
GAUGE THEORY, GRAVITATION, AND GEOMETRY
PROBLEMS & SOLUTIONS

LARA ANDERSON AND LAURA FREDRICKSON

ABSTRACT. The study of manifolds, and metrics and connections over them, has many
profound links with modern theoretical physics. In particular, geometric invariants and
deformation problems are closely connected to the way that particles and their interactions
are described in gauge theory. Important connections also exist to theories of gravitation
(including Einstein’s theory of general relativity) and many others, including string theory.

In this course we will provide an introduction to the geometry of manifolds and vector
bundles oriented towards discussing gauge theories. We’ll highlight some famous and in-
teresting gauge theories through concrete computation including: the Yang-Mills theories
(which give rise to the standard model in particle physics), Chern-Simons theories (which
have been used to compute knot invariants), Einstein’s Field Equations for gravitation,
and Kaluza-Klein type-theories (a class of unified field theories that unify gravitation and
electromagnetism).

Prerequisites: Linear Algebra, multivariable calculus, ordinary differential equations,
and a first course in abstract algebra (basic group theory). Some familiarity with differential
geometry at the level of curves and surfaces would be extremely helpful.

1. LECTURE 1: MAXWELL’S EQUATIONS (LF)

[(Monday, July 1, 2019) ]

1.1. Maxwell’s equations.

• electric field E = E(x, t) for x ∈ R3, t ∈ R

• magnetic field B = B(x, t)
• electric charge density ρ = ρ(x, t)
• electric current density j = j(x, t)

In units where the speed of light c is equal to 1 and ε = 1, µ = 1 Maxwell’s equations are

∇ · B = 0 (1.1)

∇× E +
∂B
∂t

= 0

∇ · E = ρ

∇× B− ∂E
∂t

= j
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1.2. Wave-like nature of solutions of Maxwell’s equations. It follows that E and B solve

∇2E− ∂2E
∂t2 = ∇ρ +

∂j
∂t

∇2B− ∂2B
∂t2 = −∇× j.

1.3. Gauge invariance in Maxwell’s equations.

• electric potential ϕ = ϕ(x, t)
• magnetic potential A = A(A, t)

If
B = ∇×A, E = −∇ϕ− ∂

∂t
A, (1.2)

then Maxwell’s equations become the following pair of equations for (ϕ, A):

∇2ϕ +
∂

∂t
(∇ ·A) = −ρ (1.3)(

∇2A− ∂2

∂t2 A
)
−∇

(
∇ ·A +

∂ϕ

∂t

)
= −j.

(The laws ∇ · B = 0 and ∇× E = − ∂B
∂t are trivially satisfied.)

The potentials (ϕ, A) uniquely determine the fields (B, E), but the fields do not uniquely
determine the potentials, e.g. given a real-valued function Γ on spacetime R3

x×Ry, define

ϕ′ = ϕ +
∂

∂t
Γ (1.4)

A′ = A−∇Γ.

Then the fields (B′, E′) associated to the potentials (ϕ′, A′) are equal to the fields (B, E)
associated to the potentials (ϕ, A). We call a change of potentials that does not change the
fields a gauge transformation.

Daily Exercises.

Exercise 1.1. [Straightforward] Derive Maxwell’s equations in (1.3) from the expression
of Maxwell’s equations in (1.1).

Solution: Maxwell’s equations are

∇ · B = 0 (1.5)

∇× E +
∂B
∂t

= 0

∇ · E = ρ

∇× B− ∂E
∂t

= j.



GAUGE THEORY, GRAVITATION, AND GEOMETRY PROBLEMS & SOLUTIONS 3

For the first equation, we compute

0 = ∇ · B

= ∇ · ∇×A.

This is trivially satisfies since the divergence of the curl of a vector field is zero.
For the second equation, we compute

0 = ∇× (−∇ϕ− ∂tA) +
∂

∂t
(∇×A)

= −∇×∇ϕ.

This is trivially satisfied since the curl of the gradient of a function is zero.
For the third equation, we compute

ρ = ∇ · E

= ∇ ·
(
−∇ϕ− ∂

∂t
A
)

= −
(
∇2ϕ +

∂

∂t
A
)

.

This gives the first equation in (1.3).
For the last equation, we compute

j = ∇× B− ∂E
∂t

= ∇× (∇×A)− ∂

∂t

(
−∇ϕ− ∂

∂t
A
)

= −∇2A +∇(∇ ·A) +
∂2

∂t2 A +
∂

∂t
∇ϕ

= −
((
∇2A− ∂2

∂t2 A
)
−∇

(
∇ ·A +

∂ϕ

∂t

))
.

This gives the second equation in (1.3).

Exercise 1.2. The electric and magnetic potentials ϕ and A are said to be “in Lorenz
gauge” if

∇ ·A +
∂ϕ

∂t
= 0. (1.6)

(a) Maxwell’s equations drastically simplify in Lorenz gauge. Find these simpler
equations.
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(b) Determine electric and magnetic potentials ϕ, A for the plane wave

E =

 0
φ2(x− t) + ψ2(x + t)
φ3(x− t) + ψ3(x + t)

 , B =

 0
−φ3(x− t) + ψ3(x + t)
φ2(x− t)− ψ2(x + t)

 . (1.7)

such that ϕ, A are in Lorenz gauge, i.e.

∇ ·A +
∂ϕ

∂t
= 0. (1.8)

[Hint: In this gauge A and ϕ will only depend on x and t.]
(c) Show that your solution to (b) is also in Coulomb gauge, i.e. ∇ ·A = 0.

Solution: (a) Maxwell’s equations simplify to

∇2ϕ− ∂2

∂t2 ϕ = −ρ

∇2A− ∂2

∂t2 A = −j.

(b) Assuming that A depends only on x and t, we see that

A =

Φ1(x− t)−Ψ1(x− t)
Φ2(x− t)−Ψ2(x− t)
Φ3(x− t)−Ψ3(x + t).

 (1.9)

We then compute

B = ∇×A

=

 0
−∂x (Φ3(x− t)−Ψ3(x + t))
∂x (Φ2(x− t)−Ψ2(x + t))



=

 0
− (Φ′3(x− t)−Ψ′3(x + t))
(Φ′2(x− t)−Ψ′2(x + t))


We then match our components and find that

Ψ′3 = ψ3, Φ′3 = φ3, Ψ′2 = ψ2, Φ′2 = φ2. (1.10)

We then see that ∂A
∂t = E, hence the electric potential satisfies ϕ = 0. This trivially satisfies

the Lorenz gauge condition since the first entry of A is zero and ϕ = 0.
Note: There is actually a bit of freedom left to change the first component of A.
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(c) It’s obviously that this particular solution is in Coulomb gauge again since the first
entry of A is zero.

Exercise 1.3 (Conservation). [Straightforward] Suppose that U and V are a scalar field
and a vector field satisfying the relationship

∂U
∂t

+∇ ·V = 0 (1.11)

show that this equation can be interpreted as conservation of U, in the sense that it implies
that the rate of decrease of the total amount of U in a region R equals the rate of flux of V
out of R.

From Maxwell’s equations, derive that

∂ρ

∂t
+∇ · j = 0. (1.12)

This is called the conservation of charge. [Hint: Start with ∇ · (∇× B) = 0.]

Solution:

0 = ∇ · (∇× B)

= ∇ ·
(

j +
∂E
∂t

)
= ∇ · j + ∂

∂t
(∇ · E)

= ∇ · j + ∂

∂t
ρ.

Exercise 1.4. [Bonus] Putting the physical constants back in Maxwell’s equations with
ρ = 0, j = 0 leads to the following two equations (in vacuum):

∇2E− µ0ε0
∂2E
∂t2 = 0 (1.13)

∇2B− µ0ε0
∂2B
∂t2 = 0

In vacuum then, each component of E and B satisfies a 3-dimensional wave equation

∇2 f = 1
v2

∂2 f
∂t2 with v = 1√

ε0µ0
. Do you recognize the numerical value of this wave speed?

(Note that we did not specify how our coordinate system was moving with respect to the
electromagnetic wave).

If we consider a different coordinate system, moving relative to the first one via

t′ = t (1.14)
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x′ = x− ut

(think of this as the coordinate system of a person sitting on a train moving at speed u
relative to the wave). What happens to the wave equations in the new coordinate system?
(Hint: It’s enough to look at just one component).

In contrast, what happens for the following transformation of the coordinates (this is
called a boost)

t′ = γ(t− u
c2 x) (1.15)

x′ = γ(x− ut)

where γ = 1√
1− u2

c2

?

Historical note: This is what lead Einstein to invent the coordinate transformations above
(an example of a Lorenz transformation) and formulate his special theory of relativity.
This means that Maxwell’s equations have a lot to tell us about how different observers
in the universe experience space and time.

Other strange things are worth noting: E and B also transform under a boost meaning
that electric and magnetic fields are themselves not fundamental physical objects. We’ll
return to this.

Solution: The constant v is the speed of light in a vacuum given by v = c ' 2.998 ×
108m/s.

Using the coordinate transformation in (1.14) we find that

∂

∂t
=

∂x′

∂t
∂

∂x′
+

∂t′

∂t
∂

∂t′

= −u
∂

∂x′
+

∂

∂t′
∂

∂x
=

∂x′

∂x
∂

∂x′
+

∂t′

∂x
∂

∂t′

=
∂

∂x′
∂

∂y
=

∂

∂y′

∂

∂z
=

∂

∂z′

We compute that

∂2
x + ∂2

y + ∂2
z −

1
c2 ∂2

t = ∂2
x′ + ∂2

y′ + ∂2
z′ −

1
c2 ∂2

t′ +

(
−u2

c2 ∂2
x′ +

2u
c2 ∂x′∂t′

)
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This is because(
∂2

x −
1
c2 ∂2

t

)
f = ∂2

x′ f −
1
c2

(
−u

∂

∂x′
+

∂

∂t′

)(
−u

∂ f
∂x′

+
∂ f
∂t′

)
=

(
1− u2

c2

)
∂2

x′ f +
2u
c2 ∂x′∂t′ f −

1
c2 ∂2

t′ f .

Hence, Maxwell’s equations in the coordinates (t, x, y, z) are not the same as in coordi-
nates (t′, x′, y′, z′).

Using the coordinate transformation in (1.15) we find that

∂

∂t
=

∂x′

∂t
∂

∂x′
+

∂t′

∂t
∂

∂t′

= −γu
∂

∂x′
+ γ

∂

∂t′
∂

∂x
=

∂x′

∂x
∂

∂x′
+

∂t′

∂x
∂

∂t′

= γ
∂

∂x′
− γu

c2
∂

∂t′
∂

∂y
=

∂

∂y′

∂

∂z
=

∂

∂z′

We compute that

∂2
x + ∂2

y + ∂2
z −

1
c2 ∂2

t = ∂2
x′ + ∂2

y′ + ∂2
z′ −

1
c2 ∂2

t′ .

This is because(
∂2

x −
1
c2 ∂2

t

)
f =

(
γ

∂

∂x′
− γu

c2
∂

∂t′

)(
γ

∂ f
∂x′
− γu

c2
∂ f
∂t′

)
− 1

c2

(
−γu

∂

∂x′
+ γ

∂

∂t′

)(
−γu

∂ f
∂x′

+ γ
∂ f
∂t′

)
=

(
γ2 − γ2 u2

c2

)
∂2

x′ f +
(
−2

γ2u
c2 −

1
c2 (−γ2u)

)
∂x′∂t′ +

(
γ2u2

c4 −
1
c2 γ2

)
∂2

t′

= ∂2
x′ f −

1
c2 ∂t′ f ,

since γ2(1 − u2

c2 ) = 1. Hence, Maxwell’s equations in the coordinates (t, x, y, z) and
(t′, x′, y′, z′) are the same.

2. LECTURE 2: MANIFOLDS & VECTOR FIELDS (LF)

[(Tuesday, July 2, 2019)]

2.1. Manifolds. Given a topological space X and an open set U ⊂ X, we define a chart
to be a continuous function ϕ : U → Rn with a continuous inverse. As long as we work



8 LARA ANDERSON AND LAURA FREDRICKSON

“in the chart ϕ” we can pretend we are working in Rn. For example, if we have a function
f : U → R, we can turn it into a function on Rn by using f ◦ ϕ−1 : Rn → R. (This function
is only defined on ϕ(U) ⊂ Rn.)

Definition 2.1. An n-dimensional manifold is a topological space M equipped with charts
ϕα : Uα → Rn where Uα are open sets covering M such that the transition functions
ϕα ◦ ϕ−1

β : Rn → Rn are each a smooth function where it is defined. Such a collection of
charts is called an atlas.

2.2. Classification of 2-dimensional manifolds.

2.3. Vector Fields.

Definition 2.2. A vector field on M is a function

v : C∞(M) → C∞(M)

f 7→ v[ f ]

such that for all f , g ∈ C∞(M),

• v[ f + g] = v[ f ] + v[g]
• v[α f ] = αv[ f ] for a constant α ∈ R

• v[ f g] = v[ f ]g + f v[g] “Leibniz rule”

In a local patch of M with coordinates (x1, ·, xn), any vector field can be written

v = v1 ∂

∂x1
+ · · ·+ vn ∂

∂xn
(2.1)

for v1, · · · , vn ∈ C∞(M).

Exercises.

Exercise 2.3. [Straightforward] Consider the following vector fields and functions on R2.

v = x1
∂

∂x1
+ 2x2

∂

∂x2
, f (x1, x2) = x1x2

2, g(x1, x2) = −x2.

Verify that the Leibniz rule holds for v[ f g] = f v[g] + gv[ f ].

Solution: We compute:

v[ f ] = x1
∂

∂x1
[ f ] + 2x2

∂

∂x2
[ f ] = x1

(
x2

2

)
+ 2x2 (2x1x2)

v[g] = x1
∂

∂x1
[g] + 2x2

∂

∂x2
[g] = x1 (0) + 2x2 (−1)

v[ f g] = x1
∂

∂x1
[−x1x3

2] + 2x2
∂

∂x2
[−x1x3

2]
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= x1

(
−x3

2

)
+ 2x2

(
−3x1x2

2

)
= −7x1x3

2

We now check the Leibniz rule:

f v[g] + gv[ f ] =
(

x1x2
2

)
(x1 (0) + 2x2 (−1)) + (−x2)

(
x1

(
x2

2

)
+ 2x2 (2x1x2)

)
= −2x1x3

2 − x2

(
5x1x2

2

)
= −7x1x3

2

which is indeed equal to v[ f g].

Exercise 2.4. [Straightforward] Compute ∂
∂θ on in Cartesian coordinates on R2 − {0} us-

ing the fact that
∂

∂θ
=

∂x
∂θ

∂

∂x
+

∂y
∂θ

∂

∂y
. (2.2)

Solution:

∂

∂θ
=

∂x
∂θ

∂

∂x
+

∂y
∂θ

∂

∂y

=
∂(r cos θ)

∂θ

∂

∂x
+

∂(r sin θ)

∂θ

∂

∂y

= −r sin θ
∂

∂x
+ r cos θ

∂

∂y

= −y
∂

∂x
+ x

∂

∂y

Exercise 2.5. Let S2 be the unit sphere x2 + y2 + z2 = 1 sitting inside R3. In this exercise,
we’ll show that the S2 is a 2-dimensional manifold by describing two open sets:

• UN = S2 − {N}, where N =

0
0
1

 is the north pole, and

• US = S2 − {S}, where S =

 0
0
−1

 is the south pole,

and the charts ψN : UN → R2 and ψS : US → R2 coming from stereographic projection.
Stereographic projection from the north pole maps the sphere minus the north pole to

the equatorial plane as follows: for any point p = (x, y, z)T on S2, there is a unique line
through the north pole N and the point p. This line intersects the plane z = 0 in exactly
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one point p′. Then stereographic projection σ is the map

ψN : S2 − {N} → R2 (2.3)

p 7→ p′.

In coordinates,

ψN :

x
y
z

 7→ (
X
Y

)
=

1
1− z

(
x
y

)
, z 6= 1,

We can similarly do stereographic projection from the south pole S and get a map

ψS : S2 − {S} → R2 (2.4)x
y
z

 7→
(

X
Y

)
=

1
1 + z

(
x
y

)
. (2.5)

(a) The inverse map of stereographic projection σN gives a parametrization of the unit
sphere S2 − {N}. Write down this map

ψ−1
N : R2 → S2 − {N}. (2.6)

(b) Compute the transition function ψS ◦ ψ−1
N : R2 − {0} → R2 − {0}. Why is the

natural domain R2 − {0}?

Solution: (a) Using (u, v) as the coordinate in the equatorial plane. We want to reverse
the function u =

x
1− z

, v =
y

1− z
in the previous question. We compute

u2 + v2 =
x2 + y2

(1− z)2 =
1− z2

(1− z)2 =
1 + z
1− z

,

so z =
u2 + v2 − 1
u2 + v2 + 1

. Noticing
u
v

=
x
y

, and x2 + y2 = 1 − z2 =
4u2 + 4v2

(u2 + v2 + 1)2 , we get

x =
2u

u2 + v2 + 1
, y =

2v
u2 + v2 + 1

. Thus the map is

ψ−1
N (u, v) =


2u

u2 + v2 + 1
2v

u2 + v2 + 1
u2 + v2 − 1
u2 + v2 + 1

.


(b) Now we compute
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ψS ◦ ψ−1
N

(
u
v

)
= ψS


2u

u2 + v2 + 1
2v

u2 + v2 + 1
u2 + v2 − 1
u2 + v2 + 1

.


=

1

1 +
(

u2 + v2 − 1
u2 + v2 + 1

)
 2u

u2 + v2 + 1
2v

u2 + v2 + 1


=

1
u2 + v2 + 1 + (u2 + v2 − 1)

(
2u
2v

)

=
1

u2 + v2 + 1 + (u2 + v2 − 1)

(
2u
2v

)

=
1

u2 + v2

(
u
v

)
.

Exercise 2.6. [Bonus] Circles on the unit sphere x2 + y2 + z2 = 1 are mapped under the
stereographic projectionx

y
z

 7→ (
X
Y

)
=

1
1− z

(
x
y

)
, z 6= 1,

to circles or lines in the equatorial plane. Prove this theorem using the following steps.
Recall that a circle on the surface of the sphere is the intersection of the sphere with a

plane.

(a) Assume that (x, y, z)T lies on the plane ax + by + cz = c. Prove that aX + bY = c.
(b) Prove that X2 + Y2 = 1+z

1−z .
(c) Suppose now that (x, y, z)T lies on the plane ax + by + cz = 1 + c. Use part (b) to

show that in this case (X, Y) satisfies the equation of a circle

(X− a)2 + (Y− b)2 = a2 + b2 − 2c− 1. (†)

It remains to show two things: that we have taken into consideration all circles on the
sphere, and that the circle defined in part (c) really is a circle.

(d) Consider the plane ax + by + cz = d. If c 6= d, show that the equation of the plane
may be rewritten so that d− c = 1. Argue that all planes in R3 are considered in
parts (a) and (c).
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(e) Assume that the plane ax + by + cz = d intersects the unit sphere. By considering
the unit normal vector 1√

a2+b2+c2 (a, b, c)T to the plane, explain why we must have

‖d‖ ≤
√

a2 + b2 + c2.

What does equality in this formula mean? Use this to conclude that the right hand
side of (†) is non-negative.

(f) Use parts (a) through (e) to argue that any circle on the surface of the sphere is
projected to a circle or a line under the stereographic projection and that conversely
every circle and line in the equatorial plane arises this way.

Solution:
(a)

aX + bY =
ax

1− z
+

by
1− z

=
ax + by

1− z
=

c− cz
1− z

= c.

(b)

X2 + Y2 =
x2 + y2

(1− z)2 =
1− z2

(1− z)2 =
1 + z
1− z

.

(c)

(X− a)2 + (Y− b)2 = X2 + Y2 − 2(aX + bY) + a2 + b2

=
1 + z
1− z

− 2
1 + c− cz

1− z
+ a2 + b2

= a2 + b2 − 2c− 1.

(d) If c 6= d, divide the equation by d − c to get a′x + b′y + c′z = d′. It represents
the same plane, and d′ − c′ = 1. As every plane in R3 can be written as in the form
ax + by + cz = d for some a, b, c, d. Part (a) takes care of the case when c− d. The previous
argument reduces any other case to the situation in part (c).

(e) Suppose (x0, y0, z0) is a intersection point. Then we have x2
0 + y2

0 + z2
0 = 1, and

ax0 + by0 + cz0 = d = 〈

a
b
c

 ,

x0

y0

z0

〉, where 〈·, ·〉 denote the usual inner product on

R3. Then, by Cauchy-Schwarz inequality, we have |d| ≤
√

a2 + b2 + c2
√

x2
0 + y2

0 + z2
0 =

√
a2 + b2 + c2. Notice, in part (c), d = 1 + c, so we have (1 + c)2 ≤ a2 + b2 + c2, so 0 ≤

a2 + b2 − 2c− 1.
(f) Any circle on the surface of the sphere can be viewed as the intersection of the sphere

with a plane in R3. If this plane if of the form in part (a), (if you think about it, the

condition in part (a) is saying that the plane passes the north pole N =

0
0
1

) we get the
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image is a line in the equatorial plane. If this plane is of the form in part (c), we get a circle
in the equatorial plane.
Conversely, suppose we are given a line L in the equatorial plane, consider the plane
passing L and the north pole N in R3. It intersects the sphere at some circle. Suppose
we are given some circle in the equatorial plane, it can be described by a equation of
the form (X − a)2 + (Y − b)2 = r2, for some a, b, r. Then, by the result in part (c), let

c =
r2 + 1− a2 − b2

2
, we get the circle is the image of some circle which is the intersection

of the plane ax + by + cz = 1 + c and the sphere.

3. LECTURE 3: DIFFERENTIAL 1-FORMS & EXTERIOR DERIVATIVE & DIFFERENTIAL

FORMS & CHANGES OF COORDINATES(LF)

[(given Wednesday, July 3, 2019) ]

3.1. Differential 1-Forms, Ω1(M). In any local patch U that looks like Rn, we define the
1-forms dx1, · · · , dxn by the properties

dxi

(
∂

∂xj

)
=

1 i = j

0 i 6= j.
(3.1)

It is a fact that any 1-form on any patch U that looks like Rn can be written

α = f1dx1 + f2dx2 + · · ·+ fndxn, (3.2)

for some real-valued functions f1, · · · , fn : U → R. Recall that any vector field on any
patch U that looks like Rn can be written

v = g1
∂

∂x1
+ g2

∂

∂x2
+ · · ·+ gn

∂

∂xn
, (3.3)

for some real-valued functions g1, · · · , gn : U → R. Then

α(v) = f1dx1(v) + f2dx2(v) + · · ·+ fndxn(v) (3.4)

= f1g1 + f2g2 + · · ·+ fngn.

Indeed, note that this final expression for α(v) is a function.
Note the similarity between this final expression and the dot product in Rn of the vector

fields v and w = f1
∂

∂x1
+ f2

∂
∂x2

+ · · ·+ fn
∂

∂xn
.

3.2. Tangent space & cotangent space.

3.3. Exterior derivative, d. Given a function f , there is a naturally associated 1-form d f
such that v[ f ] = d f (v).
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Let M be an n-dimensional manifold, and let f ∈ C∞(M) be a smooth real-valued
function on M. In any patch U that looks like Rn, the 1-form d f is

d f = ∂x1 f dx1 + ∂x2 f dx2 + · · ·+ ∂xn f dxn. (3.5)

3.4. Differential k-forms, Ωk(M). On any patch U that looks like Rn, the differential
k-forms can be written in the basis

{dxi1 ∧ dxi2 ∧ · · · ∧ dxik}(i1,··· ,ik)∈I (3.6)

where the indicial set I is

I = {(i1, · · · , ik) : 1 ≤ i1 < i2 < · · · < ik ≤ n}. (3.7)

The wedge project “∧” is map

Ωk(M)×Ω`(M) → Ωk+`(M)

(α, β) 7→ α ∧ β.

satisfying α ∧ β = (−1)kl β ∧ α.
View a differential k-form as a map from k copies of Vect(M) to C∞(M). To describe

the map, only need to give it in terms of this basis where each αi ∈ Ω1(M):

α1 ∧ · · · ∧ αk(v1, · · · , vk) = det


α1(v1) α1(v2) · · · α1(vk)

α2(v1) α2(v2) · · · α2(vk)
...

... . . . ...
αk(v1) αk(v2) · · · αk(vk)

 (3.8)

Can extend the exterior derivative to a map

d : Ωk(M)→ Ωk+1(M).

In coordinates, if

α = ∑
I∈I

= f IdxI where dxI = dxi1 ∧ · · · ∧ dxik ,

then
dα = ∑

I∈I
d f I ∧ dxI .

Proposition 3.1.

• d(α + β) = dα + dβ

• d(α ∧ β) = dα ∧ β + (−1)deg(α)α ∧ dβ

• d(dα) = 0

Exercises.
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Exercise 3.2. [Straightforward] Consider the vector fields

u = x
∂

∂x
− ∂

∂y
, v = y

∂

∂x
− xy

∂

∂z
,

and the 2-forms

α = ydx ∧ dy− zdx ∧ dz, β = 3dx ∧ dz− yzdy ∧ dz,

γ = zdx ∧ dy− ydx ∧ dz + zdy ∧ dz.
(3.9)

Calculate α(u, v), β(u, v), γ(u, v).

Solution: We show one less step each time.

α(u, v) = y(dx(u)dy(v)− dx(v)dy(u))− z(dx(u)dz(v)− dx(v)dz(u))

= y(0− y(−1))− z(x(−xy)− 0)

= y2 + x2yz

β(u, v) = 3(x(−xy)− y · 0)

= yz(−1(−xy)− 0)

= −3x2y− xy2z

γ(u, v) = yz + x2y2 + xyz

Exercise 3.3. [Straightforward] Compute the following:

(1) d(x2)

(2) d (xdy ∧ dz + ydz ∧ dx + zdx ∧ dy)
(3) d(x2dy + 3xydx)

Solution:

d(x2) = 2xdx

d(xdy ∧ dz + ydz ∧ dx + zdz ∧ dy) = dx ∧ dy ∧ dz + dy ∧ dz ∧ dx + dz ∧ dz ∧ dy

= 2dx ∧ dy ∧ dz

d(x2dy + 3xydx) = 2xdx ∧ dy + 3d(xy) ∧ dx

= 2xdx ∧ dy + 3xdy ∧ dx

= 2xdx ∧ dy− 3xdx ∧ dy

= −xdx ∧ dy.



16 LARA ANDERSON AND LAURA FREDRICKSON

Exercise 3.4. [Straightforward] Let f (x, y) = x2 − y2. Compute the scalar function d f (v)
where v = 2x ∂

∂x − 3y ∂
∂y .

Solution: We compute
d f = 2xdx− 2ydy.

Hence,

d f (v) = 2xdx(v)− 2ydy(v)

2x(2x)− 2y(−3y)

= 4x2 + 6y2.

Alternatively, d f (v) = v[ f ] = 4x2 + 6y2.

Exercise 3.5. Given α ∈ Ω1(M), define a differential operator dα by

dα : Ωp(M) → Ωp+1(M)

ω 7→ dω + α ∧ω.

Now, take M = R with parameter t and α = cdt. Find all functions ω ∈ Ω0(R) such
that

dαω = 0. (3.10)

Solution:
0 = dαω = ∂tωdt + cωdt = (∂tω + cω)dt. (3.11)

Thus ω = Ce−ct for C ∈ R.

Exercise 3.6. We can extend d to an operator mapping Ωk(M)-valued n-vectors to Ωk+1(M)-
valued n-vectors.

d

β1
...

βn

 =

dβ1
...

dβn


Similarly, the Ω`(M)-valued n× n matrix A maps Ωk(M)-valued n-vectors to Ωk+`(M)-
valued n-vectors by

A ∧

β1
...

βn

 =


∑n

j=1 A1j ∧ β j
...

∑n
j=1 Anj ∧ β j


Let s be an Ω0(M)-valued n-vector, and let A be an Ω1(M)-valued n× n matrix. Define

an operator dA by
dAs = ds + A ∧ s. (3.12)
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Show that
dA(dAs) = FAs, (3.13)

where FA is an Ω2(M)-valued n× n matrix equal

FA = dA + A ∧ A. (3.14)

In our expression for FA, note that we’ve extended d and A∧ to act on Ω1(M)-valued ma-
trices. [Hint: Write it out completely when n = 2. The notation is more cumbersome

for general n, though it is conceptually the same.] [We’ll use this later! The op-
erator dA is a “connection on a vector bundle” and FA is its curvature.]

Solution: We present the solution for n = 2. Let A be equal to

A =

(
α11 α12

α21 α22.

)
Then

dA(dAs) = dA(ds + A ∧ s)

= d2s + A ∧ ds + d(A ∧ s) + A ∧ A ∧ s

= A ∧ ds + d(A ∧ s) + A ∧ A ∧ s

=

(
α11 α12

α21 α22.

)
∧
(

ds1

ds2

)
+ d

(
α11s1 + α12s2

α21s1 + α22s2

)
+ A ∧ A ∧ s

=

(
α11 ∧ ds1 + α12 ∧ ds2 + dα11s1 − α11 ∧ ds1 + dα12s2 − α12ds1

α21 ∧ ds1 + α22 ∧ ds2 + dα21s1 − α21 ∧ ds1 + dα22s2 − α22ds1

)
+ A ∧ A ∧ s

=

(
dα11s1 + dα12s2

dα21s1 + dα22s2

)
+ A ∧ A ∧ s

=

(
dα11 dα12

dα21 dα22

)
∧
(

s1

s2

)
+ A ∧ A ∧ s

= (dA + A ∧ A)s

Exercise 3.7. [Bonus] Let f (x, y) = u(x, y) + iv(x, y) be a complex-valued function f :
R2 → C where u, v are real-valued. A function f is said to be holomorphic if ∂

∂z̄ f =

d f
(

∂
∂z̄

)
= 0, where z, z̄ are viewed as co-ordinates on C. Writing z = x + iy, prove

that f is holomorphic if and only if u, v satisfy the Cauchy-Riemann equations:

ux = vy, vx = −uy.
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Solution: Note that since z = x + iy, z = x− iy, then

x =
z + z

2

y =
z− z

2i
.

Then we compute:

0 = d f
(

∂

∂z

)
= (du + idv)

(
∂x
∂z

∂

∂x
+

∂y
∂z

∂

∂y

)
=

(
uxdx + uydy + ivxdx + ivydy

) (1
2

∂

∂x
− 1

2i
∂

∂y

)
= ux

1
2
− uy

1
2i

+ ivx
1
2
− ivy

1
2i

=
1
2
(
(ux − vy) + i(vx + uy)

)
.

If a complex-valued function is zero, then it’s real and imaginary parts are separately
zero, i.e.

ux − vy = 0 vx + uy = 0. (3.15)

These are the Cauchy-Riemann equations.

4. LECTURE 4: METRICS & HODGE STAR (LF)

[(Friday, July 5, 2019)]

4.1. Metrics.

Definition 4.1. A semi-Riemannian metric on a vector space V is a map

g : V ×V → R (4.1)

that is

• bilinear, or linear in each slot:

g(cv + v′, w) = cg(v, w) + g(v′, w)

g(v, cw + w′) = cg(v, w) + g(v, w′)

• symmetric: g(v, w) = g(w, v)
• nondegenerate: If g(v, w) = 0 for all w ∈ V, then v = 0.

Semi-Riemannian metrics on the vector space Rn are given by symmetric matrices with
det M 6= 0. The metric is given by

g(v, w) = wT Mv. (4.2)
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We define the signature of a metric g on Rn to (σ+, σ−) where σ+ is the number of positive
eigenvalues of the associated metric M and σ− is the number of negative eigenvalues of
M.

Definition 4.2. A semi-Riemannian metric g on an n-dimensional manifold is a family of
semi-Riemannian metrics

gp : TpM× TpM→ R p ∈ M

such that for every pair of vector fields v, w on M the function f : M→ R defined by

f (p) = gp(v|p, w|p)

is smooth.

Example 4.3. A general metric on patch U of a 2-dimensional manifold can be written

g = Edx2 + 2Fdxdy + Gdy2,

where dx2, dxdy, dy2 each map a pair of vector fields to a function defined by

dx2(v, w) = dx(v)dx(w)

dxdy(v, w) =
1
2
(dx(v)dy(w) + dy(v)dx(w))

dy2(v, w) = dy(v)dy(w).

(More formally, we’d call g a “symmetric 2-tensor.”) The associated matrix is(
E F
F G

)
. (4.3)

Example 4.4. The Euclidean metric on Rn is written

g = dx2
1 + dx2

2 + · · ·+ dx2
n. (4.4)

Example 4.5. The Lorentzian metric on Rn,1 is

g = −dt2 + dx2
1 + dx2

2 + · · ·+ dx2
n. (4.5)

4.2. Lengths.

4.3. Volumes. Let M be an n-dimensional manifold with Riemannian metric g. In a local
coordinate patch, let gij = g( ∂

∂xi
, ∂

∂xj
). Then the volume form is the following nowhere-

vanishing n-form:

dvol =
√
|det gij|dx1 ∧ · · ·dxn. (4.6)
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4.4. Hodge star. There are three basis operations on differential k-forms: the wedge prod-
uct “∧”, the exterior derivative “d”, and the Hodge star “?”.

The Hodge star operator on an n-dimensional manifold M with Riemannian metric g
is a map

? : Ωp(M)→ Ωn−p(M). (4.7)

If we are using coordinates such that ∂
∂x1

, ∂
∂x2

, · · · , ∂
∂xn

are orthonormal, then the Hodge
star operator is defined by

dxi1 ∧ dxi2 ∧ · · ·dxik = (−1)σdxik+1 ∧ · · ·dxin ,

where (i1, i2, · · · , in) is a permutation of (1, 2, · · · , n) and σ is the sign of this permutation.
It is easy to verify that ?2α = (−1)n(k−n)α for α ∈ Ωk(M).

Example 4.6. In R3 with the Euclidean metric g = dx2 + dy2 + dz2, the Hodge star operator
acts as follows: On Ω0(R3),

? 1 = ±dx ∧ dy ∧ dz (4.8)

On Ω1(R3),
?dx = dy ∧ dz ? dy = dz ∧ dx ? dz = dx ∧ dy

On Ω2(R3),
?dx ∧ dy = ?dx ∧ dz = ?dy ∧ dz =

On Ω3(R3),
?(dx ∧ dy ∧ dz)

4.5. Application to vector calculus in R3. The standard vector calculus operations of div,
grad and curl in (R3, gEuc) are closely related to ‘d’. For example, the curl of a vector field
v = (αx, αy, αz) is

∇× v =

∣∣∣∣∣∣∣
i j k
∂

∂x
∂

∂y
∂
∂z

αx αy αz

∣∣∣∣∣∣∣ =
(

∂αz

∂y
−

∂αy

∂z

)
i +
(

∂αx

∂z
− ∂αz

∂x

)
j +
(

∂αy

∂x
− ∂αx

∂y

)
k,

while the exterior derivative of the 1-form α = αxdx + αydy + αzdz is

dα =

(
∂αy

∂x
− ∂αx

∂y

)
dx ∧ dy−

(
∂αx

∂z
− ∂αz

∂x

)
dx ∧ dz +

(
∂αz

∂y
−

∂αy

∂z

)
dy ∧ dz.

Comparing coefficients gives part of the following table: start on any line and compare
what d does to the form with what the corresponding vector calculus operation does to
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the object on the right hand side.

Forms Traditional vector fields

function f

d
��

←→ f

∇•grad
��

1-form αxdx + αydy + αzdz

d
��

←→ αxi + αyj + αzk

∇×•curl
��

2-form β1dy ∧ dz + β2dz ∧ dx + β3dx ∧ dy

d
��

←→ β1i + β2j + β3k

∇·•div
��

3-form γdx ∧ dy ∧ dz ←→ function γ

The single ‘d’ operator is grad, div and curl all in one!
The differential form notation has two distinct advantages over traditional vector cal-

culus: (1) it works in all co-ordinate systems and all dimensions; (2) the result d2 = 0
translates to the 2 theorems,

∇× (∇ f ) = 0, ∇ · (∇× v) = 0.

4.6. Rewriting static Maxwell’s equations. From the above discussion, there are three
ways to interpret an vector in R3:

• as a vector field
• as a differential 1-form
• as a differential 2-form.

Maxwell’s equations are particularly clean if we interpret the electric vector field E =

(Ex, Ey, Ez) as a 1-form on R3 as

E = Exdx + Eydy + Ezdz (4.9)

and if we interpret the magnetic vector field B as a 2-form on R3

B = Bxdy ∧ dz + Bydz ∧ dx + Bzdx ∧ dy. (4.10)

Then
∇ · B = 0, ∇× E = 0 (4.11)

is equivalent to
dB = 0 dE = 0. (4.12)
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The second pair of static Maxwell’s equations is

∇ · E = ρ ∇× B = j. (4.13)

This ends up being equivalent to

? d ? E = ρ ? d ? B = j, (4.14)

where j = jxdx + jydy + jzdz is determined from the components of j = (jx, jy, jz).

Exercises.

Exercise 4.7. [Straightforward]Let e1, · · · , en be the usual orthonormal basis of Rn and
x1, · · · , xn the dual basis of (Rn)∗. Compute ?α for the following differential forms:

(a) α = 9dx1 ∧ dx3 ∈ Ω2(R4)

(b) α = dx1 + dx2 + x1x2
2dx3 ∈ Ω1(R3)

Solution: (a) We know that

? (dx1 ∧ dx3) = (−1)σdx2 ∧ dx4,

where σ is the sign of the permutation (1, 3, 2, 4). Swapping 2 and 3, see see σ is odd,
hence

? (dx1 ∧ dx3) = −dx2 ∧ dx4.

(b) From lecture

? dx1 = dx2 ∧ dx3 ? dx2 = dx3 ∧ dx1 ? dx3 = dx1 ∧ dx2. (4.15)

Hence, since ? is linear,

? α = dx2 ∧ dx3 − dx1 ∧ dx3 + x1x2
2dx1 ∧ dx2. (4.16)

Exercise 4.8. Show that taking the wedge product of 1-forms translates to taking the cross
product of vectors, i.e. if α = vxdx + vydy + vzdz and β = wxdx + wydy + wzdz, then

? (α ∧ β) = qxdx + qydy + qzdz (4.17)

for
q = v×w. (4.18)

Solution: We compute

v×w =

vx

vy

vz

×
wx

wy

wz


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=

 vywz − vzwy

−(vxwz − vzwx)

vxwy − vywx

 .

On the other hand,

?(α ∧ β) = ?
(
(vxwy − vywx)dx ∧ dy + (vxwz − vzwx)dx ∧ dz + (vywz − vzwy)dy ∧ dz

)
= (vxwy − vywx)dz− (vxwz − vzwx)dy + (vywz − vzwy)dx.

Exercise 4.9. [Bonus] Consider R4 with the Euclidean metric.

(a) An differential 2-form β on R4 is called self-dual if ?β = β. What is the dimension
of the space of self-dual differential 2-forms on R4. Find a basis of this space.
[Hint: Prove α + ?α is self-dual.]

(b) An differential 2-form γ on R4 is called anti-self-dual if ?γ = −γ. What is the
dimension of the space of self-dual differential 2-forms on R4. Find a basis of this
space.

(c) Suppose β is self-dual, and γ is anti-self-dual. Prove that 〈〈β, γ〉〉 = 0 where
〈〈α1, α2〉〉 = ?(α1 ∧ ?α2). Conclude that we have the orthogonal decomposition

Ω2(R4) = {self-dual 2-forms} ⊕ {anti-self-dual 2-forms}.

Solution: (a) We first prove that α + ?α is self-dual:

?(α + ?α) = ?α + ?2α

= ?α + α.

Here we used that ?2 = 1 on Ω2(R4).
A basis for Ω2(R2) is dx1 ∧ dx2, dx1 ∧ dx3, dx1 ∧ dx4, dx2 ∧ dx3, dx2 ∧ dx4, dx3 ∧ dx4.

From this we can compute all the stars

? (dx1 ∧ dx2) = dx3 ∧ dx4

? (dx1 ∧ dx3) = −dx2 ∧ dx4

? (dx1 ∧ dx4) = dx2 ∧ dx3

? (dx2 ∧ dx3) = −dx1 ∧ dx4

? (dx2 ∧ dx4) = −dx1 ∧ dx3

? (dx3 ∧ dx4) = −dx1 ∧ dx2

Hence, we form a basis for the space of self-dual forms in Ω2(R4) by taking α + ?α for
every basis element of Ω2(R2):

dx1 ∧ dx2 + dx3 ∧ dx4, dx1 ∧ dx3 − dx2 ∧ dx4 dx1 ∧ dx4 + dx2 ∧ dx3. (4.19)
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(b) Similarly, β− ?β is anti-self-dual so a basis is

dx1 ∧ dx2 − dx3 ∧ dx4, dx1 ∧ dx3 + dx2 ∧ dx4 dx1 ∧ dx4 − dx2 ∧ dx3. (4.20)

(c) We first observe that for any β, γ ∈ Ω2(R4),

〈〈β, γ〉〉 = 〈〈?β, ?γ〉〉

by checking this on a basis of Ω2(R4). We can easily get part of the way as follows:

〈〈?β, ?γ〉〉 = ? ((?β) ∧ ?(?γ))

= ? (?β ∧ γ)

= ? (γ ∧ ?β)

= 〈〈γ, β〉〉

Hence, now taking β to be self-dual and γ to be anti-self-dual,

〈〈β, γ〉〉 = 〈〈?β, ?γ〉〉

= 〈〈β,−γ〉〉

= −〈〈β, γ〉〉

Hence, 〈〈β, γ〉〉 = 0

Exercise 4.10. In coordinates, the Laplacian is

∆ f = ?d ? d f .

On R2 with Cartesian coordinates, ∆ f =
(

∂2

∂x2 +
∂2

∂y2

)
f . Compute ∆ f in polar coordinates

on R2 using that ?(dr ∧ dθ) = r−1, ?dr = rdθ and ?dθ = −r−1dr.

Solution: We compute that

?d ? d f = ?d ? (∂r f dr + ∂θ f dθ)

= ?d
(

∂r f rdθ − r−1∂θ f dr
)

= ?
(

∂2
r f rdr ∧ dθ + ∂r f dr ∧ dθ − r−1∂2

θ f ∂θ ∧ dr
)

= ∂2
r f r(r−1) + ∂r f (r−1)− r−1∂2

θ f (−r−1)

= ∂2
r f + r−1∂r f + r−2∂2

θ f

5. LECTURE 5: MAXWELL’S EQUATIONS REVISITED (LF)

[(given Monday, July 8, 2019) ]
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5.1. Electromagnetic potential. It’s best to view the electric field as a 1-form

E = Exdx + Eydy + Ezdz (5.1)

and the magnetic field as a 2-form

B = Bxdy ∧ dz + Bydz ∧ dx + Bzdx ∧ dy. (5.2)

Here Ex, Ey, Ez, Bx, By, Bz are real-valued functions on R3
x,y,z ×Rt.

We can combine both fields into a unified electromagnetic field F, which is a 2-form on
R4 given by

F = B + E ∧ dt. (5.3)

dF = 0: Then the first pair of Maxwell’s equations

∇ · B = 0 (5.4)

∇× E +
∂B
∂t

= 0 (5.5)

is encoded in the single equation
dF = 0.

To see this, on spacetimes like S×R, it makes sense to split d on S×R as d = dS + dR =

dS + dt ∧ ∂t, where dS is the exterior derivative on S and dt is the exterior derivative on
Rt. Then

dα = dSα + dt ∧ ∂tα. (5.6)

Then,

dF = d(B + E ∧ dt) (5.7)

= dS(B + E ∧ dt) + dt ∧ (∂tB + ∂tE ∧ dt)

= dSB + dSE ∧ dt + ∂tB ∧ dt

= (dSB) + (dSE + ∂tB) ∧ dt

Consequently, we see that dF = 0 is equivalent to the equations

dSB = 0, dSE + ∂tB = 0. (5.8)

These are the equations

∇ · B = 0, ∇× E +
∂B
∂t

= 0. (5.9)

?d ? F = J: The second pair of Maxwell’s equations

∇× B = j

∇ · E = ρ
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is encoded in the equation
? d ? F = J, (5.10)

where J = jxdx + jydy + jzdz− ρd ∈ Ω1(R3,1).

Remark 5.1. It is a fact that ?R3 E = ?R3,1(E ∧ dt) and (− ?R3 B) ∧ dt = ?R3,1 B.

5.2. Compatibility with special relativity.

Definition 5.2. An isometry of vector spaces with respective metrics (V, gV) and (W, gW)

is a bijective linear map V
f→W such that

gV(v1, v2) = gW( f (v1), f (v2)). (5.11)

Definition 5.3. An isometry of manifolds (M, g) and (N, h) is a smooth map M
f→ N

with smooth inverse such that for all p ∈ M and v, w ∈ TpM,

gp(v, w) = h f (p)( f )∗v, f∗w). (5.12)

The Lorentz group SO(3, 1) is the group of isometries of the vector space R3,1.

SO(3, 1) = {M ∈ Mat4×4(R) : MTGM = G and det M = 1} (5.13)

for

G :=


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (5.14)

The Poincaré group is the group of isometries of the manifold R3,1 and includes both
SO(3, 1) and translations.

We say that Maxwell’s equations are “compatible with special relativity” since dF = 0
and ?d ? F = J are preserved by the Poincaré group.

5.3. Gauge symmetry. As in Lecture 1, suppose the electric and magnetic fields E, B can
be written in terms of a scalar “electric potential” ϕ and a vector “magnetic potential” A
as

B = ∇×A, E = −∇ϕ− ∂

∂t
A. (5.15)

Then the electromagnetic field is

F = d
(

Axdx + Aydy + Azdz− ϕdt
)︸ ︷︷ ︸

Ã

(5.16)

Recall, that (ϕ, A) do not uniquely determine (E, B)
Now we have

Ã′ = Ã− dΓ. (5.17)
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The fact that Ã′ and Ã determine the same electromagnetic field F reduces to d2 = 0:

F′ = dÃ′ = d
(

Ã− dΓ
)
= dÃ = F.

Exercises.

Exercise 5.4. [Straightforward] Let

B = − sin(t− x)dx ∧ dz + cos(t− x)dx ∧ dy.

Compute dB. Compute ?B.

Solution:

dB = −d (sin(t− x)) ∧ dx ∧ dz + d (cos(t− x)) ∧ dx ∧ dy

= − cos(t− x) (dt− dx) ∧ dx ∧ dz− sin(t− x) (dt− dx) ∧ dx ∧ dy

= − cos(t− x)dt ∧ dx ∧ dz− sin(t− x)dt ∧ dx ∧ dy.

?B = − sin(t− x)dt ∧ dy− cos(t− x)dt ∧ dz,

since
dx ∧ dz ∧ (dt ∧ dy) = −dt ∧ dx ∧ dy ∧ dz)

and
dx ∧ dy ∧ (dt ∧ dz) = dt ∧ dx ∧ dy ∧ dz.

Exercise 5.5. For vacuum Maxwell’s equations, the transformation

B 7→ E

E 7→ −B

takes the first pair of equations to the second pair and vice versa!

∇ · B ∇× E +
∂B
∂t

= 0 (5.18)

∇ · E ∇× B− ∂E
∂t

= 0

This symmetry is a duality and is a clue that the electric and magnetic fields are part of a
unified whole: the electromagnetic field.

(a) Show that from the perspective of F, this duality amounts to

F 7→ ?F (5.19)
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(b) Show that if F solves the vacuum Maxwell’s equations, then ?F solves the vacuum
Maxwell’s equations. (Note: This symmetry between E and B does not, however,
extend to the non-vacuum Maxwell equations.)

(c) Show that the complex-valued solution

E =

 0
ei(t−x)

−iei(t−x)

 B =

 0
−iei(t−x)

−ei(t−x)

 (5.20)

is a self-dual solution of Maxwell’s equations on R3,1, i.e. the corresponding elec-
tromagnetic field F satisfies ?F = iF. (Since we’re using the Lorentzian metric,
?2 = −1, hence F is self-dual if ?F = iF. In contrast, in the Euclidean metric on
R4, F is self-dual if ?F = F.)

Argue that the real part (and similarly the imaginary part) of E and B

ERe =

 0
cos(t− x)
sin(t− x)

 BRe =

 0
sin(t− x)
cos(t− x)

 (5.21)

give a solution of Maxwell’s equations.

Solution: (a) The transformation
B 7→ E

and
E 7→ −B

amounts to
B 7→ ?R3 E E 7→ − ?R3 B

in terms of 1 forms and 2-forms on spacetimes S×Rt. The relation between ?R3 and ?R3,1

is given in the remark above: ?R3 E = ?R3,1(E ∧ dt), e.g.

?R3dx = dy ∧ dz ?R3,1 (dx ∧ dt) = dy ∧ dz;

and likewise, (− ?R3 B) ∧ dt = ?R3,1 B, e.g.

−(?R3dx ∧ dy) ∧ dt = −dz ∧ dt ?R3,1 dx ∧ dy = −dz ∧ dt,

The electromagnetic field is
F = B + E ∧ dt.

Consequently, making the above transformation gives

B 7→ ?R3,1(E ∧ dt) E ∧ dt 7→ ?R3,1 B.
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Hence,
F = B + E ∧ dt 7→ ?R3,1(F) = ?R3,1(B + E ∧ dt).

(b) If F solves ?d ? F = 0 and dF = 0, then clearly ?F solves ?d ? F and dF = 0.

(c) We compute

?F = ?
(
−iei(t−x)dz ∧ dx− ei(t−x)dx ∧ dy + ei(t−x)dy ∧ dt− iei(t−x)dz ∧ dt

)
= −iei(t−x)dt ∧ dy− ei(t−x)dt ∧ dz + ei(t−x)dz ∧ dx− iei(t−x)dx ∧ dy

= iF.

If self-dual F solves Maxwell’s equations (or even just dF = 0, it follows that the real and
imaginary parts are separately solution of Maxwell’s equations, since ?, d do not mix the
real and imaginary parts. Moreover, note that ?Re(F) = −Im(F). Taking the real part,
we see that the associated electromagnetic potential is

ReF = sin(t− x)dz ∧ dx− cos(t− x)dx ∧ dy︸ ︷︷ ︸
B

+

cos(t− x)dy + sin(t− x)dz)︸ ︷︷ ︸
E

 ∧ dt.

(5.22)
We compute:

d ReF = cos(t− x)dt ∧ dz ∧ dx + sin(t− x)dt ∧ dx ∧ dy

+ sin(t− x)dx ∧ dy ∧ dy− cos(t− x)dx ∧ dz ∧ dt

= 0

Similarly, we see that

?ReF = ? (sin(t− x)dz ∧ dx− cos(t− x)dx ∧ dy + cos(t− x)dy ∧ dt + sin(t− x)dz ∧ dt)

= sin(t− x)dt ∧ dy− cos(t− x)dt ∧ dz + cos(t− x)dx ∧ dz− sin(t− x)dx ∧ dy

hence, d ? ReF = 0.

Exercise 5.6. For notational convenience let x0 = t, x1 = x, x2 = y, x3 = z. Define
y0

y1

y2

y3

 = A


x0

x1

x2

x3

+


c0

c1

c2

c3

 , (5.23)

where A ∈ SO(3, 1), i.e. take an arbitrary Lorentzian transformation and a translation.
Compute

−(dy0)
2 + (dy1)

2 + (dy2)
2 + (dy3)

2,
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and show that it’s equal to

g = −(dx0)
2 + (dx1)

2 + (dx2)
2 + (dx3)

2,

i.e. the coordinate transformation above is an isometry of R3,1 to itself.

Solution:

−(dy0)
2 + (dy1)

2 + (dy2)
2 + (dy3)

2

= −
(

3

∑
i=0

∂y0

∂xi
dxi

)2

+

(
3

∑
i=0

∂y1

∂xi
dxi

)2

+

(
3

∑
i=0

∂y2

∂xi
dxi

)2

+

(
3

∑
i=0

∂y3

∂xi
dxi

)2

= −
(

3

∑
i=0

A0,idxi

)2

+

(
3

∑
i=0

A1,idxi

)2

+

(
3

∑
i=0

A2,idxi

)2

+

(
3

∑
i=0

A3,idxi

)2

= ∑
0≤i<j≤3

(
−2A0,i A0,j + 2A1,i A1,j + 2A2,i A2,j + 2A3,i A3,j

)
dxidxj

+
3

∑
i=0

(
−A2

0,i + A2
1,i + A2

2,i + A2
3,i

)
dx2

i

= ∑
0≤i<j≤3

(
2ATGA

)
ij

dxidxj +
3

∑
i=0

(
ATGA

)
ii

dx2
i

= ∑
0≤i<j≤3

(2G)ij dxidxj +
3

∑
i=0

(G)ii dx2
i

= −dx2
0 + dx2

1 + dx2
2 + dx2

3.

Exercise 5.7. [Bonus] We say we are in temporal gauge if the potential Ã satisfies Ã
(

∂
∂t

)
=

0, i.e.
Ã = 0 dt + Ãxdx + Ãydy + Ãzdz. (5.24)

Given an arbitrary potential Ã, define a function f such that Ã′ = Ã− d f is in temporal
gauge.

Solution: Take

f (t, p) =
∫ t

0
Ãt(s, p)ds. (5.25)

Then

Ã′t(t, p) = Ãt(t, p)− (d f )(
∂

∂t
)(t, p) = A0(t, p)− ∂t

∫ t

0
A0(s, p)ds = 0. (5.26)

Find f such thatÃ′ = Ã− d f . is in temporal gauge.
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6. LECTURE 6: ACTION PRINCIPLE; LIE GROUPS AND LIE ALGEBRAS (LF)

[(given Tuesday, July 9, 2019) ]

Exercises.

Exercise 6.1. [Straightforward] A path bewetween two points a, b ∈ Rn is a map

γ : [0, 1]→ Rn, (6.1)

such that γ(0) = a and γ(1) = b. The length of the path is

S(γ) =
∫ 1

0

√
γ′(t) · γ′(t)dt. (6.2)

Find the Euler-Lagrange equations for the action S.
Without loss of generality, we can assume that the path γ is traced out at “constant

speed”
√

γ′(t) · γ′(t) = c (hence γ′(t) · γ′′(t) = 0). Using this, show that a length-
minimizing path must be a straight line.

[Bonus] Show that a length-minimizing path must be a straight line without assuming
that γ is traced out at constant speed.

Solution: A deformation is δγ : [0, 1] → Rn such that δγ(0) = 0 and δγ(1) = 0. We then
see that

d
dε

∣∣∣∣
ε=0

S(γ + εδγ) =
d
dε

∣∣∣∣
ε=0

∫ 1

0

√
(γ′(t) + εδγ′(t)) · (γ′(t) + εδγ′(t))dt

=
∫ 1

0

1
2
(γ′(t) · γ′(t))−1/2 d

dε

∣∣∣∣
ε=0

(γ′(t) + εδγ′(t)) · (γ′(t) + εδγ′(t))dt

=
∫ 1

0

1
2
(γ′(t) · γ′(t))−1/2 2γ′(t) · δγ′(t)dt

= −
∫ 1

0

d
dt

(
γ′(t)√

γ′(t) · γ′(t)

)
· δγ(t))dt,

Hence the Euler-Lagrange equations are

0 =
d
dt

(
γ′(t)√

γ′(t) · γ′(t)

)

=
(γ′(t) · γ′(t))1/2

γ′′(t)− γ′(t) (γ′(t) · γ′(t))−1/2 (γ′(t) · γ′′(t))
γ′(t) · γ′(t)

=
(γ′(t) · γ′(t)) γ′′(t)− γ′(t) (γ′(t) · γ′′(t))

(γ′(t) · γ′(t))3/2
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It follows that
0 =

(
γ′(t) · γ′(t)

)
γ′′(t)− γ′(t)

(
γ′(t) · γ′′(t)

)
. (6.3)

Now supposing ‖γ′(t)‖ = c, then the Euler-Lagrange equations become

γ′′(t) = 0, (6.4)

i.e. γ(t) = c1 + c2t. This is the equation for a straight line. The vectors c1 and c2 are
determined from a and b.

[Bonus] From the Euler-Lagrange equations we have

0 =
(
γ′(t) · γ′(t)

)
γ′′(t)− γ′(t)

(
γ′(t) · γ′′(t)

)
. (6.5)

Taking the dot product of this with γ′′(t), we see that

‖γ′(t)‖2‖γ′′(t)‖2 = 〈γ′(t), γ′′(t)〉2. (6.6)

It follows from the Cauchy-Schwarz inequality that γ′′(t) and γ′(t) are linearly depen-
dent. Since γ′′(t) always points in the same direction as γ′(t), we see that (provided γ′(t)
never vanishes) γ(t) is a straight line.

Exercise 6.2. Let f : [a, b]→ R≥0. Consider the surface of revolution obtained by rotating
the graph of f around the x axis. The surface area of the obtained surface is

S( f ) =
∫ b

a
2π f (x)

√
1 + f ′(x)2dx. (6.7)

Show that the Euler-Lagrange equations are√
1 + f ′(x)2 − d

dx

(
f (x) f ′(x)√
1 + f ′(x)2

)
= 0, (6.8)

i.e. f (x) solves the differential equation

1 + ( f ′(x))2 = f (x) f ′′(x). (6.9)

[Bonus] Solve this ODE for f (x). [You should find f (x) = cosh
(

x+c1
c2

)
, where c1, c2 are

arbitrary constants.] This resulting surface of rotation is called a minimal surface.

Solution: We take

d
dε

∣∣∣∣
ε=0

S( f + εδ f ) =
∫ b

a
2π( f (x) + εδ f (x))

√
1 + ( f ′(x) + εδ f ′(x))2dx

= 2π
∫ b

a

(
δ f (x)

√
1 + f ′(x)2 + f (x)

(
1 + f ′(x)2

)−1/2
f ′(x)δ f ′(x)

)
dx

= 2π
∫ b

a
δ f (x)

(√
1 + f ′(x)2 − d

dx

(
f (x)

(
1 + f ′(x)2

)−1/2
f ′(x)

))
dx,
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where in the last line we used integration by parts. Thus, we see that the Euler-Lagrange
equations are as claimed.

Expanding this, we see

0 =
√

1 + f ′(x)2 − d
dx

(
f (x) f ′(x)

(
1 + f ′(x)2

)−1/2
)

=
√

1 + f ′(x)2 −
(

f ′(x) f ′(x)
(

1 + f ′(x)2
)−1/2

)
−
(

f (x) f ′′(x)
(

1 + f ′(x)2
)−1/2

)
+

1
2

(
f (x) f ′(x)

(
1 + f ′(x)2

)−3/2
2 f ′(x) f ′′(x)

)
Multiplying by

√
1 + f ′(x)2, we get

0 = 1 + f ′(x)2 − f ′(x) f ′(x)− f (x) f ′′(x) + f (x) f ′(x) f ′(x) f ′′(x)(1 + f ′(x)2)−1

= 1− f (x) f ′′(x) + f (x) f ′(x) f ′(x) f ′′(x)(1 + f ′(x)2)−1

= 1 + f (x) f ′′(x)
(
−1 + f ′(x)2

1 + f ′(x)2 +
f ′(x)2

1 + f ′(x)2

)
= 1− f (x) f ′′(x)

1 + f ′(x)2

Hence, we indeed see that
1 + f ′(x)2 = f (x) f ′′(x). (6.10)

[Bonus] This is a difficult ODE to solve. One technique is to first differentiate both sides.
In this, we seemingly make it worse but get rid of the pesky “1”.

1 + f ′(x)2 = f (x) f ′′(x)

⇒ d
dx

(
1 + f ′(x)2

)
=

d
dx
(

f (x) f ′′(x)
)

⇒ 2 f ′(x) f ′′(x) = f (x) f ′′′(x) + f ′(x) f ′′(x)

⇒ 0 = f (x) f ′′′(x)− f ′(x) f ′′(x)

⇒ 0 =
f (x) f ′′′(x)− f ′(x) f ′′(x)

f (x)2

=
d

dx

(
f ′′(x)
f (x)

)
⇒ c2 =

f ′′(x)
f (x)

⇒ c2 f (x) = f ′′(x)

⇒ f (x) = c1 sinh(cx) + c2 cosh(cx)
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Now, there are three constants c, c1, c2 rather than two because we took a derivative. Plug-
ging this in to our original ODE, we see that the constants must satisfy

1 + c2(c1 − c2)(c1 + c2) = 0. (6.11)

We let c1 = sinh(φ)/c and c2 = cosh(φ)/c, and then see that this equation is satisfied
because sinh2(φ)− cosh( φ) = −1. Then we see that

f (x) =
1
c
(sinh(φ) sinh(cx) + cosh(φ) cosh(cx)) =

1
c

cosh(φ + cx), (6.12)

for constants φ and c.

Exercise 6.3. Show that for any diagonalizable matrix B

det(exp(B)) = exp(trB).

Note that because diagonalizable matrices are dense in the space of all matrices it follows
that the above equation is true for any matrix.

Use this to show that the Lie algebra sl(n, C) of SL(n, C) consists of all n × n trace-
less complex matrices, while the Lie algebra sl(n, R) consists of all n × n traceless real
matrices.

Solution: If D = diag(λ1, · · · , λn) is a diagonal matrix then

eD = diag(eλ1 , · · · , eλn) (6.13)

Hence,

det(exp(D)) =
n

∏
i=1

exp(λi) = exp(
n

∑
i=1

λi) = exp(tr(D)) (6.14)

If B = g−1Dg for D a diagonal matrix, then

exp(B) = g−1 exp(D)g,

hence

det(exp(B)) = det(g−1)det(exp(D))det(g)

= det(exp(D))

= exp(tr(D))

= exp(tr(g−1Dg))

= exp(tr(B)).
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Now, if det(I + εB) = 1 to first order in ε, then we see, that to first order

det(I + εB) = det(exp(εB)) + O(ε2)

= exp(εtr(B)) + O(ε2)

= 1 + εtr(B) + O(ε2).

Hence,
sl(n, R) = {B ∈ Matn×n(R) : tr(B) = 0} (6.15)

and similarly
sl(n, C) = {B ∈ Matn×n(C) : tr(B) = 0}. (6.16)
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