. For example,
the boundary of a rectangle or disk has measure zero, so any subset of this boundary has
measure zero. Thus if we start with an open rectangle or disk and add any subset of its
boundary, the resulting set is still measurable.

Proof: Suppose A has measure zero. Note that S ∩ A ⊂ A has measure zero. Since
S = (S ∩ A) ∪ (S − A), m(S) ≤ m(S ∩ A) +m(S − A) = m(S − A) ≤ m(S) and we are
done.

The second item is trivial, for if S is a set, m(S) = m(S∩Rn)+m(S−Rn) = m(S)+m(∅).
Moreover, if S is a set and m(S) = m(S ∩ A) + m(S − A) then S ∩ Ac = S − A and
S −Ac = S −A and so m(S) = m(S ∩Ac) +m(S −Ac).

For the third item, we first prove that finite unions of measurable sets are measurable. It
suffices to study the union of two measurable sets A1 and A2.

Then

S = [S ∩ (A1 ∪A2)] ∪ [S − (A1 ∪A2)] = (S ∩A1) ∪ ([S −A1] ∩A2) ∪ [[S −A1]−A2)

is a disjoint union, and so we get an inequality which we want to be an equality:

m(S) ≤ m(S ∩A1) +m([S −A1] ∩A2) +m([S −A1]−A2)

Applying the definition of measurability of A1 and A2 we have

m(S) = m(S ∩A1) +m(S −A1) = m(S ∩A1) +m([S −A1] ∩A2) +m([S −A1]−A2)

Hence the right side of the previous inequality is equal to m(S) and thus the inequality is
indeed an equality.

Now suppose that Ai is a countable collection of measurable sets. We can replace A2 by
A2 − A1 = A2 ∩ Ac1, and replace A3 by A3 − (A1 ∪ A2) = A3 ∩ (A1 ∪ A2)

c, etc. So we can
suppose the Aj are disjoint.

We need a lemma to finish the argument:
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Lemma 7 If A1, A2, . . . , An are disjoint, measurable sets, then for any S we have

m(S ∩ (∪ni=1Ai)) =
n∑
i=1

m(S ∩Ai)

Proof of lemma: We prove this by induction on n. It is trivial for n = 1. In the induction
step, let S̃ = S ∩ (∪n+1

i=1 Ak) and apply the definition of measurability to S̃ and An+1. We
have

m(S ∩ (∪n+1
i=1 Ai) = m(S ∩ (∪n+1

i=1 Ai) ∩An+1) +m(S ∩ (∪n+1
i=1 Ai)−An+1)

Since the Ak are disjoint this says

m(∪n+1
i=1 S ∩Ai) = m(S ∩An+1) +m(∪ni=1S ∩Ai)

and by induction this is
∑n+1

i=1 m(S ∩Ai). QED.

Continuation of proof of main theorem: Since finite unions of measurable sets are measur-
able, and since the Ai are disjoint, we have

m(S) = m(S ∩ (∪ni=1Ai) +m(S − ∪ni=1Ai) ≥
n∑
i=1

m(S ∩Ai) +m(S − ∪∞i=1Ai)

Looking just at the left and right sides, only one term depends on n, and yet the inequality
is true for all finite n. It follows that it remains true as n approaches ∞ and so

m(S) ≥
∞∑
i=1

m(S ∩Ai) +m(S − ∪∞i=1Ai)

But then

m(S) ≥
∞∑
i=1

m(S ∩Ai) +m(S − ∪∞i=1Ai) ≥ m(S ∩ (∪∞i=1Ai) +m(S − ∪∞i=1Ai) ≥ m(S)

so every inequality in the final equation is an equality and ∪∞i=1Ai is measurable.

We still have items in our main theorem. The fourth item clearly implies the final item, so
to complete the proof we must show that open boxes are measurable. The proof depends
on another lemma:

Lemma 8 Suppose A and B are disjoint subsets of Rn, not necessarily measurable, and
suppose there is a δ such that whenever a ∈ A and b ∈ B, the distance d(a, b) ≥ δ. Then
m(A ∪B) = m(A) +m(B).
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Proof: The definition of Lebesgue measure requires covering a set by open boxes. But we
could just as well use closed boxes; the minor details proving that both definitions give the
same measure are left to the reader.

We know thatm(A∪B) ≤ m(A)+m(B). It suffices to prove thatm(A∪B) ≥ m(A)+m(B).
Let ϵ > 0 and find a countable covering of A∪B by closed boxes Ri such that

∑
vol(Ri) <

m(A∪B) + ϵ. Subdivide each box into smaller closed boxes such that any two points of a
subdivided box are less than δ apart. These smaller boxes still cover A∪B and the sum of
their volumes is unchanged over the original sum. But a smaller box intersects A or B or
neither. Divide the boxes into those that cover A and those that cover B or neither. Then∑
vol(R) over those that cover A is larger than m(A) and

∑
vol(R) over those that cover

B is larger than m(A). It follows that

m(A) +m(B) ≤
∑
A⊂R

vol(R) +
∑
rest

vol(R) =
∑

vol(R) < m(A ∪B) + ϵ

This holds for all ϵ > 0 and thus m(A) +m(B) ≤ m(A ∪B). QED.

Now we are ready to prove that each open box R is measurable, and thus that for any S,
m(S) = m(S ∩ R) + m(S − R). As usual, it suffices to show that m(S) ≥ m(S ∩ R) +
m(S −R).

Enlarge R slightly to a bigger box R1. Let T be the “moat” between R and R1..

Figure 6.2: R,R1, and Moat

If ϵ > 0 is given to us, we can do the enlarging so m(T ) < ϵ and thus m(S ∩ T ) < ϵ.

Then (S ∩ R) ∪ (S − R1) ⊂ S, so m((S ∩ R) ∪ (S − R1)) ≤ m(S). Therefore by the
lemma,

m(S ∩R) +m(S −R1) ≤ m(S)

Also S−R = (S−R1)∪ (S∩T ), so m(S−R) ≤ m(S−R1)+m(S∩T ) ≤ m(S−R1)+ ϵ, so
m(S−R1) ≥ m(S−R)−ϵ. Inserting this in the previously displayed inequality gives

m(S ∩R) +m(S −R)− ϵ ≤ m(S)
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This equation holds for all ϵ > 0 and thus

m(S ∩R) +m(S −R) ≤ m(S)

QED.

6.2 Random Remarks on Previous Section

In the previous section, we presented the central results on Lebesgue mesure without
interruption. Now some random comments are in order.

Countability and Measure Zero: It is critical in the Lebesgue theory to consider
countable covers by boxes rather than finite covers. For instance, a finite cover of the
set A of rational points in [0, 1] by intervals (a, b) must contain everything in [0, 1] except
possibly any irrational endpoints of such (a, b). Since this exceptional set is finite, the cover
will have total length at least 1 and the measure of A would be 1. A similar argument
shows that the set of irrational points in [0, 1] would have measure 1, and thus additivity
of measure would fail or else one of the sets would not be measurable.

But if countable covers are allowed and ϵ > 0, we can enumerate the rational points
q1, q2, . . . in [0, 1] and cover q1 by an open interval of length at most ϵ

2 , cover q2 by an open
interval of length at most ϵ

4 , etc. We obtain a countable cover of the set by open intervals
of total length at most ϵ, so the measure of the set of rational points in [0, 1] is less than ϵ
for all ϵ > 0 and thus 0. In particular, this set is measurable, so its complement in [0, 1] is
also measurable, and thus the measure of the irrational points in [0, 1] is 1.

The argument of the previous paragraph shows that any countable set in Rn has measure
zero. The converse of this result is false. For example, consider the Cantor set in R1,
formed by removing the middle third from [0, 1], and then removing the middle thirds of
the two remaining pieces, etc. The total length of the set removed is

1

3
+ 2

1

32
+ 4

1

33
+ . . . =

1

3

[
1 +

2

3
+

(
2

3

)2

+ . . .

]
=

1

3

1

1− 2
3

= 1

and thus the complement in [0, 1], the Cantor set, has measure zero. (Note that all of these
sets are measurable and thus the argument is rigorous by the previous section.)

The points in [0, 1] are associated with infinite “decimals” in base three, like .0221003....
We removed exactly all points with at least one 2 in their expansion, so the Cantor set is
associated with base 3 expansions containing only 0’s and 2’s, and this set is uncountable
by the standard argument.

Euclid: Everyone should read at least Book 1 of Euclid. This remarkable document
starts with just the axioms — essentially nothing — and proceeds in a logical line to the
Pythagorian theorem and its converse. It tells a great story as succinctly as possible.
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The book is divided into essentially two parts. The first part is about congruent figures, or
as Euclid writes, figures which are equal. In modern language, two figures are congruent
if one can be mapped to the other by translations, rotations, and reflections, that is, by
a Euclidean map. Euclid doesn’t develop the theory that way, instead building up the
theory from congruence theorems for triangles. But his proof of side-angle-side is telling,
because Euclid says to pick up the first triangle by the angle and place it over the angle
of the second triangle; the two sides then match, so the third side and the angles at this
side also match. This proof has been criticized as “not in the spirit of Euclid” and modern
authors often add SAS to the axioms. But it is directly in the spirit of modern geometry,
which makes explicit the group of Euclidean motions.

In the middle of the chapter, Euclid begins calling figures equal when they obviously are
not congruent, and it soon becomes apparent that equal now means having the same area.
Euclid never calculates an area, no doubt because the Greeks had only rational numbers
but knew that not all distances and areas are rational. The only objects in chapter 1 are
regions with straight sides, and Euclid says that two such objects are equal if the first can
be cut into pieces and these pieces can be reassembled using Euclidean motions to form
the second.

Indeed, it can be proved that if two regions with straight sides have the same area, the first
can be decomposed into pieces which can be reassembled to form the second. The proof is
relatively easy by using Euclid’s methods.

These ideas reappeared in 1900 when David Hilbert announced his famous list of problems
for the twentieth century. One of the problems asked if this Euclidean approach works in
three dimensions. That is, if two three-dimensional regions have plane sides and the same
volume, can one of them be decomposed into a finite number of pieces, which are then
reassembled to form the second. Hilbert conjectured that the answer is “no”. This was
the first problem to be solved, and Hilbert’s conjecture turned out to be correct.

The previous section on measure contains almost everything necessary to reprove the results
in book 1 of Euclid using area directly. The missing ingredient is invariance of Lebesgue
measure under rotations.

There are at least two ways to obtain this missing result. The first is to allow boxes with
any orientation in the definition of measure. The sides of such a box define orthogonal
vectors in Rn and the volume of the box is then the absolute value of the determinant of
the row matrix formed by these vectors. Since the “fundamental objects” – the boxes –
are invariant under both rotation and translation, it immediately follows that measure is
also invariant. It is then only necessary to reprove the results of the previous section with
this new definition of measure, but only two results directly mention the boxes, and their
proofs are easily modified.

Another approach is more abstract and general. Suppose G is a topological group. A
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measure on open sets of G is called a Haar measure if it is invariant under left translation.
Haar proved that all locally compact topological groups possess such a measure, and von
Neumann proved that this measure is unique up to a multiplicative constant. If we know
this uniqueness result, the missing proof is easy. Let m1(A) be Lebesgue measure. Let
m2(A) be the measure obtained by applying a fixed Euclidean orthogonal transformation
T to A and then computing its Lebesgue measure. Both are invariant under translations,
so m2 = λm1 for a fixed λ.

On the other hand, m1(A) = m2(A) when applied to the standard closed ball of radius 1,
so λ = 1 and m1 = m2.

Inner and Outer Measure and Cartheodory:

The classical theory of area goes essentially back to the Greeks. Suppose A is a bounded
set in R2. We approximate its area from above by covering it with a finite mesh of closed
rectangles. The greatest lower bound of the resulting areas is called the outer measure
of A and denoted m⋆(A). We also approximate its area from below by finding a mesh
of closed rectangles inside A. The least upper bound of the resulting areas is called the
inner measure of A and denoted m⋆(A). Easily, m⋆(A) ≤ m⋆(A). If these expressions are
equal, we call their common value the Jordan measure m(A) and say that A is Jordan
measurable.

Figure 6.3: Outer Jordan Measure, Inner Jordan Measure

Earlier we gave Lebesgue’s definition of Lebesgue outer measure, although we did not
introduce the term. Let us temporarily writem⋆(A) for this Lebesgue outer measure. In his
original treatment of measure, Lebesgue introduced a term which, in a sense, corresponds
to inner measure, and called a set measurable if the outer and inner measure were equal.
Lebesgue originally worked with bounded subsets and length, so in his context A ⊂ I
where I is a fixed interval. Notice that m⋆(I − A) measures the complement of A by
computing the sum of the lengths of intervals which overlap part of A. So the expression
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vol(I)−m⋆(I −A) should correspond to a sort of inner measure of A. Lebesgue called A
measurable if

vol(I)−m⋆(I −A) = m⋆(A)

This is similar to Jordan’s requirement that outer and inner measure have the same limit.
But if we rewrite the condition in the form

vol(I) = m⋆(A) +m⋆(I −A) = m⋆(I ∩A) +m⋆(I −A)

we see that I is playing the role of S in Cartheodory’s definition of measurability. This
is the motivation of that definition. Of course it is quite a jump from I to an arbitrary
subset S.

Existence of Non-Measurable Sets:

We now construct a non-measurable set in R. Define a relation on R by writing a ∼ b if
a − b is rational. It is easy to check that this is an equivalence relation. If a represents
an equivalence class, then a + q also represents this class whenever q ∈ Q. For each
equivalence class, select a representative in [0, 1] and let E be the collection of all of these
representatives.

Notice that there are uncountably many equivalence classes, and thus we must make un-
countably many choices to construct E. So we are definitely using the axiom of choice
here!

If a ∈ [0, 1], then a ∼ e for some e ∈ E, so a − e = q for q rational. Clearly −1 ≤ q ≤ 1.
Hence

[0, 1] ⊆ ∪q∈[−1,1](E + q) ⊆ [−1, 2]

The expression in the middle is a countable union of disjoint sets, for if e, f ∈ E and
e+ q1 = f + q2, then e ∼ f and so e = f .

Recall that Lebesgue measure is translation invariant. If E were measurable, then

1 ≤
∑

q∈[−1,1]

m(E) ≤ 3

The left inequality can only hold if m(E) > 0 and the right inequality can only hold if
m(E) = 0. So E is not measurable.

Remark: Solovay constructed a model for Zermelo-Frankel set theory without the axiom
of choice in which every subset of Rn is measurable. Consequently the construction of a
non-measurable set require the axiom of choice.

Remark: We have been using sums over countably many disjoint sets. It is reasonable
to hope that measurability problems would vanish if we restricted attention to sums over
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finitely many disjoint sets. But this hope is dashed by the Banach-Tarski paradox, in which
for example a sphere of radius 1 is written as a finite disjoint union of sets Ai and then the
Ai are rearranged using Euclidean motions to form a finite disjoint decomposition of the
sphere of radius 10100.

6.3 Measure Zero in Manifolds

Take a piece of paper. Fold it, crumple it, and then press the paper down on the desk. You
are looking at a map from the paper to the desk, or mathematically a map f : U ⊂ R2 → R2.
Assume this map is C∞; after all, folds like (x, y)→ (x, y2) are infinitely differentiable. We
are going to prove that most points on the table are covered only by points where f is a local
diffeomorphism, so no fold or other singularity occurred over those points. Incidentally,
these “good” points on the table include points not covered at all by the map.

What is the meaning ofmost in this statement. Mathematicians often claim that statements
are usually true, and assign different meanings to the assertion. Sometimes they mean
there are only finitely many exceptions. Sometimes they mean that the exceptions are
countable. Sometimes they mean the exceptions form a nowhere dense subset of a complete
metric space. In the present situation, we mean that the exceptions form a set of measure
zero.

From now on, all manifolds are second countable.

Definition 10 A subset E of a second countable C∞ manifold M is said to have measure
zero if for all coordinate systems φ : U → V on M the set φ(U ∩E) ⊂ V ⊂ Rn has measure
zero.

Remark: Luckily, we need not verify this for all coordinate systems. It suffices to verify it
for some particular coordinate cover of E; in particular if E is inside a single coordinate
system it suffices to verify it in that system. Proving this assertion requires the following
lemma, the fact that M has a countable basis, and the fact that a countable union of sets
of measure zero again has measure zero.

Lemma 9 If E ⊂ U ⊂ Rn has measure zero and ψ : U → V ⊂ Rn is a diffeomorphism,
then ψ(E) also has measure zero.

Proof: SupposeW is a ball containing two points (x1, . . . , xn) and (a1, . . . , an). Then

ψi(x1, . . . , xn)−ψi(a1, . . . , an) =
∑
j

(
ψi(x1, . . . , xj , aj+1, . . . , an)− ψi(x1, . . . , aj , aj+1, . . . , an)

)

=
∑
j

∂ψi

∂xj
(ξj)(xj − aj)
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Here we have applied the mean value theorem to the straight line formed by changing just

one variable, using the fact that this entire line is in W. Assume
∣∣∣∂ψi

∂xj

∣∣∣ ≤ B is uniformly

bounded in our ball. Then∣∣ψi(x1, . . . , xn)− ψi(a1, . . . , an)∣∣ ≤ Bnmax
j
|xj − aj |

This result says that in some sense the volume of an image box covering part of ψ(E) is a
constant multiple of the volume of a box covering part of E. We just need to clean up the
details of this observation.

Observe first that when computing the measure of a set, we can cover it with cubes (gen-
eralized squares) rather than boxes (generalized rectangles). Indeed, if we have a box
belonging to a cover, we can cut one side into N equal pieces of length b1−a1

N , and then cut
all remaining sides into pieces of the same length, where the number of pieces is chosen to
completely cover that side with possible slight overlap of the final piece. This cuts the box
into a large number of cubes, with a slightly greater volume due to the overlap along the
remaining sides. But since we can select N at will, this extra volume can be made as small
as we wish for each individual box. Using the “ ϵ

2i
” trick, the total volume of the cubes can

be made as close to the total volume of the original boxes as we like.

Now consider a cube in the domain of ψ; let us try to cover the image of this cube by the
smallest possible cube in the range of ψ. To do this, let x range over the domain cube until
ψi(x) is as large as possible, and let a range over the domain cube until ψi(a) is as small as
possible. The difference gives a possible length for the ith side of the covering cube in the
image. By the above inequality, this is no greater than Bn times the side of the domain
cube. This result holds for all i, so the cube covering the image will have volume at most
(Bn)n times the volume of the domain cube.

Our final problem is that the bound B need not hold throughout all of U . Find open sets
Ui and compact sets Ki with

U1 ⊂ K1 ⊂ U2 ⊂ K2 . . .

such that the union of all of these sets is U . Let Ek = E∩Uk. Since Ek ⊂ E, it has measure
zero and can be covered by a countable number of cubes in Uk is arbitrarily small total

volume. Moreover, Ek ⊂ Kk on which
∣∣∣∂ψi

∂xj

∣∣∣ ≤ Bk is bounded. By the above calculations,

ψ(Ek) can be covered by a countable number of boxes of arbitrarily small volume, so ψ(Ek)
has measure zero. Note that ψ(E) ⊂ ∪ψ(E), so m(ψ(E)) ≤

∑
m(ψ(Ek)). Hence ψ(E) has

measure zero.

6.4 Sard’s Theorem

Definition 11 Let f :M → N be a C∞ map between C∞ manifolds. A point p ∈M is a
singular point of f if f⋆ : Tp(M)→ Tf(p)(N) is not onto.
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Theorem 25 (Sard) Let f :M → N be a C∞ map between second countable C∞ mani-
folds. Then the image under f of the critical points of f has measure zero in N .

Remark: Note that the singular points belong to M . Easy examples show that every point
of M can be a singular point (for instance, when dim(M) < dim(N)). It is the image of
these singular points in N that has measure zero.

In the case dim(M) < dim(N), Sard’s theorem says that the entire image of M in N has
measure zero. So “space filling curves” which are C∞ cannot exist.

If dim(M) = dim(N), a singular point is a point where f⋆ is not an isomorphism. The inverse
function theorem asserts that when it is an isomorphism, f is a local diffeomorphism. So
Sard’s theorem asserts that for most points n ∈ N , either n is not in the image of f at all
or else there are isolated points m1,m2, . . . mapping to n and f is a local diffeomorphism
near each of them.

Proof: It suffices to prove the theorem when M is an open subset U ⊂ Rm and f : U → Rn

is C∞. Indeed in the proof, we will often pick a singular point p ∈ U and find a smaller
open neighborhood W of p such that the image of the singular points in W has measure
zero. This is enough because M has a countable basis, and thus we can find one of these
countably many open sets B with p ∈ B ⊂ W. It then follows that the image of the singular
points lie in a countable union of sets of measure zero, and thus has measure zero.

We prove the result by induction on m. If m = 0, then Rm is a single point and the result
is trivial. Assume the result true for m− 1.

Let C be the set of critical points in U and let Ck be the set of critical points where
∂jf i

∂xi1 ...∂xij
= 0 for j = 1, . . . , k. We will prove that

• f(C − C1) has measure zero

• f(Ci − Ci+1) has measure zero

• f(Ck) has measure zero for some k

In the first case, suppose p ∈ C − C1. Then ∂fi
∂xj
̸= 0 at p for some i, j. Renumber the

coordinates in both domain and range so ∂f1
∂x1
̸= 0 at p. Define a map φ : U → Rm by

φ(x1, . . . , xm) = (f1(x1, . . . , xm), x2, . . . , xm) = (y1, . . . , ym) and notice that the Jacobian
at p is non-singular. So this map is a local diffeomorphism which introduces new coordinates
on M near p. In this new coordinate system, our original map is f ◦φ−1 :W ⊂ Rm → Rn.
The first coordinate of the image of (y1, . . . , ym) under this map is f1(x1, . . . , xm) = y1.
Thus in the new coordinate system, (y1, . . . , ym) → (y1, g(y1, . . . , ym)) where g : W ⊂
Rm → Rn−1. For each fixed y1, g defines a map from an open slice of W ⊂ Rm−1 → Rn−1

and we can apply induction to conclude that for each fixed y1, the image of the singular
points in W with first coordinate y1 has measure zero in Rn−1.
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To conclude this step, we need a lemma from measure theory:

Lemma 10 Let E ⊂ Rn where coordinates in Rn are denoted (t1, . . . , tn). Suppose that
for each fixed t1, the set of all (t1, e2, . . . , en) ∈ E has measure zero in Rn−1. Then E has
measure zero in Rn.

Remark: This result is a special case of Fubini’s theorem (or Torelli’s theorem) about
iterated Lebesgue integrals. Let χ(x) on Rn be the characteristic function for E. Thus
χ(x) = 1 if x ∈ E and 0 otherwise. Note that χ ≥ 0. Torelli’s theorem is just Fubini’s
theorem in the non-negative function case. According to this theorem∫

Rn

χ(x, y) =

∫
R

(∫
Rn−1

χ(x, y)dy

)
dx

The hypothesis shows that the interior integral on the right is zero, so the full integral is
zero, and thus E has measure zero.

Remark: Shlomo Sternberg, in his book on Differential Geometry, explained how to re-
place Fubini’s theorem in this argument with very elementary measure theory. A footnote
attributes the proof to Furstenberg. Here is that argument.

Observe that in the end we study f ◦ φ−1 : W ⊂ Rm → Rn. We can replace W by a
smaller neighborhood of p with compact closure K in W. Let S ⊂ K be the set of all
singular points of f (rather than just the image of C − C1) and notice that S is closed,
hence compact. Indeed if qi are singular and qi converges to q, then the matrices f⋆(qi)
converge to the matrix f⋆(q). If f⋆(q) is onto Rn, then we can find vectors v1, . . . , vn which
map to the elementary basis vectors of Rn by f⋆(q), so in the limit these vectors must be
linearly independent for large f⋆(qi).

Let E = f(S). Our induction hypothesis then shows that each slice of E with fixed first
component has measure 0. Notice that S is closed and so compact, so E is compact. Here
then is the elementary fact from measure theory:

Lemma 11 Let E be a compact subset of Rn and suppose each slice in Rn−1 formed by
intersecting E with points with fixed first component has measure zero. Then E has measure
zero.

Proof: Fix ϵ > 0. Consider the slice of Rn obtained by setting x1 = ξ. The intersection of
E with this slice has measure zero, so we can cover it by countably many open boxes Bi in
Rn−1 of total volume less than ϵ. We claim that we can find a < ξ < b such that the boxes
(a, b)×Bi cover those points in E with first coordinate between a and b. If this were false,
then we could find a sequence of points ei = ti × fi in E where ti converge to ξ and fi is
not in the open union of the Bj . This sequence would then have a convergent subsequence
in E, and the limit would be ξ × f for f outside the union of the boxes, and so not in our
slice.



CHAPTER 6. THE THOM TRANSVERSALITY THEOREM 79

Notice that the extended box (a, b) × Bi has volume (b − a)vol(Bi) and the total volume
of the extended boxes is at most (b− a)ϵ.

Since E is compact, its first components form a closed set E1 in a finite interval [A,B]
The set E1 is covered by the open intervals (a, b) obtained in the previous paragraph. By
compactness, a finite number of these intervals cover E1. We can choose A and B and
the intervals so each interval is inside [A,B]. Note that the intervals cover E1 but this set
need not be connected, so they don’t necessarily “join up” to cover [A,B]. This doesn’t
matter.

Begin throwing away intervals until no interval in the cover can be omitted and still cover
E1. Order these intervals by the order of their first elements. Then they are also ordered
by their last elements, for if bi+1 < bi then (ai+1, bi+1) ⊂ (ai, bi) and we can omit the
second element.

The key observation is then that no three intervals contain a point in common. Otherwise,
name the three intervals from left to right, (c1, d1), (c2, d2), (c3, d3) and call their common
point p. Notice that the middle interval is covered by the union of the first and last and
thus redundant. Indeed, c3 < p < d1.

So the total length of the intervals is at most 2(B−A) and the total volume of the resulting
boxes in Rn is at most 2(B − A)ϵ. This can be made arbitrarily small, and thus E has
measure zero. QED.

Induction proof continued: Next let p ∈ Ci−Ci+1. Hence all partial derivatives of f of order
i or smaller vanish, but some derivative of order i + 1 does not vanish. By renumbering
the coordinates on Rm, we can suppose

∂

∂x1

(
∂ifk

∂xj1 . . . ∂xji

)
̸= 0

We argue as before. Let φ : U → Rm by

φ(x1, . . . , xm) =

(
∂ifk

∂xj1 . . . ∂xji
, x2, . . . , xm

)
= (y1, . . . , ym)

Since the Jacobian of this map is not zero at p, this gives new local coordinates near p.
Note that φ maps Ci to 0× Rm−1 ⊂ Rm since at any point q ∈ Ci the first coordinate of
φ vanishes. In the new coordinate system our map is f ◦ φ−1 and is defined on an open
subset W ⊂ Rm; it is difficult this time to determine the formula for f but we do not need
it.

If we intersect Ci with our new coordinate system, φ maps it to 0 × Rm−1 and f ◦ φ−1

on the image of Ci is induced by a map from W ∩ 0 × Rm−1 to Rn. Thus by induction
the image of the critical points of this map has measure zero. But the image of Ci under
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φ maps to critical points of f ◦ φ−1 since Ci is contained in the set of critical points of
f .

Induction proof concluded: The proof of our third claim follows a different path. Suppose Im

is a cube with side length δ inside U. We claim there is a constant c depending only on f and
Im such that whenever a ∈ Ck ∩ Im and a+h ∈ Im, we have ||f(a+h)−f(a)|| ≤ c||h||k+1.
This will be proved using Taylor’s theorem; assume it for a moment.

We will use this inequality to prove that when k is large enough, f(Ck ∩ Im) has measure
zero. Let p be a positive integer. Subdivide Im into pm sub-cubes of side δ

p . Suppose one
of these sub-cubes contains a point a ∈ Ck∩Im and suppose a+h is in this same sub-cube.
Then ||f(a+ h)− f(a)|| ≤ c||h||k+1. The largest possible value for ||h|| is the diameter of
the sub-cube, which is

√
m δ
p because

||(a1, . . . , am)− (b1, . . . , bm)|| =
√∑

(ai − bi)2 ≤

√∑(
δ

p

)2

=
√
m
δ

p

The triangle inequality then shows that the maximum distance between any two points in
our sub-cube is

2c

(√
m
δ

p

)k+1

Therefore, the image of the sub-cube is contained in a cube in Rn with this as side length;
the volume of this cube is [

2c

(√
m
δ

p

)k+1
]n

Notice carefully that this estimate only applies to subcubes containing points a ∈ Ck. The
total number of possible sub-cubes is pm, so f(Ck ∩ Im) can be covered by cubes of total
volume

pm

[
2c

(√
m
δ

p

)k+1
]n

= (2c)n(
√
mδ)n(k+1)pm−n(k+1)

Most of the terms in this expression depend only on the original Im. The subdivision into
sub-cubes is completely determined by the integer p, which can be as large as we wish.
But this expression goes to zero as soon as m− n(k + 1) < 0, i.e., (k + 1) > m

n . It follows
that for all such k, f(Ck ∩ Im) has measure zero.

Since U can be covered by a countable number of cubes Im (with varying side length δ),
f(Ck) has measure zero.

To complete the proof, we need only give the details on the Taylor theorem inequality.
Note that f is vector valued, but it suffices to prove the inequality when f is an ordinary
function because

||f(a+ h)− f(a)|| =
√∑

(fi(a+ h)− fi(a))2 ≤
√
nmax |fi(a+ h)− fi(a)|
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So assume that f is a real-valued function and recall the development of Taylor series with
remainder:

f(a+h)−f(a) =
∫ 1

0

d

dt
[f(a1 + th1, . . . , am + thm)] dt =

∫ 1

0

∑ ∂f

∂xi
(a1+th1, . . . , am+thm)hi dt

= −
∫ 1

0

∑ ∂f

∂xi
(a1 + th1, . . . , am + thm)

d

dt
hi(1− t) dt

Integrate by parts to get

−
∑ ∂f

∂xi
(a1 + th1, . . . , am + thm)hi(1− t)

∣∣∣∣1
0

−
∫ 1

0

∑ ∂2f

∂xi1∂xi2
(a1+th1, . . . , am+thm)hi1hi2

d

dt

(1− t)2

2
dt

=
∑ ∂f

∂xi
(a1, . . . , am) hi −

∫ 1

0

∑ ∂2f

∂xi1∂xi2
(a1 + th1, . . . , am + thm)hi1hi2

d

dt

(1− t)2

2
dt

Continuing, we reach

f(a+ h)− f(a) =
∑ ∂f

∂xi
(a) hi + . . .+

1

k!

∑ ∂kf

∂xi1 ...∂xik
(a) hi1 . . . hik

−
∫ 1

0

∑ ∂k+1f

∂xi1 . . . ∂xik+1

(a1 + th1, . . . , am + thm)hi1 . . . hik+1

d

dt

(1− t)k+1

(k + 1)!
dt

In our case, a ∈ Ck and all those partial derivatives in the series vanish, so we are left with
just the remainder term. All those partials in the integral are continuous on Im and thus
bounded by a constant c1. Each hi is bounded in absolute value by ||h||, so each product
of k + 1 of these terms is bounded by ||h||k+1. The remaining integral is∫ 1

0

d

dt

(1− t)k+1

(k + 1)!
dt = −(1− t)k+1

(k + 1)!

∣∣∣∣1
0

=
1

(k + 1)!

There are mk+1 terms in the sum, and we can thus let c = c1
mk+1

(k+1)! The fraction here is one
of the terms in the convergent series for em, so these terms are bounded with a bound that
depends on m but does not depend on k. Thus c depends only on f and Im. QED.

6.5 Transversality

Definition 12 Let K and L be submanifolds of a manifold M which intersect at a point
p. We say they intersect transversally if Tp(K)+Tp(L) = Tp(M). Note that this sum need
not be direct.

If K and L intersect transversally at each common point, we say the submanifolds are
transverse and write K ⋔ L.
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Remark: The intuition behind this definition is that transverse intersections are generic. If
an intersection is transverse, it will still be transverse after small deformations. But if an
intersection is not transverse, then an arbitrarily small deformation can remove it entirely
or else make it transverse.

Notice that no intersection is transverse if dim(K) + dim(L) < dim(M). That is because
there is room to pull K and L apart and remove the intersection. For instance, if two lines
in R3 meet, one can be raised slightly to avoid the intersection.

One of my sources for this material is an honors undergraduate thesis written by Jonathan
Michael Bloom at Harvard in 2004. He included the following pictures to illustrate transver-
sal and non-transversal intersections. A footnote adds that the illustrations come from
Guillemin and Pollack’s Differential Topology.

22

Figure 3.1: [6, p.30]

Figure 3.2: [6, p.31]

Figure 6.4: Examples One

22

Figure 3.1: [6, p.30]

Figure 3.2: [6, p.31]

Figure 6.5: Examples Two
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6.6 Immersions, Submersions, and Intersections

Definition 13 Let f : M → N be a smooth map. We say f is an immersion if f⋆ :
Tp(M) → Tf(p)(N) is always one-to-one. We say f is a submersion if f⋆ : Tp(M) →
Tf(p)(N) is always onto.

Theorem 26 If f : M → N is an immersion, then dim(M) ≤ dim(N) and we can find
local coordinates on M near any p and local coordinates on N near f(p) such that

f(x1, . . . , xm) = (x1, . . . , xm, 0, . . . 0)

If f f :M → N is a submersion, then dim(M) ≥ dim(N) and we can find local coordinates
on M near any p and local coordinates on N near f(p) such that

f(x1, . . . , xm) = (x1, . . . , xn) for n ≤ m

Proof in the case of an immersion: Pick local coordinates on p ∈ U ⊂M and f(p) ∈ V ⊂ N .
We can make a linear transformation of the coordinates on V so f⋆(Tp(M)) is the subspace
of the tangent space Tf(p)(N) spanned by the first m elementary basis vectors. Consider
the change of coordinates map on U defined by

(x1, . . . , xm)→ (f1(x1, . . . , xm), . . . , fm(x1, . . . , xm))

Note that f has n coordinate functions, but we are only using the first m functions. The
Jacobian of this map is nonzero at p by assumption, so the map defines new coordinates
y1, . . . , ym on U . If we use these new coordinates, the map f has the form

(y1, . . . , ym)→ (y1, . . . , ym, fm+1(y1, . . . , ym), . . . , fn(y1, . . . , ym))

To avoid an abundance of letters, assume this is the original system, so our map f is
locally

(x1, . . . , xm)→ (x1, . . . , xm, fm+1(x1, . . . , xm), . . . , fn(x1, . . . , xm))

This is the expression of f using coordinates on M and our original coordinate system on
N . Now make a change of coordinates on N by mapping

(x1, . . . , xm, . . . xn)→ (x1, . . . , xm, xm+1 − fm+1(x1, . . . , xm), . . . , xn − fn(x1, . . . , xm))

The Jacobian is non-zero at f(p) by assumption, so these are new coordinates, and in these
new coordinates

f(x1, . . . , xm) = (x1, . . . , xm, 0, . . . , 0)

Proof in the case of a submersion: Pick local coordinates near p and call the coordinates xi
on M and yj on N . By making linear coordinate changes in these variables we can assume
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that f⋆ maps ∂
∂xi
∈ Tp(M) to ∂

∂yi
∈ Tf(p)(N) for 1 ≤ i ≤ n. Notice that n ≤ m so the

remaining basis vectors for Tp(M) can map where they like.

Introduce new coordinates on M by

(y1, . . . , ym) = (f1(x1, . . . , xm), . . . , fn(x1, . . . , xm), xn+1, . . . , xm)

The Jacobian of this map at p is non-zero, so these are indeed new coordinates. The
map f is given in these new coordinates by (y1, . . . , yn, yn+1, . . . , yn) → (x1, . . . xm) →
(f1(x), . . . , fn(x)) = (y1, . . . , yn).

Remark: We immediately use this theorem to prove a central point about transversal
intersections:

Theorem 27 Let K and L be transverse submanifolds of M . Suppose the dimensions of
these manifolds are k, l, and m. Then K ∩ L is also a submanifold of M , of dimension
(k + l −m). In particular, if k + l < m the intersection is empty, and if k + l = m the
intersection consists of isolated points.

Proof: It suffices to work locally. Let V be a coordinate neighborhood on L and W be a
coordinate neighborhood on M and let φ : V → W be the injection map which makes L a
submanifold of M . By the above immersion theorem, we can pick local coordinates on L
and M so the inclusion map is

(x1, . . . , xl)→ (x1, . . . , xl, 0, . . . , 0)

Now let p ∈ K ∩ L. Since K ⊂ M is a submanifold, we can find an open neighborhood U
of p in K which maps by the inclusion K ⊂M into the the coordinate neighborhood on M
obtained in the previous paragraph. Let g : U → Rm−l be this map followed by projection
onto the last m − l coordinates. Notice that a point in U belongs to K ∩ L exactly when
this projection maps to 0.

By assumption, K and L meet transversally at p, so Tp(K) + Tp(L) = Tp(M). In coordi-
nates, Tp(L) maps to the subspace generated by ∂

∂x1
, . . . , ∂

∂xl
in Tp(M). So ∂

∂xl+1
, . . . , ∂

∂xn

must be expressible as elements of Tp(K)+Tp(L), and if we follow the inclusion of K → Rm

with the projection Rm → Rm−l on the last m − l coordinates, each of these generators
must be in the image. It follows that g is a submersion.

By the previous theorem, we can find new coordinates (y1, . . . , yk) near p in U and new
coordinates (yl+1, . . . , ym) replacing xl+1, . . . , xm such that the map of the previous para-
graph takes the form

(y1, . . . , yk)→ (yl+1, . . . , ym)

Here m− l ≤ k. By a translation, we can further assume that the point (0, . . . 0) in the old
coordinates maps to (0, . . . , 0) in the new coordinates.
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A point in U belongs to K∩L just in case the original last m− l coordinates were zero, and
thus just in case the new m− l coordinates are zero. So a point (y1, . . . , yk) in U ⊂ K is in
K ∩L just in case it’s first (m− l) coordinates are zero. This leaves k− (m− l) = k+ l−m
coordinates, providing a coordinate neighborhood for p ∈ K ∩ L. QED.

6.7 The Thom Transversality Theorem

We now come to the main theorems of this chapter. We’ll begin with a special case which
contains the germ of all later variants:

Theorem 28 Let K and L be (embedded) submanifolds of Rn. For any ϵ > 0, there is a
vector a ∈ Rn with ||a|| < ϵ such that K + a and L are transverse.

Remark: HereK+a meansK translated by a. So the theorem says that after an arbitrarily
small translation of K, this translation and L will intersect transversally.

We first sketch the proof without details. Imagine that L is fixed, but K is injected into
Rn by a map f . Let A be the open ball in Rn of radius ϵ and let g : K × A→ Rn be the
map g(p, a) = f(p) + a. Here the ball A represents deformations of f , and g is a sort of
”bundle of deformed versions of f”. To emphasize this point of view, define fa : K → Rn

for fixed a ∈ A to be the map K → K × a→ Rn.

Clearly g⋆ : Tp(K × A) → Tp(M) is onto for each p, since fixing the K component and
restricting the map to the second component is locally a diffeomorphism. It follows that
g−1(L) is a submanifold W ⊂ K × A. The dimension of this submanifold is dim K +
dim L.

Consider the map ρ : W → A defined by projecting W ⊂ K × A to A. The space W
consists of all intersection points of K + a and L for all possible small translations a; we
will prove that such an intersection point k + a is not transversal if and only if ρ⋆ is not
onto at that point. So the non-transversal intersection points correspond to singular points
of ρ and the image of such singular points corresponds to translations for which K+a and
L intersect non-transversally. By Sard’s theorem, these points have measure zero in A and
therefore any open subset of A contains translations a for which K + a and L only have
transversal intersection points.
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Example 1: Let K by the parabola y = x2 and L be the line y = 0 in R2. Notice that
these meet non-transversely at the origin.
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Figure 6.6: K and L

The map g : K × A → R2 is given by (t, t2, a1, a2) → (t + a1, t
2 + a2) and the inverse

image of L consists of points where the last coordinate t2 + a2 = 0, so a2 = −t2. Thus
{(t, t2, a1,−t2) is exactly the set of intersection points of K and L for various translations
(a1, a2). Note that no such points occur if a2 > 0, so raising the parabola will make K
and L transverse. On the other hand, if we lower the parabola by t2, then (±t, t2) map to
the two corresponding intersection points, both transverse. We can also translate left and
right by a1, but this leads to the same intersection points (±t, t2) now translated left or
right and then down.

Eample 2: Let K be the cubic y = x3, and L be the line y = 0 in R2.
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Figure 6.7: K and L

Then g = (t, t3, a1, a2) → (t + a1.t
3 + a2). so W = {(t.t3, a1,−t3)}. This time there are
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intersection points when we raise or lower K. If we lower by t3, there is one intersection
point (t, t3). We can also move left or right, but this remains the only intersection point
after left or right translation and moving up or down.

Example 3: Let K be the cubic y = x3 − x, and L be the line y = 0 in R2.

-2 -1 1 2
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Figure 6.8: K and L

Now g : (t, t3− t, a1, a2)→ (t+ a1, t
3− t+ a2) and W = {(t, t3− t, a1,−t3 + t)}. This time

the intersection points are given by a2 = t3 − t. So if we raise or lower the curve K by a2,
we must solve for t to find intersection points; there may be one, or two, or three. These
intersection points are non-transversal exactly at the local maximum and minimum of K,
and thus when 3t2 − 1 = 0 or t = ± 1√

3
.

The key step of the argument consists in showing that whenever a ∈ A is a regular value
of ρ, Fa is transversal to L. By Sard’s theorem, there is a set of measure zero in A such
that every a ∈ A not in this set is a regular value. In particular, each open subset of A
contains regular values. QED.

There are many results here that need checking and we’ll do that shortly. But first a
picture which explains what is going on. Suppose that K is the cubic y = x3 in the plane,
and L is the horizontal x-axis. These submanifolds meet non-transversally at the origin.
The let g : K ×A→ R2 sends (t, a, b)→ (t, t3) + (a, b) = (t+ a, t3 + b). Then W = g−1(L)
is the set of all (t, a, b) with t3 + b = 0, and thus b = −t3. Notice that we must calculate
the regular values of ρ to determine whether or not the intersections are transverse.

Remark: We are now ready to fill in the details of the argument. However, we are going
to generalize the theorem before doing so, since the more general theorem has exactly the
same proof and since it leads to important results in the last section of this chapter.

Previously, we had submanifolds K and L of M with L fixed. We varied K by varying the
one-to-one immersion f : K → M . In the following generalization, we concentrate on the
map and drop the condition that it be an immersion.

Definition 14 Suppose K is a k dimensional manifold and f : K →M is a smooth map.
Suppose L ⊂M is an embedded l dimensional submanifold. We say the map f is transverse
to L is for each p ∈ K, f⋆(Tp(K)) + Tp(L) = Tp(M).
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Remark: Previously whenK was immersed inM , the first term of this last requirement was
replaced by Tp(K), where f was implicit and an immersion so f⋆ was one-to-one. In this
definition, f⋆ might not be one-to-one, so f⋆(Tp(K)) does not necessarily have dimension
dim(K).

Theorem 29 Let L be an (embedded) submanifold of a manifold M . Let K and A be
other smooth manifolds, and suppose g : K × A → M is a smooth map. Suppose g⋆ is
always onto T (M) . For each fixed a ∈ A, define ga : K → M to be g(k, a). Then ga is
transversal to L except on a set of measure zero of A.

Proof: Let W = g−1(L). We claim W is a submanifold of K × A. Indeed since g is a
submersion, we can find local coordinates on K ×A and M such that the map g is

(x1, . . . , xs)→ (x1, . . . , xm)

where s ≥ m. Then whether or not a point in K × A maps to a point of L depends
only on the first m coordinates of that point. By the immersion theorem, we can find new
coordinates (y1, . . . , ym)→ (x1, . . . , xm) so that L intersects this coordinate system exactly
in (y1, . . . , yl, 0, . . . , 0). It follows that W will be all (y1, . . . , yl, 0, . . . , 0, xm+1, . . . , xs) and
thus have dimension dim(K) + dim(A)− (m− l) = k + l + dim(A)−m.

Let ρ :W → A be the mapW ⊂ K×A→ A where the last piece is just projection onto A.
For each fixed a ∈ A, let ga : K → M be the map K → K × A→ M where the first map
sends k to k × a. We claim that if a is a regular value of ρ, then ga is transversal to L. If
so, we are done, because by Sard’s theorem the set of non-regular values of ρ has measure
zero in A.

Therefore, suppose a ∈ A is a regular value and p = k × a ∈ W maps to this value. Let
v ∈ Tp(K ×A). We can write v = vK + vA where vK is tangent to K and vA is tangent to
A. Since a is a regular value of ρ, there is a vector w tangent toW at a and mapping to vA.
Write w = wK+vA. Then v = w+(vK−wK) and so Tp(K×A) = Tp(W)+Tp(K×a).

But the first paragraph of the proof shows (using coordinates, no less!) that Tp(L) +
g⋆(Tp(K ×A)) = Tp(M). By the result in the previous paragraph,

Tp(L) + g⋆(Tp(W)) + g⋆(Tp(K × a)) = T(M)

The second term on the left is inside the first term, and the third term is g⋆a(Tp(K)). So
we get the equation of transversality for ga at k:

Tp(L) + g⋆a(Tp(K)) = Tp(M)

QED.
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6.8 Transversal Homotopy Theorem

Theorem 30 Let K and L be embedded submanifolds of a compact manifold M . Let
f : K → M be the inclusion map. Then f is homotopic to a map which is transversal to
L and still an embedding of K into M . The transversal K can be selected arbitrarily close
to the original K.

Proof: Since M is compact, an easy argument shows that M can be embedded in Rn.
Consider the normal vector bundle E → M . Each normal vector is a vector in Rn and E
consists of pairs (p, n) where p ∈ M and n is a vector in Rn orthogonal to Tp(M). Define
a map f : E → Rn by f(p, n) = p+ n.

Clearly f⋆ : Tp(E) → Tp(R
n) is an isomorphism on the zero section of E. By the inverse

function theorem, locally near each p ∈M it is a diffeomorphism to an open neighborhood
of Rn. In particular, it is a diffeomorphism on an open subset of M when restricted to
normal vectors of length less than ϵ. By compactness of M , we can cover M by a finite
number of such open sets and find a uniform ϵ which works for each of these open sets. In
this way, a “tube” around the zero vectors consisting of all (p, n) with p ∈ M , n normal
to M at p, and ||n|| < ϵ can be constructed, and this tube maps to a similar tube Nϵ that
is an open set in Rn containing M . The map is a local diffeomorphism which is onto but
might conceivably not be one-to-one. It is possible that some point can be reached from
both (q, v) and (r, w) where q and r are in different neighborhoods in M .

We next claim that by shrinking ϵ, we can avoid this possibility. If not, then we can find
a sequence of ϵn converging to zero, and (qn, vn) and (rn, wn) with qn ̸= rn and ||vn|| < ϵn
and ||wn|| < ϵn and qn + vn = rn + wn. By selecting subsequences, we can assume that
qn → q, vn → 0, rn → r, wn → 0. Recall that M is covered by a finite number of open sets
where our map is a diffeomorphism. The point q is in one of these sets, and so eventually
all qn are in the set. Then r cannot belong to the set, since otherwise rn is eventually in
the set, but our map is a diffeomorphism on points with base in the same open set. So
q ̸= r. But qn + vn → q and rn + wn → r and qn + vn = rn + wn, a contradiction.

Consequently, we have a diffeomorphism from the tube consisting of points in the normal
bundle with normal vector of length less than ϵ and the image tube in Rn.

One warning is in order, though. The normal bundle need not be trivial, so this tube is not
necessarily diffeomorphic to M × B where B is the standard open ball. In the remaining
parts of the proof, notice how we carefully avoid making that assumption!

Note that there is a standard submersion π : tube in E →M and corresponding submersion
we also call π : Nϵ →M .

Let B be the open ball of radius ϵ in Rn and define a map g : K × B → M by g(k, b) =
π(k + b). Notice that b is an arbitrary vector in Rn, not necessarily normal to M . We
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claim that the point k + b will be inside Nϵ, and thus the map π will be defined. Indeed,
since b has length less than ϵ, the point k + b has distance in Rn less than ϵ from K. But
Nϵ contains all such points, because if p is a point with distance less than ϵ from K, then
using compactness of K we can find a point on k closest to p, and then by calculus the line
from k to p is normal to K, so p is in Nϵ.

Clearly π is a submersion, since the restriction to B maps to the full Rn and thus onto
Tp(M) by the submersion π. So we can apply the previous transversality theorem, and
deduce that g(k, a) is a submanifold transverse to L for a ∈ B not in a set of measure
zero. This map is homotopic to the original identity map via the homotopy π(k + ta) for
0 ≤ t ≤ 1. We have to prove one other item, namely that g(k, a) is an immersion for fixed
a if a is sufficiently small.

Note that g(k, 0) is an immersion by assumption. Choose local coordinates (x1, . . . , xk) on

K and consider g⋆
(

∂
∂x1

)
, . . . , g⋆

(
∂
∂xk

)
at (k, a) as a varies. By continuity, these remain

linearly independent near (k, 0), so we can choose ϵ for the tubular neighborhood near k
so they are linearly independent within the tube. By compactness of K, we can choose
a common ϵ so these are linearly independent within the entire tube, so ga is always an
immersion. Since K is compact, K will remain an embedded submanifold provided only
that ga is one-to-one for sufficiently small a. If this is not true, then we can find a sequence
an converging to zero, and sequences en, fn in K with en ̸= fn and gan(en) = gan(fn). By
compactness of K, we can assume en converges to e ∈ K and fn converges to f in K. Then
continuity gives g0(e) = g0(f). By assumption, g0 is one-to-one, so e = f .

Note that en and fn are in K near e = f , and thus lie in a common coordinate system
(x1, . . . , xk). Since en ̸= fn, there is an i such that (en)i ̸= (fn)i and

|(en)j − (fn)j | ≤ |(en)i − (fn)i|

Because i varies from 1 to k, there is at least one i which satisfies this inequality infinitely
often. Fix this i, throw away other terms in the sequences, and renumber the rest; then
we can assume that the inequality is always true.

By the mean-value theorem,

0 =
gian(en)− g

i
an(fn)

(en)i − (fn)i
=
∑
j

(
∂gian
∂xj

)
(en)j − (fn)j
(en)i − (fn)I

Here the partial derivatives are evaluated at interior points very close to e = f . But at
e = f we have

∂f i

∂xj
= δij

Therefore in the limit as n goes to infinity, the expression on the right goes to 1, a contra-
diction. QED.
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Remark: We are going to use this result in our proof of the Lefshetz Fixed Point theorem.
In that case we have a compact oriented manifold M and two graphs in M × M : the
graph of a map f : M → M and the diagonal graph of the map id : M → M . Both are
submanifolds of dimension m in M ×M , which has dimension 2m.

The graph of f is given by an embedding g : M → M ×M by g(x) = x × f(x). By the
previous theorem, we can find an arbitrarily small homotopy h(u) from g to g1 such that
g1 is transversal to the diagonal. But this homotopy might change the first component of
g. If so, we have deformed the submanifold of M ×M given by our original graph, but
this isn’t the same thing as deforming our original map itself and then considering the
corresponding deformed submanifold.

We now claim that with a little care we can do both things at once. In the previous proof
we studied an inclusion map f : K → M and introduced g : K × B → M . The special
case of interest for the Lefshetz theorem starts with replacing K byM and replacingM by
M ×M , and replacing f by i(p) = p× f(p) and replacing g by g :M ×B →M ×M . This
time we will embed M ×M in Rn and consider a tube in the normal bundle E to M ×M
inside Rn×Rn. Then g(k, b) = π(k+ b) will be appropriately replaced. Our previous proof
then used the fact the every image is a regular point except for a set of b’s of measure zero.
We restricted attention to sufficiently small b’s making other desired things true; but we
can still find a b not in the bad set of measure zero.

In our present case, we do one more thing. We consider the map M → M ×M → M by
projecting on the first component. We claim that if we restrict to sufficiently small b’s,
then all such maps are diffeomorphisms. If so, we can compose our maps with the inverse
of this map to obtain new maps M → M ×M in which the first component of the new
map is the identity, so we are truly deforming functions from M to M and the graphs are
just following along.

However, the argument that for all sufficiently small b these maps are diffeomorphisms is
exactly the same as our earlier argument that g(k, a) is an immersion for fixed a if a is
small enough, so we will not repeat that argument again.

Remark: What condition on f :M →M makes the graph of f transversal to the diagonal
in M ×M? Suppose p is a fixed point of f and thus an intersection point of the graph of
f with the diagonal. A typical tangent vector to the graph has the form X × f⋆(X) where
X is tangent to M . A typical tangent vector to the diagonal has the form X × X. We
must show that the sum of the two resulting subspaces of Tp×p(M ×M) give the entire
subspace. Since both subspaces have dimension m and the full subspace has dimension 2m,
a necessary and sufficient condition for transversality in M ×M is that the two subspaces
intersect only at the zero vector. In other words, whenever X ̸= 0, X ̸= f⋆(X). But this
condition just says that 1 is not an eigenvalue of f⋆ and thus that det(I − f⋆) ̸= 0.



Chapter 7

Cohomology and Intersections

7.1 Introduction

To finish the proof of the Lefshetz Fixed Point Theorem, it suffices to prove that when-
ever M is compact and oriented, and K and L are embedded submanifolds which meet
transversally, then the cohomology classes dual to K,L, and K ∩ L, are related by

dK∩L = dK ∧ dL

To prove this, we need to understand dK at a deeper level. In this section, we’ll try
some simple examples. In the examples which follow, suppose that M is a 2-dimensional
manifold.

Consider first the case when K is a single point p. We inject this point into the manifold
by p → M and the pullback of this map on 0-forms sends f to f(p). This represents
the element in Hom(H0(M), R) induced by the point. The dual element in H2(M) is
an element dK ∈ H2(M) represented by a 2-form. Moreover, H0(M) to R is given by
ξ →

∫ ∫
M ξ ∧ dK . Translating

f(0) =

∫ ∫
M
f ∧ dK =

∫ ∫
M
f(m)dK(m) dm

This statement should hold provided f represents an element of H0(M) and thus is a
locally constant function. But we might hope that it holds more generally, for all f . A
little thought shows that it holds this generally if and only if dK(m) = δ(m)dx∧dy and δ is
the Dirac delta function with singularity at p. This is illuminating since the delta function
is geometrically related to K, the point p.

92
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If M is connected and f is locally constant, then actually we can choose for dK any two-
form with integral equal to one. All such choices are equivalent, since the integral gives
an isomorphism between H2(M) and R. So on the cohomological level, the connection
between K and dK is very tenuous.

Let’s look at these same ideas one dimension higher. Suppose K is locally a line in R2.
The global picture here might be a closed curve on a torus or surface of higher genus. For
concreteness, suppose M is a torus and work on the universal cover, i.e., the plane with
standard Z×Z lattice. We’ll imagine that K is the straight line along the x-axis from (0, 0)
to (1, 0). This submanifold induces a map H1(M) → R which is locally given by

∫
R ω.

Here ω is a 1-form on R2. so ω = ωxdx+ ωydy. Thus our map is
∫ 1
0 ωx(t, 0)dt+ 0.

The corresponding dual element should be represented by a second 1-form on R2 with the
property that ∫

R
ω =

∫ ∫
R2

ω ∧ dL

Written more concretely, this formula says∫ 1

0
ωx(t, 0) dt =

∫ 1

0

∫ 1

0
(ωx(t, u)dK,y(t, u)− ωy(t, u)dK,x(t, u)) dtdu

This will be true if
dK,y(t, u) = δ(u) and dK,x = 0

So on the form level, dK should be a delta function (or form) associated with the line K.
More generally, dL could be a one form which is zero except in a small tubular neighborhood
of the line L.

I used to own a book by deRham in which he extended the deRham cohomology to currents,
which he defined as distribution-valued forms. Someone borrowed that book and didn’t
return it. Conceivably, these currents could be used to give very explicit formulas for
dK , dL, and dK∩L, but I don’t know if deRham had that application in mind.

We do not have distributions, but we will prove an analogous result: the element dK can
be represented by an appropriate form which is non-zero in an arbitrarily small tubular
neighborhood of K. This will be done in two stages. We will prove an infinitesimal form
of the theorem, replacing the tubular neighborhood by a neighborhood of the zero section
in the normal bundle of K. The tubular result will quickly follow.

7.2 Tubular Neighborhoods

Suppose K ⊂ M is a submanifold of a compact manifold M. Assign a Riemannian metric
to M . Let N → K be the normal bundle, so if p ∈ K then Np is the set of tangent vectors
X to M at p such that X is orthogonal to Tp(K) ⊂ Tp(M).
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Define a map T : N → M , called the tubular map, as follows: Suppose (p,X) ∈ N , so
p ∈ K and X is a normal vector to K at p. Let γ(t) be the unique geodesic on M such
that γ(0) = p and γ′(0) = X. Define T (p,X) = γ(1). This definition makes sense because
geodesics on a compact M exist for all t.

There is another way to define this map that is slightly more intuitive. Recall that all
geodesics move at constant speed. If γ(t) is a geodesic and s is a fixed real number, then
γ(st) is also a geodesic which moves s times as fast as γ(t). It follows that we can define
T (p,X) by finding the unique geodesic γ(t) through p such that γ(0) = p and γ′(0) = X

||X|| .

This geodesic moves in the direction of X at constant speed 1. Define T (p,X) = γ(||X||).
In other words, follow a geodesic with constant speed 1 in the direction of X for a distance
equal the length of X.

Theorem 31 There is a positive constant c such that if ϵ < c and we restrict the tubular
map to vectors of length less than ϵ, it is a diffeomorphism from the open set of normal
vectors of length less than ϵ to an open neighborhood of K ⊂M .

Remark: Such an open neighborhood of K is called a tubular neighborhood of K. Notice
that it is locally diffeomorphic to K × B(ϵ) where B(ϵ) is the open ball of radius ϵ in
RdimM−dimK .

Proof: We first prove this theorem locally. If p ∈ K, we can find local coordinates
(x1, . . . , xm) near p onM such that K is the set of such points where xk+1 = 0, . . . , xm = 0.
Choose an orthonormal basis of normal vectors N1(x1, . . . , xk), . . . , N

m−k(x1, . . . , xk) on
K near p. If (p,X) is a point in the normal bundle, we can describe p by coordinates
x1, . . . , xk and we can describe X by numbers t1, . . . , tm−k such that X =

∑
tiN

i. Notice
that each N i is a vector tangent to M and thus in coordinates equals

N i =

m∑
j=1

N i
j

∂

∂xj

Since the normal vectors are only defined on K, the N i
j are functions of x1, . . . , xk.

We want to find a geodesic γ(t) such that γ(0) = p and γ′(0) = X. In coordinates, this
geodesic is given by γ1(t), . . . , γm(t) such that

d2γi(t)

dt2
+
∑

Γiuv(γ(t))
dγu
dt

dγv
dt

= 0

The condition γ(0) = p says that γi(0) = xi for 1 ≤ i ≤ k and γi(0) = 0 for (k+1) ≤ i ≤ m.
The condition dγ

dt (0) = X says that in coordinates X = (t1, . . . , tm−k) and

dγi
dt

(0) =
m−k∑
j=1

tjN
j
i (x1, . . . , xk)
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The existence theorem for systems of ordinary differential equations says that these equa-
tions have a solution defined for |t| < δ. These solutions depend on the boundary con-
ditions, so γi is a function of t, x1, . . . , xk, t1, . . . , tm−k. A sharper form of the existence
theorem says that we can find δ > 0, an open neighborhood V of p, and τ > 0 such that
such solutions are defined for |t| < δ, (x1, . . . , xk) ∈ V, and

∑
t2j < τ . Finally it says that

these functions are C∞ in t, xi, tj .

Recall that if γ(t) is a geodesic with γ′(0) = X, and if s is a constant, then γ(st) is also a
geodesic with γ′(0) = sX. In other words, geodesics are traced with constant speed, but if
we change this speed, we still have a geodesic.

It follows that γ( δt2 ) is also a geodesic which starts at (x1, . . . , xk) when t = 0, but is defined

for | δt2 | < δ, and thus for all −2 < t < 2. The tangent vector of this solution at t = 0 is δ
2

times the original tangent vector, and so δ
2 times a vector of norm at most τ . So its norm

is at most δτ
2 . So if we shrink the lengths of the initial normal vectors, we can define the

geodesic at least until time t. It follows that γ(1)(x1, . . . , xk, t1, . . . , tm−k) is defined and
C∞ for (x1, . . . , xk) ∈ V and for (t1, . . . , tm−k) of sufficiently small norm. This is exactly
the tubular map we originally defined.

We now claim this map is a diffeomorphism if we shrink V and the norm of the normal
vector determined by (t1, . . . , tm−k) sufficiently. This will follow from the inverse function
theorem if we can prove that the matrix of partial derivatives with respect to xi and tj has
non-zero determinate at (p, 0).

Since what we are about to do can be confusing, let’s summarize it very carefully. We start
with an initial point (p, 0). If x̂i denotes some fixed value of xi, this initial point is

(x̂1, . . . , x̂k, 0, . . . , 0)

We fix all of these initial coordinates except one, which we allow to vary. For instance,
perhaps in the initial condition we vary xi around x̂i. Or we might let tj vary around
0. We then compute the geodesic with this initial condition and find its value at t = 1.
This value will be new coordinates (x̃1, . . . , x̃k, ỹ1, . . . , ỹm−k) which all depend only on the
varying initial coordinate. We then take the partials of these functions with respect to that
initial coordinate.

If the varying coordinate is xi, then the calculation is very easy. Since N is fixed at 0, the
geodesic is just a constant, and so it ends where it started at (x̂1, . . . , xi, . . . x̂k, 0, . . . , 0, ).
As predicted, all of these are functions of xi, but actually all these functions except one do
not depend on xi. So all the partials with respect to xi are zero except one.

Long ago we called our tubular map T . We have just shown that ∂T j

∂xi
= δij where j ranges

over all m possibilities, but i only ranges over the first k possibilities.
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The remaining calculation is slightly trickier. This time we let yj vary around 0, and form
the geodesic starting at (x̂1, . . . , x̂k, 0, . . . , tj , . . . , 0). At time t = 1, this geodesic ends at
(x̃1, . . . , x̃k, x̃k+1, . . . , x̃m−k) and all of these coordinates could depend on tj . We again
want to compute partials.

First, let’s sketch the idea. The variable yj will be very close to zero, and therefore the
geodesic will move very slowly. So we should be able to approximate it by its linear
approximation. We have

dγi
dt

(0) =

m−k∑
s=1

tsN
s
i (x1, . . . , xk) = tjN

j
i (x1, . . . , xk)

and so
γi(t) ∼ γi(0) + t tjN

j
i (x1, . . . , xk)

and
T i = γi(1) ∼ γi(0) + tjN

j
i (x1, . . . , xk)

The partial derivative of this expression with respect to tj is N j
i (x̂1, . . . , x̂k). Here i goes

from 1 to m, but j only goes from 1 to m−k. The vectors Ni are normal to K and linearly
independent; the k vectors (1, 0, . . . , 0), (0, 1, . . . , ), . . . pointing in the first k directions form
a basis for the tangent space to K, so these vectors together with N1, . . . , Nm−k form a
basis for the full tangent space to M . Hence the determinant of the coordinates of these
vectors is non-zero, and the inverse function theorem applies.

We need only make the above calculation rigorous. This involves an easy trick. Fix a normal
vector N and let γN (t) be the unique geodesic such that γN (0) = p and γ′N (0) = N . Then
T (p,N) = γN (1). Next consider the curve τ(t) = γN (tjt), where for the moment tj is just a
fixed number. Then τ(0) = p and τ ′(0) = tjγ

′
N (0) = tjN . So T (p, tjN) = τ(1) = γN (tj). It

follows that T (p, tjN
j) = γNj (tj) and the partial derivative of these equal expressions with

respect to tj at (p, 0) is N
j . This is exactly the result our previous calculation gave.

7.3 Completion of the Proof of the Tubular Neighborhood
Theorem

In the previous section, we proved that for any y ∈ K we can find a neighborhood V of p in
K and an ϵ > 0 such that the tubular map restricted to vectors in N of length less than ϵ is
a diffeomorphism onto an open set in M . The resulting V cover K, which is compact since
M is compact. So we can find a finite subcover, and select the minimum of the various ϵ
attached to each set of the subcover. In the end we get a map T from all normal vectors
to K of length less than ϵ, which maps this set in a C∞ manner to an open neighborhood
of K in M . To finish the tubular neighborhood theorem, we need only show that this map
is one-to-one if ϵ is small enough.
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If the result we want to prove is false, then we can find sequences (pn, An) and (qn, Bn)
with pn ∈ K, qn ∈ K, pn ̸= qn, and An and Bn vectors normal to K at pn and qn, ||An|| → 0
and ||Bn|| → 0, and T (pn, An) = T (qn, Bn). Recall that M has a Riemannian metric, so
we can compute the length of any tangent vector, and so of vectors normal to K.

Using the compactness of K, we can find a convergent subsequence of an. This yields
a subsequence of the bn and we can find a convergent subsequence of this sequence. So
without loss of generality, we can assume that an → a0 and bn → b0. (There are many
ways to get these sequences. For example, cover M by a finite number of coordinates
corresponding to balls in Rk of radius 2, such that the subsets corresponding to balls of
radius 1 also cover. Then infinitely many pn must be in an open set corresponding to one
of the balls of radius 1, and so a subsequence converges to a point in the closure of this
ball, and thus strictly inside the ball of radius 2.)

By continuity of T , we have T (pn, An) → T (p0, 0) = p0 and T (qn, Bn) → T (q0, 0) = q0.
Since T (pn, An) = T (qn, Bn), p0 = q0. But T is one-to-one on an open neighborhood of
p0, provided we restrict to normal vectors of norm below a fixed ϵ. This contradicts the
assumption that pn ̸= qn and T (pn, An) = T (qn, Bn). QED.

7.4 Vector Bundles

Recall that a vector bundle of dimension n over a manifold M is an assignment to each
p ∈ M of an n-dimensional vector space Ep, together with a topology and C∞ structure
on the union E of these Ep. This structure is required to be locally-trivial in the following
sense: each p ∈ M has an open neighborhood U with local coordinates x1, . . . , xm such
that over this open set we can find vector fields E1, . . . , En, each a C∞ map M → E with
Ei(q) ∈ Eq for each q ∈ U , so that the Ei(q) form a basis of Eq for each q ∈ U .

Let π : E → M be the obvious map. Once we have a locally trivial structure over U , we
can assign coordinates to π−1U of the form x1, . . . , xm, t1, . . . , tn. The first m coordinates
determine a point p ∈ M and the last n coordinates determine a vector

∑
tiEi(p) in

Ep.

In that case, the change of coordinate map has a special form. Suppose y1, . . . , ym, s1, . . . , sn
are new coordinates over V obtained by choosing new basis fields F1, . . . , Fn. On U ∩V we
can write yj as functions of the xi; by abuse of notation, we write yj(x1, . . . , xm). But then∑
tiEi and

∑
sjFj are related by a matrix ρji; when the column vector formed by the ti

is multiplied by this matrix, we obtain the column vector formed by the sj . Note that the
matrix elements depend on the base point, so each ρji is a function of x1, . . . , xm.

In a previous section we used the normal bundle to define a tubular neighborhood. The
definition of the tubular map did not require selecting a local basis for this bundle, although
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such a basis was implicit in our proof that the map is a local diffeomorphism near the zero
section.

But the change of coordinate formula for the normal bundle becomes more important in the
following sections, so it is useful to sketch how it could be computed. Suppose K ⊂ M is
a submanifold of a manifold M . The normal bundle is a bundle over K, where each vector
space Np consists of tangent vectors to p in M which are perpendicular to the tangent
space of K at p.

To compute this in local coordinates, we can choose coordinates x1, . . . , xm on M near p
so that K is the set where xk+1 = 0, . . . , xm = 0. Then the ∂

∂xi
form a basis of Tp(M)

and the first k of these form a basis for Tp(K). Apply the Gram-Schmidt process to these
m vectors. The first k vectors from the process are irrelevant, but the remaining vectors
N1, . . . , Nm−k form an orthonormal basis for the set Np of normal vectors near p. So we
can introduce coordinates on the normal bundle as x1, . . . , xk, t1, . . . , tm−k where the first
k coordinates determine p ∈ K and the remaining coordinates determine a normal vector∑
tiNi at p.

If we had two coordinate systems of this type, we could compute the matrix ρji(x1, . . . , xk)
which maps the vector with coordinates t1, . . . , tt−k in the first coordinate system to the
vector s1, . . . , sm−k in the new coordinate system. Details for the computation of this ρ
are not important for us, and indeed ρ itself will be hidden away in our proofs. But if you
completely forget about it, then our arguments may seem unreasonably abstract.

7.5 Vector Bundles and the Thom Space

Suppose E →M is a vector bundle with vector spaces of dimension n. In his thesis, Thom
introduced an associated space now called the Thom space, T (E). First replace each fibre
Ep by its one-point compactification. Another way to think of this is that we replace each
fibre Ep ∼= Rn with the corresponding sphere Sn. Each of the new fibers has a special
point, the point at infinity. The Thom space is formed by identifying all of these special
points. Thus it is a space with base point.

If E is oriented, Thom proved that there is an isomorphism

H⋆(M) ∼= H̃⋆+n(T (E))

Notice that we have reduced cohomology on the right, so the zeroth cohomology group
there is cancelled out. The isomorphism is given by forming a nth cohomology class Φ on
T (E) defined by the property that it induces the fundamental class on each fibre Sn, and
then sending σ → σ ∧ Φ.

Consider the easiest case of this construction whenM be the circle and E is the trivial line
bundle over M . If we replace each fibre R in E by the sphere S1, we get a torus S1 × S1.
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Below is a picture of this torus on the left. Imagine that the points at infinity form the inner
circle on this torus; identifying these points gives the Thom space T (E) on the right. The
first cohomology group of a torus has two generators, illustrated on the left below. Only
one of them survives and generates the first cohomology group of T (E), as illustrated on
the right. Clearly, then, the cohomology of this Thom space is H0 = R,H1 = R,H2 = R
and its reduced cohomology is H0 = 0, H1 = R,H2 = R. These are the cohomology groups
of a circle, shifted up by one.

Figure 7.1: Thom Space

Remark: Thom applied his construction to the study of cobordism groups in the 1950’s,
obtaining spectacular results you can read about elsewhere.

We are going to apply the Thom isomorphism to the normal bundle of a submanifold
K ⊂ M . This bundle has dimension m − k and the element Φ belongs to Hm−k of the
Thom space. Rather than constructing this Thom space, we will construct an analog of
its cohomology groups formed by differential forms on N which are non-zero only near the
zero section and vanish at infinity. In this cohomology group we will construct Φ.

However, the tubular neighborhood theorem allows us to map a neighborhood of the zero
section in the normal bundle to a tubular neighborhood of K, and this map carries Φ to
an m − k form on M with support in this tubular neighborhood. We will prove that this
element represents the element dK dual to K. Thus we have found a representative which
lives in a small tube about K.

Notice that dK ∧ dL then lives is a small tube about K ∩ L, so we will be close to proving
our main result.

In some sense, the description of Φ in N is an infinitesimal form of the dual class, which
is then realized by the tubular map. In the final step of the argument, we will prove that
dK ∧ dL = dK∩L infinitesimally, and show that this implies our desired result.
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7.6 Compact Vertical Cohomology

Assume that E → M is a C∞ vector bundle of dimension N . We will soon require that
it be oriented, but for now any bundle will do. We do not initially assume that M is
compact because we will prove the Thom isomorphism theorem using the Mayer-Vietoris
sequence.

We form deRham cohomology groups by restricting to forms on E which have compact
support on each fibre. To be specific, if ω is such a form, we require that each point p has
an open neighborhood U on which E is isomorphic to U ×Rk and ω vanishes on (q, v) for
||v|| > B. The bound depends on U ; we do not assume that there is a uniform B. Denote
the resulting differential forms by λkcv(E) and the corresponding cohomology groups by
Hk
cv(E).

The Thom construction is approximated by these new cohomology groups. Since the forms
defining the groups have compact support, they vanish near the additional point at infinity
which Thom added to the fibers. So in some sense, these forms define reduced cohomology
groups on T (E).

We are going to define a map from Λkcv(E) → Λk−N (M) by integration along the fibre.
Start with a trivial bundle E =M ×RN , and denote the coordinates on M by x1, . . . , xn
and the coordinates on RN by t1, . . . , tN . Each form on E contains terms dxi and dtj and
we will write the wedge products so the dxi come before the dtj . Send all terms to zero
except terms that involve all dtj . Map wi1...ikdxi1 ∧ . . . ∧ dxik ∧ dt1 ∧ . . . ∧ dtn to(∫

. . .

∫
wi1...ik(x1, . . . , xn, t1, . . . , tN )dt1 . . . dtN

)
dxi1 ∧ . . . ∧ dxik

This map is independent of the coordinate path onM , for if y1, . . . , yn is a second coordinate
system, dyk =

∑ ∂yk
∂xi

dxi and

wi1...ik(y1, . . . , yn, t1, . . . , tN )dyi1 ∧ . . . ∧ dyik =∑
wi1...ik(y1(x1, . . . , xn), . . . , yn(x1, . . . , xn), t1, . . . , tN )

∂yik
∂xj1

. . .
∂yik
∂xjk

holds for each t1, . . . , tN , so the integrals over t1, . . . , tn are equal.

Next suppose the vector bundle is not trivial. Then we define our map by choosing a
partition of unity subordinate to a covering by open sets U where E is trivial over U . This
definition is easily shown to be independent of the choice of partition of unity, once we show
that the integral is independent of coordinate changes in the fibers. So suppose t1, . . . , tN
and u1, . . . , uN are coordinates for the fibers. Then ti =

∑
aij(x1, . . . , xn)uj . Note that

this coordinate change map does not depend on the ti. We have

wi1...ik(x1, . . . , xn, t1, . . . , tN )dxi1 ∧ . . . ∧ dxik ∧ dt1 ∧ . . . ∧ dtN =
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∑
wi1...ik

(
x1, . . . , xn,

∑
a1j1uj1 , . . . ,

∑
aNjNujN

)
dxi1 ∧ . . .∧dxik det(aij)du1∧ . . .∧dun

and the integrals with respect to the final variables will be equal provided det(aij) is
positive. So we need to assume the vector bundle is oriented in the general case.

Lemma 12 Integration over the fibres commutes with the d operator, and thus induces a
map in cohomology.

Proof: We must prove that ∫
dw = d

∫
w

First suppose that w does not contain all of dt1 ∧ . . . ∧ dtN . Then the right side is zero;
the left side is also zero unless each term is missing at most one dti. In that case dw is
a sum of terms obtained by differentiation, but the only terms giving a non-zero integral
have the form

±
∫
. . .

∫
∂w

∂ti
dt1 ∧ . . . ∧ dtN

These terms also give zero because we can integrate first with respect to ti, and
∫∞
−∞

∂w
∂ti

dti =
0 because w vanishes for very negative and very positive values of ti.

In all remaining cases, w contains dt1 ∧ . . . ∧ dtN . Then

d

∫
w =

∑∫
. . .

∫ (
∂w

∂xi
dxi ∧ dxi1 ∧ . . . ∧ dxik

)
dt1 . . . dtN

and
∫
dw is the same expression.

Remark: It immediately follows that integration over fibers induces a map we will call the
Thom map

T : Hk
cp(E)→ Hk−n(M)

Here n is the dimension of the oriented vector bundle E. If k < n, this map sends everything
to zero.

Remark: At the end of the next section, we need one more fact, which we prove now:

Lemma 13 Let τ be an arbitrary form on M . By slight abuse of notation, let τ also
indicate the form on E induced by the projection π : E → M . If ω is a form on E with
compact support along the fibres,

T (τ ∧ ω) = τ ∧ T (ω)

Proof: In coordinates, the form τ depends only on x1, . . . , xm and only involves the basis
vectors dx1, . . . , dxn. So τ ∧ ω is a sum of terms of the form(
τ(x1, . . . , xm)dxj1 ∧ . . .∧dxjs

)
∧
(
ω(x1, . . . , xm, t1, . . . , tn)dxj1 ∧ . . .∧dxjt ∧dt1∧ . . .∧dtn

)
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When we apply T , we integrate with respect to t1, . . . , tn and omit dt1∧. . .∧dtn, and clearly
τ does not affect this calculation, so we can wedge before or after integrating. QED.

7.7 The Thom Isomorphism Theorem

Theorem 32 If E is an oriented vector bundle of dimension n over a compact manifold
M , then the Thom map is an isomorphism for all k:

Ekcv(E)→ Hk−n(M)

Proof: Suppose E is an oriented bundle over a compactM . We earlier proved thatM has a
good cover. Since the open sets of this cover are diffeomorphic to Rm, they are contractible
and so E is a trivial bundle over these open sets. But we can avoid using this theorem from
vector bundle theory because our construction of an open cover could clearly be modified
to give a good cover by open sets over which E is trivial.

We will prove the theorem by induction over the number of open sets in the good cover.
But then the intermediate M in the argument will not be compact. So we prove the
theorem more generally for M which possess a finite good cover by open sets over which
E is trivial.

To start the induction, we prove the theorem in the special case when M = Rm and the
vector bundle is Rn.

Lemma 14 The map T : Hk
cv(R

n)→ Hk−n(M) is an isomorphism for n ≥ 1.

Proof of lemma: Notice that our map T is a composition of similar maps

Hk
cv(R

n−1 ×R)→ Hk−1
cv (Rn−1)→ . . .→ Hk−n+1

cv (R)→ Hk−n(M)

For instance, the map on the extreme left sends most forms on E to zero, but it sends
forms ω involving some dxi and all dt1, . . . , dtn−1 and dt (i.e., dtn) to∫ ∞

−∞
ω(x1, . . . , xm, t1, . . . , tn−1, u) du

wedged with the same dxi and with all the dtj except dt. Each successive map integrates
one more ti and drops one more dti until all the t’s are gone. In the end, we get T previously
defined. It suffices to prove that all of these maps are isomorphisms, and since they all
have the same form, it suffices to prove this for the first map. In the proof of this lemma,
let T stand for just the first map.

Define a map S : Hk−1
cv (Rn−1) → Hk

cv(R
n−1 × R) going backward as follows. We define it

on the form level and then it will induce a map on the cohomology level. Define

S : ω(x1, . . . , xm, t1, . . . , tn−1)→ b(tn) ω(x1, . . . , xm, t1, . . . , tn−1)dtn
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Here b(t) is a C∞ function with support in (−ϵ, ϵ) and total integral 1. The form ω includes
a wedge product of various dxi and dtj on both sides of the formula; we have omitted these
to save space. The final dtn is added as a wedge product from the extreme right.

We claim that dS = Sd up to a sign, and thus that S induces a map in cohomology. This
is easily checked. Both Sdω and dSω contain terms obtained by differentiating ω by some
xj or by some tk for k < n, but it doesn’t matter whether we multiply by b(tn) before or
after the differentiation. In the expression dS we could also differentiate by tn but this
term vanishes since it would introduce a second dtn.

We also claim that TS is the identity. Indeed, TS removes the final dtn and replaces ω
by ∫ ∞

−∞
b(u) ω(x1, . . . , xm, t1, . . . , tn−1)du

and this is just ω because the integral of b(u) is 1.

Finally we must prove that ST is the identity. This is harder because it is false on the
form level and only holds on the cohomological level.

Define K : Λkcv(R
n−1 ×R)→ Λk−1

cv (Rn−1 ×R) as follows. If a term ω in a form has no dt,
let K(ω) = 0. If a term has a dt, then recall the function b(t) introduced in the definition
of S above, and let K(ω) be(∫ t

−∞
ω(x1, . . . , t1, . . . , u) du−

∫ ∞

−∞
ω(x1, . . . , t1, . . . , u) du

∫ t

−∞
b(u) du

)
dxi∧. . .∧dtj∧. . .

where we omit the final dt at the end.

We claim that dK −Kd = id− S ◦ T up to sign. It immediately follows that S ◦ T is the
identity in cohomology, and thus that S and T are isomorphisms.

First, suppose that a term ω has no dt. Then

(dK −Kd)ω = −(−1)kK∂ω

∂t
dxi1 ∧ . . . ∧ dti1 ∧ . . . ∧ dt =

(−1)k−1

(∫ t

−∞

∂ω

∂u
du−

∫ ∞

−∞

∂ω

∂u
du

∫ t

−∞
b(u)du

)
dxi1 ∧ . . . ∧ dti1 ∧ . . .

The term
∫ t
−∞

∂ω
∂udu equals ω because ω vanishes for very negative values. The term

∫∞
−∞

∂ω
∂u

equals zero because ω has compact support. So the above expression equals

(−1)k−1ω dxi1 ∧ . . . ∧ dti1 ∧ . . . = (−1)k−1(id− S ◦ T )(ω)
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Finally, suppose a term ω has a dt term. Then (dK −Kd)ω equals

d

[(∫ t

−∞
ω(x1, . . . , t1, . . . , u) du−

∫ ∞

−∞
ω(x1, . . . , t1, . . . , u) du

∫ t

−∞
b(u) du

)
dxi ∧ . . . ∧ dtj ∧ . . .

]

−K

∑
j

∂ω

∂xj
dxj ∧ dxi ∧ . . . ∧ dtj ∧ . . . ∧ dt

−K
∑

j

∂ω

∂tj
dtj ∧ dxi ∧ . . . ∧ dtj ∧ . . . ∧ dt


In the very last term above, there is no partial with respect to tn, i,e., t, because there is
already one dt and a second one will give zero.

Notice that when we take d of the first line, differentiating with respect to xj , we will get
K of the second line applied to the initial ∂ω

∂xj
terms. So these terms will cancel. Similarly

when we compute d of the first line, differentiating with respect to tj for j < n, we will get
K of the second line applied to the second ∂ω

∂tj
terms.

The remaining terms come from tn, which we have been calling t. Only the first line will be
involved because of the remark immediately following the formula. When we differentiate
the first line with respect to t we will get(

ω − b(t)
∫ ∞

−∞
ω(x1, . . . , tn−1, u)du

)
dt ∧ dxi1 ∧ . . . ∧ dtj1 ∧ . . .

Since we are dealing with Λk, there are k − 1 wedge terms to pass over if we want dt to
come last, so the result is

(−1)k−1

(
ω − b(t)

∫ ∞

−∞
ω(x1, . . . , tn−1, u)du

)
dxi1∧. . .∧dtj1∧. . .∧dt = (−1)k−1(id−S◦T )ω

Proof of Main Theorem, continued: Suppose U and V are open sets in M and suppose E
is a vector bundle over M . We then have an exact sequence

0← Λkcv(E|U∩V)
j1−j2←−−− Λkcv(E|U )⊕ Λkcv(E|V)

i1+i2←−−− Λkcv(E|U∪V)← 0

Each map is obtained by restriction and exactness is trivial except at the left side. But we
can find a partition of unity φU , φV with sum equal 1 such that φU is non-zero only on U
and φV is nonzero only on V and both are C∞ on the union. If ω is a form on U ∩V, then
ω φV is a form on all of U , since it is certainly C∞ on U ∩ V and it is identically zero on
the rest of U . Similarly −ω φU is a form on all of V and the difference of these forms is
ω(φV + φU ) = ω. (See the intermission on page 30 for details of the argument that both
extensions are C∞ across the boundary.)

As usual, a purely algebraic argument then gives an exact sequence

Hk+1
cv (E|U∩V)←− Hk+1

cv (E|U )⊕Hk+1
cv (E|V)←− Hk+1

cv (E|U∪V)←− Hk
cv(E|U∩V)←− Hk

cv(E|U )⊕Hk
cv(E|V)
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We can combine this sequence with the corresponding sequence on M , and the integration
along the fibre maps T to obtain the diagram below:

Hk+1
cv (E|U ) Hk

cv(E|U )

Hk+1
cv (E|U∩V) ←−−−− ⊕ ←−−−− Hk+1

cv (E|U∪V)
D←−−−− Hk

cv(E|U∩V) ←−−−− ⊕

Hk+1
cv (E|V) Hk

cv(E|V)yT yT yT yT yT
Hk+1−n(U) Hk−n(U)

Hk+1−n(U ∩ V) ←−−−− ⊕ ←−−−− Hk+1−n(U ∪ V) D←−−−− Hk−n(U ∩ V) ←−−−− ⊕

Hk+1−n(V) Hk−n(V)

This diagram commutes; we supply the details at the end of the proof.

Proof of the main theorem, concluded: In the theorem, we require that M be compact.
But we will prove the theorem more generally, for any C∞ manifold with a finite good
cover such that E restricted to each set of the cover is trivial. We prove the theorem by
induction on the number of open sets in the cover.

If M is a single good open set, then the first step of the proof shows that T is an isomor-
phism. Suppose next that M has a good cover with two open sets U and V. Since this is a
good cover, U ∩ V is diffeomorphic to Rm or empty, and E is trivial over this set because
it is trivial over U . So T is an isomorphism on every vertical arrow except the middle one,
and by the five lemma it is also an isomorphism in the middle.

Finally, we prove the induction step. Suppose M has a finite good cover with N + 1 sets.
Let U be the union of the first N sets and let V be the remaining set, soM = U ∪V. Notice
that U has a good cover with N sets. To prove the theorem for M , we will apply the five
lemma, and we can do that as soon as we prove the theorem for U ∩ V. But if 1 ≤ i ≤ N ,
then Ui ∩V is either empty or else diffeomorphic to Rm, so these sets form a good cover of
U ∩ V with at most N sets and the induction hypothesis can be applied to it.

Proof of the theorem; commutativity of the diagram: Integration along the fibre is certainly
commutative with restriction maps. So we need only consider the square containing the D
maps.

Recall the definition of the D map. We start with an ω defined over U ∩ V with dω = 0.
We form φV ω an extension to U and −φU ω an extension to V. We then compute d (φV ω)
and d (−φU ω) on U and V. These forms agree on U ∩ V because d (φV ω)− d (−φU ω) =
d(φV+φU ) ω = dω = 0 there. Therefore the forms can be glued to form Dω on U∪V.
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We want to prove T ◦D = D ◦ T . Since the arguments for φV ω and φU ω are similar, we
study the first extension to U . So we must show that T (d(φVω) ) = d (T (φV ω)). Since
dω = 0, the left side of this equation is T (d(φV) ∧ ω). By the lemma at the end of the
previous section, this equals d(φV)∧ T (ω). Note that dT (ω) = Td(ω) = 0, so we can write
our expression as d (φV ∧ T (ω)). Using the lemma at the end of the previous section again,
we obtain d(T (φV ∧ ω)). Finally, φV is a function, so φV ∧ ω = φV ω.

7.8 The Thom Class

By the Thom isomorphism theorem, T : Hn
cv(E)→ H0(M) is an isomorphism. The group

H0(M) is the group of locally constant functions on M , and contains the function which is
identically 1. This element is the image of a unique element Φ ∈ Hn

cv(E), called the Thom
class of E.

Theorem 33 The inverse of the Thom isomorphism Hk
cv(E) → Hk−n(M) is the map

ω → ω ∧ Φ. Here by abuse of notation, the second ω is the pullback of ω using the map
π : E →M .

Proof: Since T is an isomorphism, it suffices to prove that T (ω∧Φ) = ω. But by the lemma
at the end of section 7.6, T (ω ∧Φ) = ω ∧T (Φ) and this second element is ω ∧ 1 = ω.

Theorem 34 Let Ep be a fibre of E over p ∈M . The map Ep → E induces an obvious map
Hn
c (Ep)← Hn

cv(E). The Thom class Φ maps under this map to the canonical generator of
Hn
c (Ep). Conversely, if an element Φ has this property for each p ∈M , then that element

is the Thom class.

Remark: This theorem uses the orientation on Ep. The canonical element is determined
by integration of n-forms with compact support, and represented by a ”bump form” with
integral one.

The proof in one direction follows because T (Φ) is given by integration over t1, . . . , tn, and
Φ maps to the function constantly equal to 1 under this map. Conversely, if T (Φ) equals 1
at each p, then T maps Φ to the generator of H0(M) and thus Φ is the Thom class.
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7.9 The Thom Class and the Poincare Dual of a Submani-
fold

Theorem 35 Let K be a compact oriented submanifold of a compact oriented Riemannian
manifold M . Suppose K has dimension k and M has dimension m. Let π : N → K be
the normal bundle of K. Thus Np consists of all tangent vectors to M at p which are
perpendicular to the tangent space of K at p.

Give N an orientation as follows: a basis e1, . . . , em−k of Ep is oriented if v1, . . . , vk is an
oriented basis of Tp(K) and v1, . . . , vk, e1, . . . , em−k is an oriented basis of Tp(M).

Let T be a diffeomorphism from an ϵ neighborhood of the zero section of N to an open
tubbular neighborhood of K in M and let Φ denote an m − k form which represents the
Thom class of N . By abuse of notation, use the same symbol for Φ ∈ Hm−k

cv (N) and
Hm−k(M). Then Φ is a representative of the cohomology class dual to K. In particular,
this class has a representative which is non-zero only within ϵ of K.

Proof: Since T is a diffeomorphism, we can ignore it in the proof and work entirely in the
normal bundle N . If ω is a k form on M , we must prove that∫

K
ω =

∫
M
ω ∧ Φ

But the map ω → ω∧Φ is the inverse of the Thom isomorphism theorem, so T (ω∧Φ) = ω.
Notice that T is defined by integration of the tj variables on the normal bundle. The
complete integral of ω ∧ Φ on M is this integral followed by the integral of ω on K.
QED.

More Precise Proof: The previous proof gives the central idea, but not enough attention
was paid to the domains of the various objects. So it is not a rigorous proof. Here is the
correct proof.

We start with a closed k-form onM . Restrict this form to the tubular neighborhood and use
the diffeomorphism from N to this neighborhood to restrict the form to an ϵ neighborhood
of the zero section in the normal bundle N . The resulting form need not vanish near the
boundary of this neighborhood, so it does not define an element of Hk

cv(N).

Let i : K → N be injection as the zero section and form τ = i⋆(ω), a closed k-form on K.
Let π : N → K and consider π⋆(τ). This is a closed form defined on all of N . Therefore,
both ω and π⋆(τ) are closed k-forms on the set of vectors in N of length less than ϵ. Call
this set Nϵ.

However, the identity map on this set of vectors is homotopic to the map i ◦ π : Nϵ → Nϵ,
by pushing vectors along themselves back to the origin. So ω and (i◦π)⋆(ω) = π⋆ ◦ i⋆(ω) =
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π⋆(τ) induce the same element of the cohomology group Hk(Nϵ), and we can find a k − 1
form σ such that ω = π⋆(τ) + dσ on Nϵ.

Notice that ω ∧Φ = (π⋆(τ) + dσ)∧Φ = π⋆(τ)∧Φ+ d(σ ∧Φ) on Nϵ, and all of these forms
have compact supports on the fibres. So∫

M
ω ∧ Φ =

∫
M
π⋆(τ) ∧ Φ

The coefficients of ω may depend on both the xi coordinates for L and the tj coordinates
for N , but the coefficients of π⋆(τ) depend only on the xi. So computing

∫
M π⋆(τ)∧Φ is a

matter of integrating over the tj and then integrating over the xi. Integration over the tj
is the same thing as T (π⋆(τ)∧Φ), and since these operations are inverse, the result is just
τ . Integrating over the xi completes the integral, so∫

M
ω ∧ Φ =

∫
M
π⋆(τ) ∧ Φ =

∫
K
τ =

∫
K
i⋆ω

and this is the formula for the Poincare dual of L.

7.10 The Normal Bundle of a Transverse Intersection

Theorem 36 Suppose K and L are oriented compact submanifolds of an oriented compact
submanifold M , and suppose K and L intersect transversally. Then the intersection is a
submanifold K ∩L. Let NK and NL be the normal bundles of K and L, and restrict these
bundles to K ∩ L. Then the normal bundle of K ∩ L is NK ⊕NL.

Proof: Since K ∩ L ⊂ K, Tp(K ∩ L) ⊂ Tp(K). An element of Np(K) is perpendicular to
Tp(K) and thus to Tp(K ∩ L). It follows that Np(K) +Np(L) ⊂ Np(K ∩ L).

Next, Np(K) ∩ Np(L) = (0), for otherwise there is a non-zero vector perpendicular to
both Tp(K) and Tp(L) and so perpendicular to Tp(K)+Tp(L). But the intersection at p is
transverse, so the sum of these spaces is Tp(M) and no non-zero vector can be perpendicular
to everything. So Np(K) +Np(L) is a direct sum.

In particular, the dimension of Np(K)+Np(L) is the sum of the dimensions of these spaces,
and thus (m−k)+ (m− l) = 2m− (k+ l) = m− (k+ l−m). Since the dimension of K ∩L
is (k + l)−m, Np(K) +Np(L) is the full space of normal vectors to K ∩ L.
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7.11 The Thom Class of a Direct Sum

Theorem 37 Let E and F be oriented vector bundles over a compact M . Let ΦE and
ΦF be the Thom classes of E and F in Hk

cv(E) and H l
cv(F ). Give E ⊕ F the natural

orientation, so if e1, . . . , ek is an oriented basis of E and f1, . . . , fl is an oriented basis
of F , then e1, . . . , ek, f1, . . . , fl is an oriented basis of E ⊕ F . Let πE : E ⊕ F → E and
πF : E⊕F → F be natural projections. Then the Thom class of E⊕F is π⋆E(ΦE)∧π⋆F (ΦF ).

Proof: By theorem 34, it suffices to prove that π⋆E(ΦE) ∧ π⋆F (ΦF ) restricted to a fiber
generates Hn

cp(E ⊕ F ). We already know that separately for each piece, so the theorem

boils down to the assertion that Hk
cp(R

k) ×H l
cp(R

l)
∧−→ Hk+l

cp (Rk+l) maps generators to a
generator. But the first group on the left is generated by any b(x1, . . . , xk)dx1 ∧ . . . ∧ dxk
where b has compact support and

∫
. . .
∫
b = 1 and dx1, . . . , dxk is an oriented basis, and

the second group has a similar generator, and the wedge of these is an expression in k + l
variables with the same properties.

7.12 The Fundamental Theorem of Intersection Theory

Theorem 38 Let K and L be compact oriented submanifolds of a compact oriented man-
ifold M . Suppose K and L intersect transversally. Let dK and dL be the dual forms to K
and L. Then K ∩L is a compact oriented submanifold of M and its dual form is dK ∧ dL.

Proof: Let NK and NL be the normal bundles of K and L. Each has a natural orientation.
For instance, if x1, . . . , xk is an oriented coordinate system on K near p, we call a basis of
NK oriented is x1, . . . , xk, n1, . . . , nm−k gives the orientation on M .

By theorem 36, the normal bundle to K ∩ L is NK ⊕ NL. We give this direct sum the
orientation described in theorem 37, and then we orient K ∩ L so the pair K ∩ L and
NK ⊕NL satisfies the rule of the previous paragraph.

By section 7.8, the Thom Class ΦK represents the Poincare Dual dK . More precisely, we
can find ϵ > 0 such that the exponential map defined on normal vectors of length less than
ϵ is a diffeomorphism to a tubular neighborhood of K, and we can find a representative
of ΦK with support on vectors of length less than or equal to δ for some δ < ϵ, and the
diffeomorphism then carries ΦK to a representative of dK .

A similar statement holds for L and by shrinking ϵ if necessary, we can pick an ϵ which
works for both K and L.

By shrinking this ϵ if necessary, we can make the exponential map defined on normal
vectors to K ∩ L of length less than 2ϵ be a diffeomorphism to a tubular neighborhood of
K ∩ L.

Now consider π⋆K(ΦK), a form defined on NK ⊕NL over K ∩ L. This form only depends
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on the coordinates of K and NK and is independent of the other coordinates. Notice
that it need not have compact support on fibres because it is independent of the NL

component.

However, ϕ⋆K(ΦK) ∧ ϕ⋆L(ΦL), which we abbreviate ΦK ∧ ΦL, does have compact support
on fibres. It is nonzero on a normal vector X + Y ∈ NK ⊕ NL only if ||X|| < ϵ and
||Y || < ϵ. So ||X + Y || < 2ϵ and consequently we can move the form over to the tubular
neighborhood of K ∩ L. By theorem 37, ΦK ∧ ΦL represents the Thom class of NK ⊕NL

and thus its representative in the tubular neighborhood represents dK∩L. Since ΦK on
the tubular neighborhood of K represents dK and ΦL on the tubular neighborhood of L
represents dL, it follows that dK ∧ dL = dK∩L. QED.

7.13 Cautionary Notes

The theorem in the previous section almost completes the proof of the hard Lefshetz Fixed
Point Formula, and supplies the central result for cohomological intersection theory. We
add a series of cautionary notes about the previous argument.

Cautionary Note One: The fundamental idea of the proof is that a neighborhood of the
zero section in the normal bundle for K, NK , is diffeomorphic to a tubular neighborhood of
K in M and thus to an open subset of M . Therefore, forms on NK with support within ϵ
of the zero section are equivalent to forms onM with support in the tubular neighborhood.
One such form is ΦK , the Thom Class of K. This form appears to be just the constant
function on K multiplied by a bump function times dt1 ∧ . . .∧ dtm−k on fibres. When it is
moved to the tubular neighborhood, it becomes the dual class dK .

Why not simply define the form this way to begin with, rather than using our complicated
argument using the Meyer-Vietorius sequence and the Thom isomorphism? Because the K
component of our form is not just a constant function; it also has terms coming from the
change of coordinates of dt1∧ . . .∧dtm−k as we move from coordinate system to coordinate
system, and these terms depend on x1, . . . , xm. These terms are missing when we begin
the proof of the Meyer-Vietoris sequence by dealing with a single open set U ⊂ M , but
they appear as soon as we add in other sets and thus need to change coordinates.

The first spot where this matters came when we defined T mapping forms on M to forms
on K by integrating over the tj . Go back to that spot and notice the matrix ρji. Luckily,
integration is invariant under this coordinate change.

Remark: In algebraic topology, cohomology classes of closed forms are determined by the
integrals of these forms over certain elements of homology. One way to make this precise
is via the universal coefficient theorem of singular theory. According to this theorem, if
R is the field of real numbers, the singular cohomology group Hk(M,R) is canonically
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isomorphic to Hom(Hk(M,Z), R). In some sense, this isomorphism is induced by integra-
tion.

One way to make this precise is to define a C∞ singular simplex to be a continuous singular
simplex which is C∞ in an open neighborhood of the simplex (in parameter space). There
is an obvious inclusion map C∞

k (M) → Ck(M) from the set of all C∞ singular chains on
a C∞ manifold to the set of all continuous singular chains. These inclusion maps induce
isomorphisms in homology. So for a C∞ manifold, we can assume that singular homology
classes are defined by C∞ simplices.

We can integrate k-forms over C∞ k-simplicies. Integrating dω over σ is the same as
integrating ω over the boundary of σ, by Stokes’ formula. It follows that this integra-
tion induces a map Hk

de−Rham(M) → Hom(Hk(M,Z), R). This map turns out to be an
isomorphism. Another way of stating this isomorphism is as follows:

Theorem 39 Let L1, . . . , Ls be a basis for the free component of Hk(M), that is, the
portion of this homology isomorphic to Z ⊕ Z ⊕ . . . ⊕ Z. Then two closed k forms ω1

and ω2 represent the same cohomology element if and only if
∫
Li
ω1 =

∫
Li
ω2 for all i.

Moreover, if arbitrary real numbers r1, . . . , rs are given, there is a unique element of the
deRham cohomology group Hk(M) represented by a k-form ω whose integral over Li is ri
for each i.

A consequence of this result is that deRham cohomology groups are isomorphic to singular
cohomology groups.

Remark: Since we do not need this isomorphism to prove the fixed point theorem, we
omitted the proof from these notes. Nevertheless, the many integrals of forms over em-
bedded submanifolds K ⊂ M in the notes show that the theorem is closely related to the
isomorphism.

It is natural to ask two related questions about homology classes in Hk(M,Z) where M is
a C∞ manifold:

• Which classes are represented by a compact oriented manifold K and arbitrary C∞

map i : K → M? Here we do not require that i be one-to-one or an embedding; to
avoid confusion, call such classes “Steenrod representable.”

• Which classes ofHk(M,Z) are represented by embedded compact oriented manifolds?

Thom applied his construction of the Thom class to these questions. Among the known
results are:

• If an element of Hk(M,Z) is Steenrod representable and 2k < dim(M), then this
element can be represented by an embedded submanifold.
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• If M is orientable, then every class in Hm−1(M,Z) and every class in Hm−2(M,Z)
is Steenrod representable.

• Every class in Hk(M) for k ≤ 6 is Steenrod representable.

• If k ≥ 7, there are M and classes in Hk(M) which are not Steenrod representable.

• Every class in Hk(M,Z2) is Steenrod representable.

• Every class in Hk(M,Z) has a positive multiple which is Steenrod repressentable.

Cautionary Note 2: If a homology class in M is represented by an embedded submanifold
K, then it induces a dual cohomology class dK ∈ Hm−k(M) which has support in an ϵ
neighborhood of K. Cohomology classes are determined by their integrals over homology
classes, which are often submanifolds. It is easy to confuse these ideas and begin thinking
of K as directly representing a form in Hk(M), perhaps a form whose integral over K is
one.

Consider the following example:

Figure 7.2: K and L in a Torus

Figure 7.3: dK and dL

The first homology group of a torus has two generators, illustrated in the first picture
above. The dual classes of these generators are illustrated in the second picture. Suppose
we integrate dK over K, perhaps under the false illusion that dK is the unique form whose
integral over K is 1 and over L is 0. In most cases this would not even make sense because
dK has degreem−k and K has dimension k. But in this special casem−k = 2−1 = 1 = k.
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Recall, however, that integration is a homotopy invariant. We could just slide K along the
torus until the support of dK no longer intersects K, and then clearly

∫
K dK = 0.

The truth is that
∫
L dK ̸= 0 because any homotopy of L will still intersect the support of

dK . Indeed, ∫
L
dK =

∫
M
dK ∧ dL =

∫
M
dK∩L = 1

because K ∩ L is just a single point.

Remark: This special case can be greatly generalized. Suppose the dimension ofM is even.
Then there is a middle cohomology class Hk(M) for k = m

2 , and Poincare duality asserts
that

∫
M ω ∧ τ is a non-degenerate form on this vector space.

If k ≡ 2 (mod 4), then k2 is odd and this form is skew-symmetric. By easy algebra, if
a vector space has a non-degenerate skew form F , it is even dimensional and has a basis
b1, b2, . . . , b2s such that the matrix of F is



0 −1
1 0

0 −1
1 0

. . .

0 −1
1 0


For instance, this theorem applies to tori with an arbitrary number of holes, showing that
H1(T ) can be generated by curves C1, C2, . . . , C2s−1, C2s such that the first pair {C1, C2}
intersect each other once and do not intersect the remaining Ci, and so forth for the
remaining pairs. See the picture below.

Figure 7.4: H1(Two Torus)

If k ≡ 0 (mod 4), then k2 is even and the above form is symmetric. In that case, there is a
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basis b1, . . . , bk, bk+1, . . . , bm such that the matrix for our symmetric non-degenerate form
is as follows:



1
. . .

1
−1

. . .

−1


By definition, the signature of M is the number of 1’s on the diagonal minus the number
of −1’s on the diagonal. This signature plays an important role on modern topology of
manifolds.

Notice that the existence of 1’s on the diagonal implies that
∫
K dK ̸= 0 for some K in this

case.



Chapter 8

Orientations

Several results in this report depend on orientations on L, M , and M . We collect here all
spots where orientations matter.

Consider first the Lefshetz number itself: L(f) =
∑

(−1)ktr
[
Hk(M)←− Hk(M)

]
. Nothing

in this formula depends on an orientation. The Lefshetz Fixed Point Theorem will claim
that L(f) =

∑
fixed points sign(fp). These signs may depend on orientations, but the

choices of these orientations must be canonical.

Orientations first appear in section 3.7, when we define an orientation on a manifold, and
use it to integrate m-forms on an m-dimensional M . In particular, Hm(M) ∼= R, and the
isomorphism depends on the choice of orientation.

The Poincare Duality theorem depends on the pairing

Hk(M)×Hm−k(M)
∧−→ Hm(M)

∫
M ω
−−−→ R

and thus on the choice of orientation on M . Therefore the map

Hom(Hk(M), R)→ Hm−k(M)

depends on the orientation of M .

Next we considered an oriented submanifold K of an oriented manifold M . Both orienta-
tions can be selected arbitrarily. But then i : K → M induces i⋆ : Hk(K) ← Hk(M) and
integration over K defines a further map to R. This map certainly depends on the orien-
tation of K. The map induces an element of Hom(Hk(M), R), and by duality this gives
an element dK ∈ Hm−k(M). Notice that this element depends on both the orientation of
K and the orientation of M .

115
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Next we studied tubular neighborhoods, the normal bundle, and the relation between ΦK
and dK . This theory depends on an orientation on K and an orientation on the normal
bundle. (Recall that Thom’s theorem is about oriented vector bundles). We start with
an arbitrary orientation on K. Find an oriented basis of Tp(K), ∂

∂x1
, . . . , ∂

∂xk
. Define an

orientation on NK by calling a basis N1, . . . , Nm−k of Np oriented if

∂

∂x1
, . . . ,

∂

∂xk
, N1, . . . , Nm−k

is an oriented basis of Tp(M).

Suppose next that K and L intersect transversally, and that both have arbitrary orienta-
tions. We proved that K ∩L is a submanifold with normal bundle NK⊕NL. Each of these
is oriented by the previous paragraph, and their sum is thus oriented by calling an oriented
basis of Np(K) followed by an oriented basis of Np(L) oriented for NK ⊕NL. Notice that
this orientation depends on the order of K and L. Use this to define an orientation on
K ∩ L by running the argument of the previous paragraph backward. Thus an oriented
basis of Tp(M) is obtained by starting with an oriented basis of Tp(K ∩ L) and extending
it using an oriented basis of Np(K) ⊕ Np(L). Notice that this is exactly the orientation
used in the proof that dK∩L = dK ∧ dL.

In the special case of the Lefshetz Fixed Point formula, we begin with an oriented manifold
M . We then form M ×M , which inherits a natural orientation from M . Indeed if U and V
are oriented coordinates on M , then U × V is an oriented coordinate on M ×M , obtained
by first listing the coordinates of U and then listing the coordinates of V.

We then form K = G and L = ∆, submanifolds of M ×M . These inherit natural orienta-
tions from M via i : M → G by p→ (p, f(p)) and p→ ∆ by p→ (p, p). We write G first
and ∆ second in the formula dG ∧ d∆ because that choice gives the correct value for the
Lefshetz number of f .

In the final section which follows, we will compute the sign of f at fixed points based on
these orientation choices.



Chapter 9

The Lefshetz Fixed Point Theorem
(2)

9.1 Two Methods to Compute Signs of Fixed Points

Suppose K and L are compact, oriented submanifolds of a compact, oriented manifold M ,
and assume that dim(K) + dim(L) = dim(M). If K and L meet transversally, K ∩ L is a
finite collection of points, each assigned an orientation 1 or −1.

In this case, there are two equivalent methods to calculate the sign(p) assigned to an
intersection point. The first is straightforward and will be used in the following section.
Select an oriented basis X1, . . . , Xk for Tp(K). Select a similar oriented basis Xk+1, . . . , Xm

for Tp(Y ). Since the manifolds meet transversally at p, Tp(K) ⊕ Tp(L) = Tp(M), so
X1, . . . , Xm is a basis for Tp(M). If this basis gives the orientation of M , we assign
sign(p) = 1. Otherwise sign(p) = −1.

The second method of computing sign(p) generalizes to the case when K, L, and M have
arbitrary dimensions, and was used in the proof that dK∩L = dK ∧ dL. Determine spaces
of normal vectors NK and NL to K and L. Then Tp(K) ⊕ NK = Tp(M). Give NK the
orientation determined by the requirement that an oriented basis for Tp(K), followed by an
oriented basis of NK , is an oriented basis of Tp(M). Orient NL using the same rule. Since
the intersection is transversal, NK ⊕NL = Tp(M). If an oriented basis for NK , followed by
an oriented basis of NL, gives an oriented basis of Tp(M), assign sign(p) = 1. Otherwise
assign sign(p) = −1.

Since we want to compute sign(p) using the first method, but apply it to our theory
developed using the second method, we need to prove

Theorem 40 Both methods give the same result.

117
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Proof: We first claim that we can find coordinates x1, . . . , xm near p on M such that K
consists of points where xk+1 = . . . = xm = 0 and L consists of points where x1 = . . . =
xk = 0. If so, then we can use x1, . . . , xk as coordinates on K and use xk+1, . . . , xm as
coordinates on L. By changing the signs of some xi if necessary, we can assume that
x1, . . . , xk is an oriented basis of K and xk+1, . . . , xm is an oriented basis of L. Notice that
we have lost the freedom to make a final adjustment for the coordinates of M , so the full
set of coordinates may or may not be oriented for M .

We claim that we can find a Riemannian metric near p such that the ∂
∂xi

are orthonormal.
We respect to that metric, NK and NL come with natural ordered bases. For NK we have
∂

∂xk+1
, . . . , ∂

∂xm
and for NL we have ∂

∂x1
, . . . , ∂

∂xk

Thus our coordinates give natural orientations to Tp(K), Tp(L), Tp(M), NK , NL. The trou-
ble is that these natural orientations may be wrong for Tp(M), NK , NL. To distinguish
between orientations, we will use the terminal “correct orientation” for the orientation de-
termined by the theory of intersections, in contrast to the “natural orientation” determined
by these coordinates.

There is one additional problem. We want an oriented basis of NK , followed by an oriented
basis of NL to give an oriented basis for T (M), but that is not necessarily true even for
our natural orientation. To make it true, we must switch these two bases, changing the
sign of the orientation of M by (−1)k(m−k).

Three results guide our juggling of all these orientations. First, we want an oriented basis of
T (K), followed by an oriented basis of NK , to give the correct orientation of T (M).

Lemma 15 The natural orientation and the correct orientation for NK agree if and only
if the natural orientation for T (M) is the correct orientation.

Next consider the analogous situation for L. This time there is a complication, because
the natural basis vectors for T (L) are ∂

∂xi
for i > k and the natural basis for NL are these

partials for i ≤ k, so we must switch, introducing a sign change of (−1)k(m−k) in the natural
basis for T (M). So

Lemma 16 The natural orientation of NL is the correct orientation if and only if either
k(m − k) is even and the natural orientation of T (M) is the correct orientation, or else
k(m− k) is odd and the natural orientation of T (M) is not the correct orientation.

Finally there is that switch because the natural basis vectors of NK follow the natural basis
vectors of NL rather than the desired order, so

Lemma 17 The natural orientation of T (M) is the orientation obtained by writing a
naturally oriented basis of NK followed by a naturally oriented basis of NL if and only if
k(m− k) is even.
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Let us put all this together. Suppose first that k(m−k) is even. If the natural orientation of
Tp(M) is the correct orientation, then the natural orientations of NK and NL are both the
correct orientations and an oriented basis of NK followed by an oriented basis of NL gives
the natural orientation of M and thus the correct orientation of M , so sign(p) = 1.

If k(m−k) is even, but the natural orientation of Tp(M) is not the correct orientation, then
both NK and NL have incorrect orientations, so if we write the naturally oriented basis
of NK followed by the naturally oriented basis of NL, we actually get the same correct
orientation as if we had used a correctly oriented basis of NK followed by a correctly
oriented basis of NL, because there are two hidden sign changes there. On the other hand,
we also get the naturally oriented basis of NK , followed by the naturally oriented basis of
NL, so we get the naturally oriented basis of Tp(M), which is not the correct orientation
of Tp(M). So sign(p) = −1.

Now suppose k(m−k) is odd, but the natural orientation of Tp(M) is the correct orientation.
Then the natural orientation of NK is the correct orientation, but the natural orientation
of NL is not the correct orientation. If we write the naturally oriented basis of NK followed
by the naturally oriented basis of NL, we do not get the naturally oriented basis for Tp(M)
because k(m−k) is odd. So we do not get the correct orientation on Tp(M). However, if we
change the sign of one of the basis vectors of NL, then NL will have the correct orientation
and we will get the naturally oriented basis of Tp(M), which is the correct basis of Tp(M).
So sign(p) = 1.

Finally, suppose k(m − k) is odd and the natural orientation of Tp(M) is not the correct
orientation. Then the natural orientation of NK is not the correct orientation, but the
natural orientation of NL is the correct orientation. Also if we write the naturally oriented
basis of NK followed by the naturally oriented basis of NL, we do not get the naturally
oriented basis of Tp(M) because k(m − k) is odd. Change the sign of one of the oriented
basis vectors of NK . Then both NK and NL are correctly oriented, and the new basis of
NK , followed by the natural oriented basis of NL is the natural oriented basis of Tp(M),
and thus not the correct oriented basis of Tp(M). So sign(p) = −1.

At the start of this proof, we made two assertions without proper proof and discussion. To
complete the proof, we fill this gap.

Lemma 18 Suppose K and L are submanifolds of M which meet transversally at p. Sup-
pose their dimensions are k and l and k + l = m, the dimension of M . Then near p we
can find local coordinates x1, . . . , xm such that K is given by xk+1 = . . . = xm = 0 and L
is given by x1, . . . , xk = 0.

Proof: Let i : K → M be the map immersing K in M , and let j : L → M be the map
immersing L. At p ∈ K ∩ L, we have i⋆(Tp(K)) ⊂ Tp(M) and j⋆(Tp(L)) ⊂ Tp(M). Since
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this is a transverse intersection and dim(K) + dim(L) = dim(M), we have

Tp(K)⊕ Tp(L) = Tp(M)

Select coordinates near p ∈ M , x1, . . . , xm, such that p is the origin and i⋆ (Tp(K)) has
basis ∂

∂x1
, . . . , ∂

∂xk
and j⋆(Tp(L)) has basis

∂
∂xk+1

, . . . , ∂
∂xm

.

If y1, . . . , yk are local coordinates for K near p, consider the map

(y1, . . . , yk)→ (i1(y1, . . . , yk), . . . , ik(y1, . . . , yk)) : K → Rk

By assumption, the derivative of this map at p is onto, and thus an isomorphism at p. Apply
the inverse function theorem to obtain new local coordinates (x1, . . . , xk) on K near p., so
the map i has the form (x1, . . . , xk)→ (x1, . . . , xk, ik+1(x1, . . . , xk), . . . , im(x1, . . . , xk)).

Define a map ψ : Rm → Rm by

(x1, . . . , xk, xk+1, . . . xn)→ (x1, . . . , xk, xk+1 − ik+1(x1, . . . , xk), . . . , xm − im(x1, . . . , xk))

= (y1, . . . , yk, yk+1, . . . , ym)

The derivative of this map is an isomorphism at p, and thus by the inverse function theorem
we obtain new local coordinates on M near p. Notice that in the new coordinates, K maps
to points whose final m − k coordinates are zero. By abuse of notation we still call these
coordinates x1, . . . , xm from now on, but now K is defined near p by coordinates whose
last m− k values are zero.

Notice that ψ maps ∂
∂xi

to itself if i > k, so the map j still maps Tp(L) to the space spanned
by these vectors.

The map j : L→ M has coordinate form j1(z1, . . . , zm−k), . . . , jm(z1, . . . , zm−k) and if we
restrict to the last m − k coordinates, this map is a local diffeomorphism by the inverse
function theorem because of the images of Tp(L). We conclude that the xk+1, . . . , xm
provide new coordinates for L. With these new coordinates, the map j has the form

(xk+1, . . . , xm)→ (j1(xk+1, . . . , xm), . . . , jk(xk+1, . . . , xm), xk+1, . . . , xm)

Consider the map M →M defined by

(x1, . . . , xm)→ (x1 − j1(xk+1, . . . , xm), . . . xk − jk(xk+1, . . . , xm), xk+1, . . . , xm)

The derivative of this map at p is an isomorphism, so it defines new coordinates

(y1, . . . , yk, yk+1, . . . , ym)
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on M . From now on we call these (x1, . . . , xm) by abuse of notation. Note that the y′s
equal the x”s except for the first k, so points in K still correspond to points with the last
m − k values zero. But now points in L also correspond to points with the first k values
zero. QED.

Remark: The only other shaky point in the argument is the introduction of new inner
products on T(M) near p, which could have the consequence of distorting the appearance
of the normal vectors and tubular neighborhood in unexpected ways. In the end we are
only interested in the orientation of our normal bundles, and we will justify this step
by redefining the normal bundle in a way that is independent of the inner product, and
showing that we can still orient this redefined bundle. Note that NK is a bundle on K. At
any point q ∈ K we have an exact sequence

0→ Tq(K)→ Tq(M)→ Tq(M)/Tq(K)→ 0

Our new normal bundle assigns to each q ∈ K the quotient vector space Tq(M)/Tq(K). If
we have an inner product on Tq(M), then we can find orthogonal complements and write
Tq(M) = Tq(K) ⊕ Nq(K) and then there is a canonical isomorphism Tq(M)/Tq(K) →
Nq(K). But the bundle can be defined using these quotients independent of this inner
product. Moreover, suppose we have an oriented basis of Tq(K), v1, . . . , vk. We can extend
this to an oriented basis of Tq(M), v1, . . . , vk, vk+1, . . . , vm. The last m− k vectors induce
a basis of Tq(M)/Tq(K) and define an orientation on this normal bundle.

Thus we conclude that there is no need to even introduce an inner product on T (M) to
discuss the normal bundle and its orientation.

9.2 The Lefshetz Fixed Point Theorem

SupposeM is a compact, oriented, C∞ manifold and let f :M →M be a C∞ map. Define
∆ ⊂M×M to be the diagonal, that is, the set of all (p, p) with p inM . Define G ⊂M×M
to be the graph of f , that is, the set of all (p, f(p)) with p in M . In chapter 5, we proved
that the Lefshetz number of f satisfies

L(f) =
∑
k

(−1)kTr f⋆ : Hk(M)← Hk(M) =

∫
M×M

dG ∧ d∆

In chapter six, we proved that the map f can be replaced by a homotopic map such that
G and ∆ intersect transversally.

In chapter seven, we proved that in that case, the intersection is a zero-dimensional com-
pact, oriented manifold and∫

M×M
dG ∧ d∆ =

∫
M×M

dG∩∆ =
∑

fixed points p

±
∫
M×M

dp =
∑

fixed points p

±1
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To finish the proof, it suffices to compute these signs. We will use the first method of the
previous section.

Pick an oriented coordinate system (x1, . . . , xm) onM , where these coordinates are defined
on an open U in M . Pick a second oriented coordinate system (y1, . . . , ym) on M , where
these coordinates are defined on an open V in M . The combination of these coordinates
gives a coordinate system on U × V in M ×M : (x1, . . . , xm, y1, . . . , ym).

In particular, if we want coordinates near the diagonal ∆, we can pick the same coordinate
system twice, so (p, q) ∈ U ×U is given by (x1, . . . , xm) for p and (x̂1, . . . , x̂m) for q.

We can also form coordinates U × V on M ×M where V ⊂ U consists of points p ∈ U for
which f(p) ∈ U . These coordinates along the diagonal certainly contain all fixed points of
f .

We have two maps, one from U to G and one from U to ∆:

(x1, . . . , xm)→ (x1, . . . , xm, f1(x1, . . . , xm), . . . , fm(x1, . . . , xm)

(x1, . . . , xm)→ (x1, . . . , xm, x1, . . . , xm)

The induced maps on tangent spaces map ∂
∂xi

to(
0, . . . ,

∂

∂xi
, . . . , 0,

∑ ∂f1
∂xi

∂

∂yi
, . . . ,

∑ ∂fm
∂xi

∂

∂yi

)
(
0, . . . ,

∂

∂xi
, . . . , 0, 0, . . . ,

∂

∂yi
, . . . , 0

)
The first m vectors in order, followed by the second m vectors in order, gives a basis for
Tp(G)⊕Tp(∆) at a fixed point, and the sign assigned to this fixed point is 1 if this is equal
to the canonical orientation of Tp(M×M) at that point, and −1 if it is the opposite, where
the canonical orientation of Tp(M ×M) at a diagonal point is given by the m vectors ∂

∂xi

followed by the m vectors ∂
∂yj

. The matrix converting one basis to the other is



1 0
. . . ∂fi

∂xj

0 1
1 0 1 0

. . .
. . .

0 1 0 1


We must take the determinant of this matrix and find its sign. Before doing that, we can
subtract the top m rows from the bottom ones, giving the matrix
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1 0 1 0
. . .

. . .

0 1 0 1
0 0

. . . I −
(
∂fi
∂xj

)
0 0


We can also subtract the m left columns from the m right columns, giving



1 0 0 0
. . .

. . .

0 1 0 0
0 0

. . . I −
(
∂fi
∂xj

)
0 0


The determinant of this expression, and thus the sign of p, is

det

[
I −

(
∂fi
∂xj

)]
Remark: Putting this altogether, we can triumphantly conclude that

Theorem 41 Let f : M → M be a C∞ map from a compact oriented manifold M to
itself. We can form the Lefshetz number of f ,

L(f) =
∑
k

(−1)kTr f⋆ : Hk(M)←− Hk(M)

This number is invariant under homotopies of f . It is possible to find an arbitrarily small
homotopy of f making the graph of f in M×M and the diagonal in M×M meet transver-
sally. After this homotopy, the Lefshetz number is equal to the number of fixed points of f
counted with appropriate signs ∑

fixed points p

sign(p)

where the sign of a fixed point p is the sign of

det

[
I −

(
∂fi
∂xj

)∣∣∣∣
p

]
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