## The asymptotic geometry of the Hitchin moduli space

Laura Fredrickson
Stanford University
December 13-14, 2019 — SIAM: Minisymposium on Gauge Theory and Partial Differential Equations

## The Hitchin moduli space

## Fixed data:

- C, a compact Riemann surface
- $G=S U(n), G_{\mathbb{C}}=S L(n, \mathbb{C})$
- $E \rightarrow C$, a complex vector bundle of rank $n$ with $\operatorname{Aut}(E)=S L(E)$
$\rightsquigarrow$ Hitchin moduli space, $\mathcal{M}$.

Fact \#1: $\mathcal{M}$ is a noncompact hyperkähler manifold with metric $g_{L^{2}}$ $\Rightarrow$ have a $\mathbb{C P}^{1}$-family of Kähler manifolds $\mathcal{M}_{\zeta}=\left(\mathcal{M}, g_{L^{2}}, I_{\zeta}, \omega_{\zeta}\right)$.

- $\mathcal{M}_{\zeta=0}$ is $G_{\mathbb{C}}$-Higgs bundle moduli space
- $\mathcal{M}_{\zeta \in \mathbb{C}^{\times}}$is moduli space of flat $G_{\mathbb{C}}$-connections


## The Higgs bundle moduli space

## Definition

A Higgs bundle is a pair $\left(\bar{\partial}_{E}, \varphi\right)$ consisting of a holomorphic structure $\bar{\partial}_{E}$ on $E$ and a "Higgs field" $\varphi \in \Omega^{1,0}\left(C, \operatorname{End}_{0} E\right)$ such that $\bar{\partial}_{E \varphi}=0$.
(Locally, $\bar{\partial}_{E}=\bar{\partial}$ and $\varphi=P \mathrm{~d} z$, where $P$ is a tracefree $n \times n$ matrix with holomorphic entries.)

Ex: The $G L(1)$-Higgs bundle moduli space is $\mathcal{M}=\operatorname{Jac}(C) \times H^{0}\left(K_{C}\right)$.
For $C=T_{\tau}^{2}, \mathcal{M}=T_{\tau}^{2} \times \mathbb{C}$


Fact \#2: In its avatar as Higgs bundle moduli space, $\mathcal{M}$ is an algebraic completely integrable system.


## Hitchin's equations

Hitchin's equations are equations for a hermitian metric $h$ on $E$.

## Definition

A Higgs bundle $\left(\bar{\partial}_{E}, \varphi\right)$, together with a Hermitian metric $h$ on $E$, is a solution of Hitchin's equations if

$$
F_{D}^{\perp}+\left[\varphi, \varphi^{*_{h}}\right]=0 .
$$

(Here, $D$ is the Chern connection for $\left(\bar{\partial}_{E}, h\right)$.)
There is a correspondence between stable Higgs bundles and solutions of Hitchin's equations. [Hitchin, Simpson]

$$
\left.\left\{\begin{array}{c}
\text { stable Higgs bundles } \\
\left(\bar{\partial}_{E}, \varphi\right)
\end{array}\right\} / \mathcal{S L ( E )} \stackrel{\cong}{\leftrightarrows}\left\{\begin{array}{c}
\text { soln of Hitchin's eqn } \\
\left(\bar{\partial}_{E}, \varphi, h\right)
\end{array}\right\} / \mathcal{\mathcal { U } ( E )} \right\rvert\,=: \mathcal{M}
$$

## Two hyperkähler metrics on the regular locus $\mathcal{M}^{\prime}$

- $g_{L^{2}}$ Hitchin's $L^{2}$ hyperkähler metric—uses $h$
- $g_{\text {sf }}$ semiflat metric—from integrable system structure


## Gaiotto-Moore-Neitzke's Conjecture

Fix $\left(\bar{\partial}_{E}, \varphi\right) \in \mathcal{M}^{\prime}$. Along the ray $T_{\left(\bar{\partial}_{E}, t \varphi, h_{t}\right)} \mathcal{M}^{\prime}$,

$$
g_{L^{2}}-g_{\mathrm{sf}}=\Omega \mathrm{e}^{-\ell t}+\text { faster decaying }
$$



## Progress:

- Mazzeo-Swoboda-Weiss-Witt proved polynomial decay for SU(2)-Hitchin moduli space. ['17]
- Dumas-Neitzke proved exponential decay in SU(2)-Hitchin section with its tangent space. ['18]
- F proved exponential* decay for $S U(n)$-Hitchin moduli space. ['18]
- F-Mazzeo-Swoboda-Weiss proved exponential* decay for $\operatorname{SU}(2)$ parabolic Hitchin moduli space. (Higgs field has simple poles along divisor $D \subset C$.) ['19]
*: Rate of exponential decay is not optimal.


## Analogy from noncompact hyperkähler four-manifolds $X$

Categories based on asymptotic volume growth: ALE/ALF/ALG/ALH ALE: Any $X$ is asymptotic to some standard model $X_{\Gamma}^{\circ}=\mathbb{C}^{2} / \Gamma$ where $\Gamma$ is a finite subgroup of $S U(2)$. [Kronheimer]
ALG: Any $X$ (with faster than quadratic curvature decay) is asymptotic to some standard model $X_{\tau, \beta}^{\circ}$ fibered over $\mathbb{C}_{\beta}$ of angle $2 \pi \beta$ with fiber $T_{\tau}^{2}$. [Chen-Chen]


## Proposition [F-Mazzeo-Swoboda-Weiss]

The moduli space of strongly parabolic $S L(2, \mathbb{C})$-Higgs bundles on the four-punctured sphere is an ALG gravitational instanton. In this case, $g_{\mathrm{sf}}$ is the standard model metric of Chen-Chen.

Hitchin moduli spaces are expected to be QALG. Roughly,

$$
g_{\mathrm{sf}} \sim \text { standard model metric }
$$

## Main Theorem

## Theorem [F, F-Mazzeo-Swoboda-Weiss]

Fix $\left(\bar{\partial}_{E}, \varphi\right) \in \mathcal{M}^{\prime}$ and a Higgs bundle variation $(\dot{\eta}, \dot{\varphi}) \in T_{\left(\bar{\partial}_{E}, \varphi\right)} \mathcal{M}$. Along the ray $T_{\left(\bar{\partial}_{E}, t \varphi, h_{t}\right)} \mathcal{M}^{\prime}$, as $t \rightarrow \infty$,

$$
\|(\dot{\eta}, t \dot{\varphi})\|_{g_{L^{2}}}^{2}-\|(\dot{\eta}, t \dot{\varphi})\|_{g_{\mathrm{sf}}}^{2}=O\left(\mathrm{e}^{-\varepsilon t}\right)
$$

As $t \rightarrow \infty, F_{D\left(\bar{\partial}_{E}, h_{t}\right)}$ concentrates along branch divisor $Z \subset C$. The limiting metric $h_{\infty}$ is flat with singularities along $Z$.


The main difficulty is dealing with the contributions to the integral from infinitesimal neighborhoods around $Z$.

## Idea \#1: Semiflat metric is an $L^{2}$-metric

Hitchin's hyperkähler metric $g_{L^{2}}$ on $T_{\left(\bar{\partial}_{E}, t \varphi\right)} \mathcal{M}$ is

$$
\left\|\left(\dot{\eta}, t \dot{\varphi}, \dot{\nu}_{t}\right)\right\|_{g_{L^{2}}}^{2}=2 \int_{C}\left|\dot{\eta}-\bar{\partial}_{E} \dot{\nu}_{t}\right|_{h_{t}}^{2}+t^{2}\left|\dot{\varphi}+\left[\dot{\nu}_{t}, \varphi\right]\right|_{h_{t}}^{2}
$$

where the metric variation $\dot{\nu}_{t}$ of $h_{t}$ is the unique solution of

$$
\partial_{E}^{h_{t}} \bar{\partial}_{E} \dot{\nu}_{t}-\partial_{E}^{h} \dot{\eta}-t^{2}\left[\varphi^{* h_{t}}, \dot{\varphi}+\left[\dot{\nu}_{t}, \varphi\right]\right]=0 .
$$

The semiflat metric, from the integrable system structure, on $T_{\left(\bar{\partial}_{E}, t \varphi\right)} \mathcal{M}$ is an $L^{2}$-metric defined using $h_{\infty}$.

$$
\left\|\left(\dot{\eta}, t \dot{\varphi}, \dot{\nu}_{\infty}\right)\right\|_{g_{s f}}^{2}=2 \int_{C}\left|\dot{\eta}-\bar{\partial}_{E} \dot{\nu}_{\infty}\right|_{h_{\infty}}^{2}+t^{2}\left|\dot{\varphi}+\left[\dot{\nu}_{\infty}, \varphi\right]\right|_{h_{\infty}}^{2}
$$

where the metric variation $\dot{\nu}_{\infty}$ of $h_{\infty}$ is independent of $t$ and solves

$$
\partial_{E}^{h_{t}} \bar{\partial}_{E} \dot{\nu}_{\infty}-\partial_{E}^{h} \dot{\eta}=0 \quad\left[\varphi^{* h \infty}, \dot{\varphi}+\left[\dot{\nu}_{\infty}, \varphi\right]\right]=0 .
$$

## Idea \#2: Approximate solutions

Desingularize $h_{\infty}$ (singular at $Z$ ) by gluing in solutions $h_{t}^{\text {model }}$ of Hitchin's equations on neighborhoods of $p \in Z . \rightsquigarrow h_{t}^{\text {approx }}$.


Perturb $h_{t}^{\text {approx }}$ to an actual solution $h_{t}$ using a contracting mapping argument.
(Difficulty: Showing the first eigenvalue of $L_{t}: H^{2} \rightarrow L^{2}$ is $\geq C^{-2}$ )

## Theorem

$$
h_{t}(v, w)=h_{t}^{\operatorname{app}}\left(\mathrm{e}^{\gamma_{t}} v, \mathrm{e}^{\gamma_{t}} w\right) \quad \text { for }\left\|\gamma_{t}\right\|_{H^{2}} \leq \mathrm{e}^{-\varepsilon t} .
$$

## Idea \#2: Approximate solutions

Define an $L^{2}$-metric non-hyperkähler metric $g_{\text {app }}$ on $\mathcal{M}^{\prime}$ using variations of the metric $h_{t}^{\text {app }}$.

$$
\begin{aligned}
\left\|\left(\dot{\eta}, t \dot{\varphi}, \dot{\nu}_{t}\right)\right\|_{g_{L^{2}}}^{2} & =2 \int_{C}\left|\dot{\eta}-\bar{\partial}_{E} \dot{\nu}_{t}\right|_{h_{t}}^{2}+t^{2}\left|\dot{\varphi}+\left[\dot{\nu}_{t}, \varphi\right]\right|_{h_{t}}^{2} \\
\left\|\left(\dot{\eta}, t \dot{\varphi}, \dot{\nu}_{\infty}\right)\right\|_{g_{\mathrm{gf}}}^{2} & =2 \int_{C}\left|\dot{\eta}-\bar{\partial}_{E} \dot{\nu}_{\infty}\right|_{h_{\infty}}^{2}+t^{2}\left|\dot{\varphi}+\left[\dot{\nu}_{\infty}, \varphi\right]\right|_{h_{\infty}}^{2} \\
\left\|\left(\dot{\eta}, t \dot{\varphi}, \dot{\nu}_{t}^{\text {app }}\right)\right\|_{g_{\text {app }}}^{2} & =2 \int_{C}\left|\dot{\eta}-\bar{\partial}_{E} \dot{\nu}_{t}^{\text {app }}\right|_{h_{t}^{\mathrm{app}}}^{2}+t^{2}\left|\dot{\varphi}+\left[\dot{\nu}_{t}^{\text {app }}, \varphi\right]\right|_{h_{t}^{\text {app }}}^{2},
\end{aligned}
$$

Then, break the $g_{L^{2}}-g_{\text {sf }}$ into two piece:
$\left(\left\|\left(\dot{\eta}, t \dot{\varphi}, \dot{\nu}_{t}\right)\right\|_{g_{L^{2}}}^{2}-\left\|\left(\dot{\eta}, t \dot{\varphi}, \dot{\nu}_{t}^{\text {app }}\right)\right\|_{g_{\text {app }}}^{2}\right)+\left(\left\|\left(\dot{\eta}, t \dot{\varphi}, \dot{\nu}_{t}^{\text {app }}\right)\right\|_{g_{\text {app }}}^{2}-\left\|\left(\dot{\eta}, t \dot{\varphi}, \dot{\nu}_{\infty}\right)\right\|_{g_{\text {sf }}}^{2}\right)$

## Corollary

Since $h_{t}(v, w)=h_{t}^{\text {app }}\left(\mathrm{e}^{\gamma_{t}} v, \mathrm{e}^{\gamma_{t}} w\right)$ for $\left\|\gamma_{t}\right\|_{H^{2}} \leq \mathrm{e}^{-\varepsilon t}$, along the ray $T_{\left(\bar{\partial}_{E}, t \varphi\right)} \mathcal{M}$, as $t \rightarrow \infty$,

$$
\left\|\left(\dot{\eta}, t \dot{\varphi}, \dot{\nu}_{t}\right)\right\|_{\mathrm{g}^{2}}^{2}-\left\|\left(\dot{\eta}, t \dot{\varphi}, \dot{\nu}_{t}^{\mathrm{app}}\right)\right\|_{\mathrm{gapp}^{2}=O\left(\mathrm{e}^{-\varepsilon t}\right) .}^{2}
$$

## Idea \#2: Approximate solutions

Our goal is to show that the following sum is $O\left(\mathrm{e}^{-\varepsilon t}\right)$ :

$$
\underbrace{\left(\left\|\left(\dot{\eta}, t \dot{\varphi}, \dot{\nu}_{t}\right)\right\|_{\mathrm{g}^{2}}^{2}-\left\|\left(\dot{\eta}, t \dot{\varphi}, \dot{\nu}_{t}^{\mathrm{app}}\right)\right\|_{g_{\mathrm{app}}}^{2}\right)}_{O\left(\mathrm{e}^{-\varepsilon t}\right)}+\left(\left\|\left(\dot{\eta}, t \dot{\varphi}, \dot{\nu}_{t}^{\mathrm{app}}\right)\right\|_{g_{\mathrm{app}}}^{2}-\left\|\left(\dot{\eta}, t \dot{\varphi}, \dot{\nu}_{\infty}\right)\right\|_{g_{\mathrm{sf}}}^{2}\right)
$$

It remains to show that $\left\|\left(\dot{\eta}, t \dot{\varphi}, \dot{\nu}_{t}^{\text {app }}\right)\right\|_{g_{\text {app }}}^{2}-\left\|\left(\dot{\eta}, t \dot{\varphi}, \dot{\nu}_{\infty}\right)\right\|_{g_{s f}}^{2}=O\left(\mathrm{e}^{-\varepsilon t}\right)$.
Since $h_{t}^{\text {app }}$ differs from $h_{\infty}$ only on disks around $p \in Z$, the difference $g_{\text {app }}-g_{\text {sf }}$ localizes (up to exponentially decaying errors) to disks around $p \in Z$.


## Idea \#3: Holomorphic variations

When Mazzeo-Swoboda-Weiss-Witt proved that $g_{L^{2}}-g_{\text {sf }}$ was at least polynomially decaying in $t$, all of their possible polynomial terms came from infinitesimal variations in which the branch points move.


Dumas-Neitzke use a family of biholomorphic maps on local disks (originally defined by Hubbard-Masur) to match the changing location of the branch points. This uses subtle geometry of Hitchin moduli space.
E.g. for $S U(2)$, conformal invariance.

Remarkably, this can be generalized off of the Hitchin section and from $S U(2)$ to $S U(n)$.
Theorem

$$
\left\|\left(\dot{\eta}, t \dot{\varphi}, \dot{\nu}_{t}^{\mathrm{app}}\right)\right\|_{\mathrm{gapp}^{2}}^{2}-\left\|\left(\dot{\eta}, t \dot{\varphi}, \dot{\nu}_{\infty}\right)\right\|_{g_{\mathrm{sf}}}^{2}=O\left(\mathrm{e}^{-\varepsilon t}\right)
$$

## Main Theorem

## Gaiotto-Moore-Neitzke's Conjecture

Fix $\left(\bar{\partial}_{E}, \varphi\right) \in \mathcal{M}^{\prime}$. Along the ray $T_{\left(\bar{\partial}_{E}, t \varphi, h_{t}\right)} \mathcal{M}^{\prime}$,

$$
\|(\dot{\eta}, t \dot{\varphi})\|_{g_{L^{2}}}^{2}-\|(\dot{\eta}, t \dot{\varphi})\|_{g_{\mathrm{sf}}}^{2}=\Omega \mathrm{e}^{-\ell t}+\text { faster decaying }
$$

## Theorem [F, F-Mazzeo-Swoboda-Weiss]

Fix $\left(\bar{\partial}_{E}, \varphi\right) \in \mathcal{M}^{\prime}$ and a Higgs bundle variation $(\dot{\eta}, \dot{\varphi}) \in T_{\left(\bar{\partial}_{E}, \varphi\right)} \mathcal{M}$. Along the ray $T_{\left(\bar{\partial}_{E}, t \varphi, h_{t}\right)} \mathcal{M}^{\prime}$, as $t \rightarrow \infty$,

$$
\|(\dot{\eta}, t \dot{\varphi})\|_{g_{L^{2}}}^{2}-\|(\dot{\eta}, t \dot{\varphi})\|_{g_{\mathrm{sf}}}^{2}=O\left(\mathrm{e}^{-\varepsilon t}\right)
$$

- F proved exponential* decay for $S U(n)$-Hitchin moduli space. ['18]
- F-Mazzeo-Swoboda-Weiss proved exponential* decay for SU(2) parabolic Hitchin moduli space. (Higgs field has simple poles along divisor $D \subset C$.) ['19]
*: Rate of exponential decay is not optimal.
Here, $\varepsilon=\frac{\ell}{2}-\delta$ for $\delta$ arbitrarily small.


## Example: The four-punctured sphere

## Example: The four-punctured sphere

The $S U(2)$-Hitchin moduli space for the four-puncture sphere is of $\operatorname{dim}_{\mathbb{R}} \mathcal{M}=4$.

## Question

Is it possible to prove Gaiotto-Moore-Neitzke's conjectured rate of exponential decay in the case of the four-punctured sphere?


In this case, the semiflat metric has cone angle $\pi$ and fibers $T_{\tau}^{2}$ where $\tau=\lambda\left(p_{0}\right)$. The volume of the fibers are $2 \pi^{2}$.

## Example: The four-punctured sphere

LeBrun gave a framework to describe all Ricci-flat Kähler metrics of complex-dimension two with a holomorphic circle action in terms of two functions $u, w$.
Generalized Gibbons-Hawking Ansatz specialized to our case:
Consider a hyperkähler metric on $T_{x, y}^{2} \times \mathbb{R}_{r}^{+} \times S_{\theta}^{1}$ with holomorphic circle action. The hyperkähler metric is

$$
g_{L^{2}}=\mathrm{e}^{u} u_{r}\left(\mathrm{~d} x^{2}+\mathrm{d} y^{2}\right)+u_{r} \mathrm{~d} r^{2}+u_{r}^{-1} \mathrm{~d} \theta^{2}
$$

where $u: T_{x, y}^{2} \times \mathbb{R}_{r}^{+} \rightarrow \mathbb{R}$ solves

$$
\Delta_{T^{2} u} u+\partial_{r}^{2} e^{u}=0 .
$$

The semiflat metric $g_{\mathrm{sf}}$ corresponds to $u_{\mathrm{sf}}=\log r$.

## Goal

Show that $u-u_{\mathrm{sf}}$ has conjectured rate of exponential decay.

## Bootstrapping to optimal exponential decay

Let $v=u-u_{\mathrm{sf}}$. Then,

$$
\underbrace{\Delta_{T} v+r \partial_{r}^{2} v+2 \partial_{r} v}_{L v}=\underbrace{-e^{v} r\left(\partial_{r} v\right)^{2}-\left(e^{v}-1\right)\left(r \partial_{r}^{2} v+2 \partial_{r} v\right)}_{Q\left(v, \partial_{r} v, \partial_{r r} v\right)},
$$

Observation \#1: The first exponentially-decaying function in ker $L$ decays like $\mathrm{e}^{-2 \lambda_{T} \sqrt{r}}$, where $\lambda_{T}^{2}$ is the first positive eigenvalue of $-\Delta_{T^{2}}$. In the torus $T_{\tau}^{2}$ with its semiflat metric $\lambda_{T}^{2}=\frac{2}{\operatorname{Im} \tau}$.
Observation \#2: If $v \sim \mathrm{e}^{-\varepsilon \sqrt{r}}$, then $Q\left(v, \partial_{r} v, \partial_{r r} v\right) \sim \mathrm{e}^{-2 \varepsilon \sqrt{r}}$.
Solving the non-homogeneous problem $L v=f$ for $f \sim \mathrm{e}^{-2 \varepsilon \sqrt{r}}$, we find

$$
v \sim \mathrm{e}^{-2 \min \left(\varepsilon, \lambda_{T}\right) \sqrt{r}}
$$

Conclusion: $\quad v \sim \mathrm{e}^{-2 \lambda_{T} \sqrt{r}} \quad$ where $\lambda_{T}=\sqrt{\frac{2}{\operatorname{Im} \tau}}$

## Example: The four-punctured sphere

## Theorem [F-Mazzeo-Swoboda-Weiss]

Let $\mathcal{M}$ be a (strongly-parabolic) $S U(2)$ Hitchin moduli space for the four-punctured sphere. The rate of exponential decay for the Hitchin moduli space is as Gaiotto-Moore-Neitzke conjecture:

$$
g_{L^{2}}-g_{\mathrm{sf}}=O\left(\mathrm{e}^{-2 \sqrt{\frac{2}{\operatorname{Im} \tau}} \sqrt{r}}\right),
$$

$\left(\mathcal{M}, g_{L^{2}}\right)$ is an ALG metric asymptotic to the model metric $g_{\mathrm{sf}}$.

## Thank you!

