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The Hitchin moduli space

Fixed data:

• C , a compact Riemann surface

• G = SU(n), GC = SL(n,C)

• E → C , a complex vector bundle of rank n with Aut(E ) = SL(E )

 Hitchin moduli space, M.

Fact #1: M is a noncompact hyperkähler manifold with metric gL2

⇒ have a CP1-family of Kähler manifolds Mζ = (M, gL2 , Iζ , ωζ).

• Mζ=0 is GC-Higgs bundle moduli space

• Mζ∈C× is moduli space of flat GC-connections
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The Higgs bundle moduli space

Definition

A Higgs bundle is a pair (∂̄E , ϕ) consisting of a holomorphic structure

∂̄E on E and a “Higgs field” ϕ ∈ Ω1,0(C ,End0E ) such that ∂̄Eϕ = 0.

(Locally, ∂̄E = ∂̄ and ϕ = Pdz , where P is a tracefree n × n matrix with

holomorphic entries.)

Ex: The GL(1)-Higgs bundle moduli space is M = Jac(C )︸ ︷︷ ︸
∂̄E

×H0(KC )︸ ︷︷ ︸
ϕ

.
For C = T 2

τ , M = T 2
τ × C

Fact #2: In its avatar as Higgs bundle moduli space, M is an algebraic

completely integrable system.

2



Hitchin’s equations

Hitchin’s equations are equations for a hermitian metric h on E .

Definition

A Higgs bundle (∂̄E , ϕ), together with a Hermitian metric h on E , is a

solution of Hitchin’s equations if

F⊥D + [ϕ,ϕ∗h ] = 0.

(Here, D is the Chern connection for (∂̄E , h).)

There is a correspondence between stable Higgs bundles and solutions of

Hitchin’s equations. [Hitchin, Simpson]

{ stable Higgs bundles

(∂̄E , ϕ)

}/
SL(E)

∼=←→
{ soln of Hitchin’s eqn

(∂̄E , ϕ, h)

}/
SU(E)

=:M
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Two hyperkähler metrics on the regular locus M′

• gL2 Hitchin’s L2 hyperkähler metric—uses h

• gsf semiflat metric—from integrable system structure

Gaiotto-Moore-Neitzke’s Conjecture

Fix (∂̄E , ϕ) ∈M′. Along the ray T(∂̄E ,tϕ,ht)
M′,

gL2 − gsf = Ωe−`t + faster decaying

Progress:

• Mazzeo-Swoboda-Weiss-Witt proved polynomial decay for

SU(2)-Hitchin moduli space. [’17]

• Dumas-Neitzke proved exponential decay in SU(2)-Hitchin section

with its tangent space. [’18]

• F proved exponential∗ decay for SU(n)-Hitchin moduli space. [’18]

• F-Mazzeo-Swoboda-Weiss proved exponential∗ decay for SU(2)

parabolic Hitchin moduli space. (Higgs field has simple poles along

divisor D ⊂ C .) [’19]

∗: Rate of exponential decay is not optimal. 4



Analogy from noncompact hyperkähler four-manifolds X

Categories based on asymptotic volume growth: ALE/ALF/ALG/ALH

ALE: Any X is asymptotic to some standard model X ◦Γ = C2/Γ where Γ

is a finite subgroup of SU(2). [Kronheimer]

ALG: Any X (with faster than quadratic

curvature decay) is asymptotic to some

standard model X ◦τ,β fibered over Cβ of

angle 2πβ with fiber T 2
τ . [Chen-Chen]

Proposition [F-Mazzeo-Swoboda-Weiss]

The moduli space of strongly parabolic SL(2,C)-Higgs bundles on the

four-punctured sphere is an ALG gravitational instanton. In this case,

gsf is the standard model metric of Chen-Chen.

Hitchin moduli spaces are expected to be QALG. Roughly,

gsf ∼ standard model metric
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Main Theorem

Theorem [F, F-Mazzeo-Swoboda-Weiss]

Fix (∂̄E , ϕ) ∈M′ and a Higgs bundle variation (η̇, ϕ̇) ∈ T(∂̄E ,ϕ)M.

Along the ray T(∂̄E ,tϕ,ht)
M′, as t →∞,

‖(η̇, tϕ̇)‖2
gL2
− ‖(η̇, tϕ̇)‖2

gsf = O(e−εt)

As t →∞, FD(∂̄E ,ht)
concentrates along branch divisor Z ⊂ C .

The limiting metric h∞ is flat with singularities along Z .

The main difficulty is dealing with the contributions to the integral from

infinitesimal neighborhoods around Z .
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Idea #1: Semiflat metric is an L2-metric

Hitchin’s hyperkähler metric gL2 on T(∂̄E ,tϕ)M is

‖(η̇, tϕ̇, ν̇t)‖2
gL2

= 2

∫
C

∣∣η̇ − ∂̄E ν̇t∣∣2ht + t2 |ϕ̇+ [ν̇t , ϕ]|2ht

where the metric variation ν̇t of ht is the unique solution of

∂htE ∂̄E ν̇t − ∂
h
E η̇ − t2 [ϕ∗ht , ϕ̇+ [ν̇t , ϕ]] = 0.

The semiflat metric, from the integrable system structure, on T(∂̄E ,tϕ)M
is an L2-metric defined using h∞.

‖(η̇, tϕ̇, ν̇∞)‖2
gsf = 2

∫
C

∣∣η̇ − ∂̄E ν̇∞∣∣2h∞ + t2 |ϕ̇+ [ν̇∞, ϕ]|2h∞ ,

where the metric variation ν̇∞ of h∞ is independent of t and solves

∂htE ∂̄E ν̇∞ − ∂
h
E η̇ = 0 [ϕ∗h∞ , ϕ̇+ [ν̇∞, ϕ]] = 0. 7



Idea #2: Approximate solutions

Desingularize h∞ (singular at Z ) by gluing in solutions hmodel
t of

Hitchin’s equations on neighborhoods of p ∈ Z .  happroxt .

Perturb happroxt to an actual solution ht using a contracting mapping

argument.

(Difficulty: Showing the first eigenvalue of Lt : H2 → L2 is ≥ Ct−2 )

Theorem

ht(v ,w) = happt (eγtv , eγtw) for ‖γt‖H2 ≤ e−εt .
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Idea #2: Approximate solutions

Define an L2-metric non-hyperkähler metric gapp on M′ using variations

of the metric happt .

‖(η̇, tϕ̇, ν̇t)‖2
gL2

= 2

∫
C

∣∣η̇ − ∂̄E ν̇t∣∣2ht + t2 |ϕ̇+ [ν̇t , ϕ]|2ht

‖(η̇, tϕ̇, ν̇∞)‖2
gsf = 2

∫
C

∣∣η̇ − ∂̄E ν̇∞∣∣2h∞ + t2 |ϕ̇+ [ν̇∞, ϕ]|2h∞

‖(η̇, tϕ̇, ν̇appt )‖2
gapp

= 2

∫
C

∣∣η̇ − ∂̄E ν̇appt

∣∣2
happ
t

+ t2 |ϕ̇+ [ν̇appt , ϕ]|2happt
,

Then, break the gL2 − gsf into two piece:(
‖(η̇, tϕ̇, ν̇t)‖2

gL2
−‖(η̇, tϕ̇, ν̇appt )‖2

gapp

)
+
(
‖(η̇, tϕ̇, ν̇appt )‖2

gapp−‖(η̇, tϕ̇, ν̇∞)‖2
gsf

)
Corollary

Since ht(v ,w) = happt (eγtv , eγtw) for ‖γt‖H2 ≤ e−εt , along the ray

T(∂̄E ,tϕ)M, as t →∞,

‖(η̇, tϕ̇, ν̇t)‖2
gL2
−‖(η̇, tϕ̇, ν̇appt )‖2

gapp = O(e−εt)

9



Idea #2: Approximate solutions

Our goal is to show that the following sum is O(e−εt):(
‖(η̇, tϕ̇, ν̇t)‖2

gL2
−‖(η̇, tϕ̇, ν̇appt )‖2

gapp

)
︸ ︷︷ ︸

O(e−εt)

+
(
‖(η̇, tϕ̇, ν̇appt )‖2

gapp−‖(η̇, tϕ̇, ν̇∞)‖2
gsf

)

It remains to show that ‖(η̇, tϕ̇, ν̇appt )‖2
gapp
− ‖(η̇, tϕ̇, ν̇∞)‖2

gsf = O(e−εt).

Since happt differs from h∞ only on disks around p ∈ Z , the difference

gapp − gsf localizes (up to exponentially decaying errors) to disks around

p ∈ Z .
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Idea #3: Holomorphic variations

When Mazzeo-Swoboda-Weiss-Witt proved that gL2 − gsf was at least

polynomially decaying in t, all of their possible polynomial terms came

from infinitesimal variations in which the branch points move.

Dumas-Neitzke use a family of biholomorphic maps on local disks

(originally defined by Hubbard-Masur) to match the changing location of

the branch points. This uses subtle geometry of Hitchin moduli space.

E.g. for SU(2), conformal invariance.

Remarkably, this can be generalized off of the Hitchin section and from

SU(2) to SU(n).

Theorem

‖(η̇, tϕ̇, ν̇appt )‖2
gapp − ‖(η̇, tϕ̇, ν̇∞)‖2

gsf = O(e−εt)
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Main Theorem

Gaiotto-Moore-Neitzke’s Conjecture

Fix (∂̄E , ϕ) ∈M′. Along the ray T(∂̄E ,tϕ,ht)
M′,

‖(η̇, tϕ̇)‖2
gL2
− ‖(η̇, tϕ̇)‖2

gsf = Ωe−`t + faster decaying

Theorem [F, F-Mazzeo-Swoboda-Weiss]

Fix (∂̄E , ϕ) ∈M′ and a Higgs bundle variation (η̇, ϕ̇) ∈ T(∂̄E ,ϕ)M.

Along the ray T(∂̄E ,tϕ,ht)
M′, as t →∞,

‖(η̇, tϕ̇)‖2
gL2
− ‖(η̇, tϕ̇)‖2

gsf = O(e−εt)

• F proved exponential∗ decay for SU(n)-Hitchin moduli space. [’18]

• F-Mazzeo-Swoboda-Weiss proved exponential∗ decay for SU(2)

parabolic Hitchin moduli space. (Higgs field has simple poles along

divisor D ⊂ C .) [’19]

∗: Rate of exponential decay is not optimal.

Here, ε = `
2 − δ for δ arbitrarily small.
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Example: The four-punctured sphere



Example: The four-punctured sphere

The SU(2)-Hitchin moduli space for the four-puncture sphere is of

dimRM = 4.

Question

Is it possible to prove Gaiotto-Moore-Neitzke’s conjectured rate of

exponential decay in the case of the four-punctured sphere?

In this case, the semiflat metric has cone angle π and fibers T 2
τ where

τ = λ(p0). The volume of the fibers are 2π2.
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Example: The four-punctured sphere

LeBrun gave a framework to describe all Ricci-flat Kähler metrics of

complex-dimension two with a holomorphic circle action in terms of two

functions u,w .

Generalized Gibbons-Hawking Ansatz specialized to our case:

Consider a hyperkähler metric on T 2
x,y × R+

r × S1
θ with holomorphic

circle action. The hyperkähler metric is

gL2 = euur (dx
2 + dy2) + urdr

2 + u−1
r dθ2

where u : T 2
x,y × R+

r → R solves

∆T 2u + ∂2
r e

u = 0.

The semiflat metric gsf corresponds to usf = log r .

Goal

Show that u − usf has conjectured rate of exponential decay.
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Bootstrapping to optimal exponential decay

Let v = u − usf . Then,

∆T v + r∂2
r v + 2∂rv︸ ︷︷ ︸

Lv

= −ev r(∂rv)2 − (ev − 1)
(
r∂2

r v + 2∂rv
)︸ ︷︷ ︸

Q(v ,∂r v ,∂rr v)

,

Observation #1: The first exponentially-decaying function in ker L

decays like e−2λT
√
r , where λ2

T is the first positive eigenvalue of −∆T 2 .

In the torus T 2
τ with its semiflat metric λ2

T = 2
Im τ .

Observation #2: If v ∼ e−ε
√
r , then Q(v , ∂rv , ∂rrv) ∼ e−2ε

√
r .

Solving the non-homogeneous problem Lv = f for f ∼ e−2ε
√
r , we find

v ∼ e−2 min(ε,λT )
√
r .

Conclusion: v ∼ e−2λT
√
r where λT =

√
2

Im τ
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Example: The four-punctured sphere

Theorem [F-Mazzeo-Swoboda-Weiss]

Let M be a (strongly-parabolic) SU(2) Hitchin moduli space for the

four-punctured sphere. The rate of exponential decay for the Hitchin

moduli space is as Gaiotto-Moore-Neitzke conjecture:

gL2 − gsf = O(e−2
√

2
Imτ

√
r ),

(M, gL2 ) is an ALG metric asymptotic to the model metric gsf .
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Thank you!
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