The Alexander polynomial and knot Floer homology

Robert Lipshitz
University of Oregon

(Mostly work of other people. Partly joint with Peter Ozsváth and Dylan Thurston, or David Treumann, or Kristen Hendricks and Sucharit Sarkar.)

1. RL was supported by NSF grant DMS-1149800. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation."

1

Seifert surfaces

• Every knot K in S^3 bounds an orientable surface.

• **Definition.** Minimal genus of such a surface is $g(K)$.

• **Definition.** An orientable surface with boundary K is a *Seifert surface* for K.
Seifert matrix and Alexander polynomial

• F -- a Seifert surface for K.
• Let $\{\gamma_i\}_{i=1}^{2g}$ -- a basis for $H_1(F)$.
Seifert matrix and Alexander polynomial

- F -- a Seifert surface for K.
- $\{\gamma_i\}_{i=1}^{2g}$ -- a basis for $H_1(F)$.
- γ_i^+ be a positive pushoff of γ_i.
- **Definition.** Seifert matrix $A = (a_{i,j})$ with $a_{i,j} = lk(\gamma_i, \gamma_j^+)$.
- **Example:** $$\begin{pmatrix} -2 & -1 \\ 0 & -2 \end{pmatrix}$$
Seifert matrix and Alexander polynomial

- F -- a Seifert surface for K.
- $\{\gamma_i\}^2_{i=1}$ -- a basis for $H_1(F)$.
- γ_i^+ be a positive pushoff of γ_i.
- **Definition.** Seifert matrix $A = (a_{i,j})$ with $a_{i,j} = lk(\gamma_i, \gamma_j^+)$.
- **Example.** $\begin{pmatrix} -2 & -1 \\ 0 & -2 \end{pmatrix}$
Seifert matrix and Alexander polynomial

- \(F \) -- a Seifert surface for \(K \).
- \(\{ \gamma_i \}_{i=1}^{2g} \) -- a basis for \(H_1(F) \).
- \(\gamma_i^+ \) be a positive pushoff of \(\gamma_i \).

Definition. Seifert matrix \(A = (a_{ij}) \) with \(a_{ij} = lk(\gamma_i, \gamma_j^+) \).

Example: \(\begin{pmatrix} -2 & -1 \\ 0 & -2 \end{pmatrix} \)

Definition. Alexander polynomial
\[
\Delta_K(t) = \pm t^n \det(tA - A^T).
\]

Example:
\[
\Delta_K(t) = \pm t^n \begin{vmatrix} -2t + 2 & -t \\ -2t + 2 & 1 \end{vmatrix} = \pm t^n (-4t^2 + 7t - 4) = 4t - 7 + 4t^{-1}.
\]

Corollary. \(2g(K) \geq \text{width}(\Delta_K(t)) \)
Knot Floer homology
(Ozsváth-Szabó, Rasmussen, 2003)

- $K \subset S^3$ a knot \rightarrow bigraded abelian group $\widehat{HFK}_{i,j}(K)$.
- $\sum_{i,j} (-1)^i t^j \text{rank} \left(\widehat{HFK}_{i,j}(K) \right) = \Delta_K(t)$
- Homology of a chain complex
 $\left(\overline{CFK}_{i,j}(K), \partial : \overline{CFK}_{i,j}(K) \rightarrow \overline{CFK}_{i-1,j}(K) \right)$.
- Recall: $\text{width}(\Delta_K(t))/2 \leq g(K)$.

Theorem. (Ozsváth-Szabó)
$$\text{width}(\overline{HFK}_{i,j}(K)) := \max\{j \mid \overline{HFK}_{*,j} \neq 0\} = g(K).$$

- Also works for null-homologous knots in other 3-manifolds.
- There are also versions for links.
- There are other variants -- $\overline{HFK}^-(K), \overline{HFK}^+(K)$, etc.
- There are extensions to **sutured manifolds** (Juhász, Alishahi-Eftekhary).

\[
\Delta_K(t) = -t + 1 - t^{-1} \quad \Delta_K(t) = 1
\]
Definition of knot Floer homology

• Via pseudo-holomorphic curves (solutions to particular nonlinear PDE’s) in a high-dimensional auxiliary space.

• There are now combinatorial definitions (Manolescu-Ozsváth-Sarkar 2006, Manolescu-Ozsváth-Szabó-Thurston 2006, ...)

• No classical definition is known. (In particular, not the singular homology of any naturally associated space.)
Fibered knots

- A knot is *fibered* if it has an S^1 family of Seifert surfaces.

- **Lemma.** If K is fibered, fiber F, monodromy ϕ then $\Delta_K(t)$ is the characteristic polynomial of $\phi_*: H_1(F) \to H_1(F)$.

- **Corollary.** If K is fibered then $\Delta_K(t)$ is monic and $\text{width}(\Delta_K(t)) = 2g(K)$.

- **Theorem.** (Ozsváth-Szabó, Ghiggini, Ni) $\widetilde{HF}(K)$ is monic if and only if K is fibered.

 (Monic means $\bigoplus_i \widetilde{HF}_{i,g(K)}(K) \cong \mathbb{Z}$.)

© Jos Ley and Etienne Ghys
Lifting the characteristic polynomial formula

• Bordered Floer homology (L-Ozsváth-Thurston):
 • Surface $F \rightsquigarrow$ dg algebra $A(F)$.
 • $A(S^2) = F_2$. $A(T^2) = \rho_1 \rho_2 / \rho_2 \rho_1 = \rho_3 \rho_2 = 0$
 $H_*(A(\Sigma_2))$ 164 diml.
Lifting the characteristic polynomial formula

• Bordered Floer homology (L-Ozsváth-Thurston):
 • Surface $F \rightsquigarrow$ dg algebra $A(F)$.
 • $A(S^2) = F_2$. $A(T^2)$ 10-dimensional, $H_*(A(\Sigma_2))$ 164 dimensional.
 • Cobordism $(Y, \gamma): (F_1, pt) \rightarrow (F_2, pt) \rightsquigarrow$ dg bimodule $\overline{CFDA}(Y, \gamma)$.
Lifting the characteristic polynomial formula

• Bordered Floer homology (L-Ozsváth-Thurston):
 • Surface $F \rightsquigarrow$ dg algebra $A(F)$.
 • $A(S^2) = F_2. A(T^2)$ 10-dimensional, $H_*(A(\Sigma_2))$ 164 dimensional.
 • Cobordism $(Y, \gamma): (F_1, pt) \to (F_2, pt) \rightsquigarrow$ dg bimodule $\text{CFDA}(Y, \gamma)$.
 • Composition \rightsquigarrow derived tensor product.
Lifting the characteristic polynomial formula

• Bordered Floer homology (L-Ozsváth-Thurston):
 • Surface $F \xrightarrow{\sim} \text{dg algebra } A(F)$.
 • $A(S^2) = F_2. A(T^2)$ 10-dimensional, $H_*(A(S_2))$ 164 dimensional.
 • Cobordism $(Y, \gamma): (F_1, pt) \rightarrow (F_2, pt) \xrightarrow{\sim} \text{dg bimodule } \overline{\text{CFDA}}(Y, \gamma)$.
 • Composition $\xrightarrow{\sim}$ derived tensor product.

• $F_1 = -F_2$ then self gluing (Y°, K) has $\overline{\text{HFK}} (Y^\circ, K) = HH_* \left(\overline{\text{CFDA}}(Y, \gamma) \right)$.
Lifting the characteristic polynomial formula

• Bordered Floer homology (L-Ozsváth-Thurston):
 • Surface $F \rightsquigarrow$ dg algebra $A(F)$.
 • $A(S^2) = F_2, A(T^2)$ 10-dimensional, $H_*(A(\Sigma_2))$ 164 dimensional.
 • Cobordism $(Y, \gamma): (F_1, pt) \to (F_2, pt) \rightsquigarrow$ dg bimodule $\overline{CFDA}(Y, \gamma)$.
 • Composition \rightsquigarrow derived tensor product.
 • $F_1 = -F_2$ then self gluing (Y°, K) has $\overline{HFK}(Y^\circ, K) = HH_* \left(\overline{CFDA}(Y, \gamma) \right)$.

• Recall: for K fibered, $\Delta_K(t)$ is the characteristic polynomial of $\phi_*: H_1(F) \to H_1(F)$.

• $Y_\phi =$mapping cylinder of ϕ then

\[
\begin{align*}
\overline{CFDA}(Y_\phi, \gamma) & \xrightarrow{HH_*} \overline{HFK}(S^3, K) \\
\phi_*: \Lambda^*H_1(F) & \xrightarrow{\text{Trace}} \Delta_K(t)
\end{align*}
\]

L-Ozsváth-Thurston, Petkova, Hom-Lidman-Watson:
Symmetries
Periodic and Freely Periodic Knots

• K is *n-periodic* if it is preserved by rotation by $2\pi/n$ around an axis.

• K is *freely periodic of period (p,q)* if it is preserved by $(z, w) \mapsto \left(e^{2\pi i/p} z, e^{2\pi i/q} w \right)$ on $S^3 = \{ (z, w) \in \mathbb{C}^2 | |z|^2 + |w|^2 = 1 \}$

$T(4,7)$ is 7-periodic, and freely $(4,7)$ periodic.

7_4 is 2-periodic with *quotient* the unknot U.
Edmonds’s and Murasugi’s Conditions

- **Theorem.** (Edmonds, 1984) If \(K \) is \(n \)-periodic then there is a minimal genus Seifert surface for \(K \) preserved by \(\mathbb{Z}/n\mathbb{Z} \).
- (Proof uses minimal surfaces.)
- **Corollary.** If \(\overline{K} \) is the quotient knot then \(g(K) \geq ng(\overline{K}) + (n - 1)(\lambda - 1)/2 \) (where \(\lambda \) = linking number with axis).
Edmonds’s and Murasugi’s Conditions

• **Theorem.** (Edmonds, 1984) If K is n-periodic then there is a minimal genus Seifert surface for K preserved by $\mathbb{Z}/n\mathbb{Z}$.

• (Proof uses minimal surfaces.)

• **Corollary.** If \overline{K} is the quotient knot then $g(K) \geq ng(\overline{K}) + (n - 1)(\lambda - 1)/2$ (where λ = linking number with axis).

• **Corollary.** Any nontrivial knot has finitely many periods.

• **Theorem.** (Murasugi, 1971) If K is p^r-periodic then $\Delta_K(t) \equiv \pm t^i \Delta_{\overline{K}}(t)^n \left(\frac{1-t^\lambda}{1-t}\right)^{n-1} \pmod{p}$.
A theorem of Hendricks

• **Theorem.** [(Hendricks, 2012) + ε(Hendricks-L-Sarkar 2015)] If K is 2-periodic then there is a spectral sequence

$$
\text{HFL}(K \cup A) \otimes (F_2 \oplus F_2) \otimes F_2[\theta, \theta^{-1}] \Rightarrow \text{HFL}(K \cup \overline{A}) \otimes F_2[\theta, \theta^{-1}].
$$

• Proof uses Seidel-I. Smith’s quantum (P.A.) Smith Theory.

• Implies (lifts) 2-periodic cases of Edmonds’s Corollary and Murasugi’s Theorem.

• Has other implications as well.
Branched double covers

- The double cover of S^3 branched along K is
 \[\pi: \left(\Sigma(S^3, K), \tilde{K} \right) \rightarrow (S^3, K) \]
 - $\pi|_{\Sigma(S^3, K) \setminus \tilde{K}} : (\Sigma(S^3, K) \setminus \tilde{K}) \rightarrow (S^3 \setminus K)$ is a 2-fold cover.
 - In the normal planes to K, π is $z \mapsto z^2$.

- Special cases:
 - $\Sigma(S^3, U) = (S^3, U)$.
 - If (K, A) is 2-periodic then $(S^3 \setminus K, A) = \Sigma(S^3 \setminus \overline{K}, \overline{A})$.

- Smith Conjecture (proved in 1980’s) states that if $K \neq U$ then $\Sigma(S^3, K) \neq S^3$.

- Can also talk about $\Sigma(Y^3, K)$, but not always unique.
Knot Floer homology in branched double covers

- **Classical?**: For $(\Sigma(K), \tilde{K}) \to (S^3, K)$, $\Delta_{\tilde{K}}(t) \equiv \Delta_K(t) \pmod{2}$.
- **Theorem.** (Hendricks, 2011) There is a spectral sequence
 \[\overline{HF}_K(\Sigma(S^3, K), \tilde{K}) \otimes \mathbf{F}_2[\theta, \theta^{-1}] \Rightarrow \overline{HF}_K(S^3, K) \otimes \mathbf{F}_2[\theta, \theta^{-1}] \].
- **Theorem.** (L-Treumann, 2012) If $H_1(Y) = 0$ and $K \subset Y$ has $g(K) \leq 2$ then there is a spectral sequence
 \[\overline{HF}_K(\Sigma(Y, K), \tilde{K}) \otimes \mathbf{F}_2[\theta, \theta^{-1}] \Rightarrow \overline{HF}_K(Y, K) \otimes \mathbf{F}_2[\theta, \theta^{-1}] \].
Proof sketch via bordered Floer.

• Cut Y along Seifert surface F for K to get cobordism Z from F to F.
• (S^3, K) is self-gluing of Z. $(\Sigma(K), \tilde{K})$ is self-gluing of $Z \cup_F Z$.
• So, want:
 \[
 \widehat{HFK}(\Sigma(K), \tilde{K}) = HH_*(CFDA(Z) \otimes^L_{A(F)} CFDA(Z))
 \Rightarrow HH_*(CFDA(Z)) = \widehat{HFK}(S^3, K)
 \]
• (Suppressed copies of $F_2[\theta, \theta^{-1}]$.)
• Such a spectral sequence exists whenever $A(F)$ satisfies certain algebraic properties.
Honest covers

• If \(\tilde{Y} \to Y \) is a \(\mathbb{Z} \) cover then there is an induced \(\mathbb{Z}/2\mathbb{Z} \) cover
 \((\tilde{Y}/2\mathbb{Z}) = \tilde{Y} \to Y \)

• **Theorem.** (L-Treumann, 2012) If \(\tilde{Y} \to Y \) is a \(\mathbb{Z}/2\mathbb{Z} \) cover induced by a \(\mathbb{Z} \) cover then \(\widehat{HF}(\tilde{Y}) \otimes (F_2 \oplus F_2) \otimes F_2[\theta, \theta^{-1}] \Rightarrow \widehat{HF}(Y) \otimes F_2[\theta, \theta^{-1}] \).

• **Theorem.** (Lidman-Manolescu, 2016) If \(\tilde{Y} \to Y \) is a \(\mathbb{Z}/2\mathbb{Z} \) cover and \(H^1(Y) = 0 \) then for each \(s \in spin^c(Y) \),
 \(\widehat{HF}(\tilde{Y}, \pi^*s) \otimes F_2[\theta, \theta^{-1}] \Rightarrow \widehat{HF}(Y, s) \otimes F_2[\theta, \theta^{-1}] \).

• **Corollary.** \(\text{rank} \left(\widehat{HF}(\tilde{Y}, \pi^*s) \right) \geq \text{rank} \left(\widehat{HF}(Y, s) \right) \).

• Lidman-Manolescu is uses a variant of Seiberg-Witten Floer homology. Main work is identifying this variant with more common (and computable) ones.

• Some applications of Lidman-Manolescu’s result later in the talk.
Symmetric Unions

- **Theorem.** (Kinoshita-Terasaka, 1957) If \(n \) is even then \(\Delta_{K_n(J)}(t) = (\Delta_J(t))^2 \).

- **Theorem.** (Allison Moore, 2015) If replacing \(T_n \) with \(T_\infty \) gives a 2-component unlink then \(\overline{HFK}(K_n(J)) \cong \overline{HFK}(J) \otimes \overline{HFK}(m(J)) \).

- **Corollary.** \(g(K_n(J)) = 2g(J) \) and \(K_n(J) \) is fibered iff \(J \) is.

- **Corollary.** New examples satisfying *cosmetic crossing conjecture*: any non-nugatory crossing change changes isotopy class of \(K \).
More Alexander polynomial formulas

• Symmetric knots (K-T): $\Delta_{K_n}(t) = (\Delta_J(t))^2$.

• If $\Sigma^n(K)$ is n-fold cyclic branched cover of S^3 then

$$|H_1(\Sigma^n(K))| = \prod_{j=0}^{n-1} \Delta_K(e^{2\pi ij/n}).$$

 e.g., $|H_1(\Sigma(K))| = \Delta_K(1)\Delta_K(-1)$.

• If $\left(\Sigma^n(K), \tilde{K}\right)$ n-fold cyclic branched cover of (S^3, K) then

$$\Delta_{\tilde{K}}(t^n) = \prod_{j=0}^{n-1} \Delta_K\left(e^{2\pi ij/n} t\right).$$

 e.g., if $n = 2$, $\Delta_{\tilde{K}}(t^2) = \Delta_K(t)\Delta_K(-t)$.

• (Murasugi) If \tilde{K} is n-periodic, axis \tilde{A}, quotient (K, A), $\lambda = lk(K, A)$ then

$$\frac{1-t^\lambda}{1-t} \Delta_{\tilde{K}}(t) = \prod_{j=0}^{n-1} \Delta_{K\cup A}\left(t, e^{\frac{2\pi ij}{n}}\right).$$

• (Hartley, 1981) Similar result for freely periodic knots.

• **Question.** Can any of these be lifted to Floer homology? How?
More open questions about Floer homology, Seifert surfaces, and symmetries

• There are nice combinatorial definitions of $\widehat{HFK}(S^3, K)$. Can one give combinatorial proofs of key properties, like detecting $g(K)$ or fiberedness?

• Edmonds’s condition says a minimal genus Seifert surface is $\mathbb{Z}/n\mathbb{Z}$ equivariant. Can one prove this with Floer homology? (Recall that Hendricks proved the main numerical corollary.)

• For any knot K in a homology sphere Y, is there a spectral sequence $\widehat{HF}(\Sigma(K)) \Rightarrow \widehat{HF}(Y)$? (cf. Smith conjecture.)
Concordance
The concordance group and slice genus

• **Definition.** The *smooth slice genus* of K is

 $$g_4(K) = \min \{ g(F) \mid F \subset D^4, \partial F = K \subset S^3 = \partial D^4, F \text{ smooth} \}.$$
The concordance group and slice genus

- **Definition.** The smooth slice genus of K is

 $$g_4(K) = \min\{g(F)|F \subset D^4, \partial F = K \subset S^3 = \partial D^4, F \text{ smooth}\}.$$

 - K is slice if $g_4(K) = 0$.

- **Definition.** The smooth concordance group is

 $$\mathcal{C} = ([knots]/\{slice\,\text{knots}\}, \#).$$

- Replace “smooth” by “topologically locally flat” gives topological slice genus $g_4^{\text{top}}(K)$, topologically slice knots, topological concordance group \mathcal{C}_{Top}.

 - $g_4^{\text{top}}(K) \leq g_4(K)$. so smoothly slice implies topologically slice.

 - $0 \to \mathcal{C}_{\text{JS}} \to \mathcal{C} \to \mathcal{C}_{\text{Top}} \to 0$.

David Eppstein
“Square Ribbon Knot”
Wikipedia
Two classical restrictions

• Recall: the Seifert matrix $A = (a_{i,j})$ with $a_{i,j} = lk(\gamma_i, \gamma_j^+)$.

• **Definition.** The signature $\sigma(K) \in \mathbb{Z}$ is the signature of $A + A^T$.

• **Theorem.** (Kauffman-Taylor, Murasugi, Tristram, 1960’s) The signature is a homomorphism $C_{\mathcal{T}_{op}} \to \mathbb{Z}$, and $2g_{4}^{\text{top}}(K) \geq \sigma(K)$.

• **Theorem.** (Fox-Milnor, 1966) If K is topologically slice then there is a polynomial $f(t)$ so that $\Delta_K(t) = f(t)f(t^{-1})$.

• **Theorem.** (Levine, 1969) There is a surjection $C_{\mathcal{T}_{op}} \to \mathbb{Z}^\infty \oplus (\mathbb{Z}/2\mathbb{Z})^\infty \oplus (\mathbb{Z}/4\mathbb{Z})^\infty$.

• **Question.** Is there any torsion other than 2-torsion in C or $C_{\mathcal{T}_{op}}$?
Some modern concordance homomorphisms

• Turning to smooth concordance:
• **Theorem.** (Endo, 1995) There is a \mathbb{Z}^∞ subgroup of $C_{JS} = \ker(C \to C_{op})$.

• Does it split? Surjections onto \mathbb{Z}? Bounds on g_4?
 • Ozsváth-Szabó, 2003. $\tau: C \to \mathbb{Z}$, via Heegaard Floer homology. Bounds g_4.
 • Rasmussen, 2004. $s: C \to \mathbb{Z}$, via Khovanov homology. Bounds g_4.
 • Manolescu-Owens, 2005. $\delta: C \to \mathbb{Z}$, via Heegaard Floer homology.
 • Livingston, 2006. τ, s, δ give a surjection $C_{JS} \to \mathbb{Z}^3$.
 • Hom, 2013. A surjection $C_{JS} \to \mathbb{Z}^\infty$. (Not constructive.)
 • Ozsváth-Stipsicz-Szabó, 2014. Another surjection $\Upsilon: C_{JS} \to \mathbb{Z}^\infty$. (Constructive.)
 • Hendricks-L-Sarkar, 2015. Another homomorphism $q_\tau: C \to \mathbb{Z}$, via equivariant Floer homology.

• Many other beautiful results by many other researchers.
An explicit example in \mathcal{C}_{JS}

- Recall: $0 \to \mathcal{C}_{JS} \to \mathcal{C} \to \mathcal{C}_{top} \to 0$.

- **Theorem.** (Freedman-Quinn ~1989) If $\Delta_K(t) = 1$ then K is topologically slice.

- **Exercise.** The (positive) untwisted Whitehead double $D_+(K)$ of any knot K has $\Delta_{D_+(K')}(t) = 1$.

- **Theorem.** (Hedden 2006) If $\tau(K) > 0$ then $\tau(D_+(K)) = 1$.

- **Corollary.** \mathcal{C}_{JS} is nontrivial.

- (This is not the first proof, which is attributed to Casson (unpublished). Gompf gave first examples of non-slice Whitehead doubles.)
From C_{JS} to exotic R^4's

- **Theorem.** (Classical, Moise-Munkres ~1960, Stallings 1961) There is a unique smooth structure on R^n is $n \leq 2$, $n = 3$, $n > 4$.

- **Theorem.** (Taubes, 1987) There are uncountably many smooth structures on R^4.

- **Theorem.** (Freedman-Quinn) Any non-compact 4-manifold has a smooth structure.

Here’s an exotic R^4 (Gompf-Stipsicz, Exercise 9.4.23):

- Take a knot K in C_{JS}. Let X_K be result of attaching a 2-handle to D^4 along K. There is a topologically flat embedding $X_K \hookrightarrow R^4$.

- Freedman-Quinn implies $R^4 \setminus X_K$ can be smoothed. Glue X_K to this smoothing of $R^4 \setminus X_K$ to get a smooth R^4. Must be exotic, because K is smoothly slice in it.
Lifting the Fox-Milnor condition

• Recall: the Fox-Milnor condition: if K is topologically slice then $\Delta_K(t) = P(t)P(t^{-1})$.

• Question. Is there a lift of this result to \overline{HFK}?
 • Presumably such a result would be about smoothly slice knots.
 • The Kinoshita-Terasaka knot is topologically slice (since $\Delta_K(t) = 1$) but $\overline{HFK}(K)$ has Poincaré polynomial $(q^{-2} + q^{-1})t^{-2} + 4(q^{-1} + t)t^{-1} + 7 + 6q + 4(q + q^2)t + (q^2 + q^3)t^2$, and total rank $2 + 8 + 7 + 6 + 8 + 2 = 33$ (not square!).
 • Maybe some sort of spectral sequence?
 • Maybe only four doubly slice knots (knots with an invertible concordance to U)?
Some more open concordance questions

• Is there a surjection $C_{JS} \to (\mathbb{Z}/2\mathbb{Z})^\infty$? Any other torsion?

• **Conjecture.** (Kirby 1.38) $D_+ (K)$ is smoothly slice if and only if K is.

• **Sub-conjecture.** The positive Whitehead double of the negative trefoil is not smoothly slice.

• What is the smooth slice genus of the Conway knot? (Its mutant, the Kinoshita-Terasaka knot, is slice. $\Delta_{Conway}(t) = \Delta_{KT}(t) = 1$.)
Dehn surgery is Ouroboros holes.

Adapted from (German) Wikipedia entry, contributed by AnonMoos.
Definition of Dehn surgery

• **Definition.** *Dehn surgery* on a link \(L = K_1 \cup \cdots \cup K_n \) is \(S^3 \setminus \text{nbd}(K_1 \cup \cdots K_n) \cup_{\partial} (D^2 \times S^1 \cup \cdots \cup D^2 \times S^1) \).

• \(\partial(S^3 \setminus \text{nbd}(K_1 \cup \cdots K_n)) = T^2 \sqcup \cdots \sqcup T^2 \). Surgery is determined by images of the \(n \) circles \(\partial D^2 \times \{ pt \} \) which bound disks \(D^2 \).

• Each circle is \(p \cdot \text{(meridian)} + q \cdot \text{(longitude)} \), so have \(S_{\frac{p_1}{q_1}, \ldots, \frac{p_n}{q_n}}^3(L) \).

• **Theorem.** (Lickorish, 1962) Every closed, orientable 3-manifold is \(S_{\frac{p_1}{q_1}, \ldots, \frac{p_n}{q_n}}^3(L) \) for some \(\frac{p_1}{q_1}, \ldots, \frac{p_n}{q_n} \) and \(L \).
Some questions and some answers

• **Question.** Which manifolds arise as surgery on a knot?
 • There are some obvious restrictions on H_1, π_1.
 • There are non-obvious restrictions on manifolds with nontrivial first homology (Boyer-Lines 1990).

• **Theorem.** (Hom-Karakurt-Lidman, 2014) There are non-obvious restrictions on manifolds with $H_1 = 0$. e.g.,
 $$\Sigma(p, 2p - 1, 2p + 1) = \left\{ (z_1, z_2, z_3) \in S^5 \subset \mathbb{C}^3 \mid z_1^p + z_2^{2p-1} + z_3^{2p+1} = 0 \right\},$$
 $p \geq 8$ does not.

• **Question.** Are there non-obvious restrictions on which manifolds arise as surgery on an n-component link ($n>1$ fixed)?
More questions and answers

• **Question.** If $S^3_{\frac{p}{q}}(K) \cong S^3_{\frac{p}{q}}(K')$ must $K = K'$?

 - **Theorem.** (Gabai, Kronheimer-Mrowka-Ozsváth-Szabó, 2003) Yes if $K=U$.
 - **Theorem.** (Ghiggini, Ozsváth-Szabó, 2006) Yes if $K = 3_1, m(3_1)$, or 4_1.

Knot Atlas / KnotPlot
Surgery characterizations of knots

• **Question.** If $S^3_p(K) \cong S^3_p(K')$ must $K = K'$?
 • **Theorem.** (Gabai, Kronheimer-Mrowka-Ozsváth-Szabó, 2003) Yes if $K=U$.
 • **Theorem.** (Ghiggini, Ozsváth-Szabó, 2006) Yes if $K = 3_1, m(3_1), \text{ or } 4_1$.
 • “No” in general.
 • **Question.** What about other specific knots (e.g., $T_{3,4}$)?
Lens space surgeries

• **Question.** For which K is there p/q with $S_{p/q}^3(K)$ a lens space?

• **Berge Conjecture.** Such K is *doubly primitive*, i.e.,
 • Lies on a genus 2 Heegaard surface
 • Meets some meridian disk on each side once.

• **Theorem.** (Ni, 2006): If $S_{p/q}^3(K)$ is a lens space then K is fibered.

• **Theorem.** (Greene, 2010): The lens spaces that arise from knot surgery are those predicted by Berge conjecture.
An application of equivariant Floer homology

• **Question.** When does one surgery on a knot cover another?

• **Example.** \(S_{6q+1}^3 (3_1) = L(6q + 1, 4q) \) (Moser, 1971). So \(S_{6q+1}^3 (3_1) \) is a \((6k + 1)\)-fold cover of \(S_{6q'+1}^3 (3_1) \) for \(q' = q + k(6k + 1) \).

• **Theorem.** (Lidman-Manolescu, 2016) If \(\frac{p}{q} < 1 \) and \(\left[\frac{q}{p} \right] < \left[\frac{q'}{p'} \right] \) then \(S_p^q (K) \) is not a regular \(r^n \) sheeted cover of \(S_{p'}^{q'} (K) \) (\(r \) prime).

• (Proof uses equivariant Floer homology spectral sequence \(\widehat{HF} (\tilde{Y}) \rightarrow \widehat{HF} (Y) \) mentioned earlier.)
L-spaces and left orderability
L-spaces

- **Definition.** Y^3 is a *rational homology sphere* if $H_*(Y; \mathbb{Q}) \cong H_*(S^3, \mathbb{Q})$.

- **Theorem.** (Ozsváth-Szabó) If Y^3 is a rational homology sphere then
 \[\chi(\widehat{HF}(Y)) = |H_1(Y)| = |\text{spin}^C(Y)|. \]

- **Definition.** A rational homology sphere Y^3 is an *L-space* if $\widehat{HF}(Y) \cong \mathbb{Z}^{\mid H_1(Y)\mid}$ (i.e., as small as possible).

- **Examples.**

<table>
<thead>
<tr>
<th>Space</th>
<th>H_1</th>
<th>\widehat{HF}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poincaré homology sphere $S^3_1(3_1)$</td>
<td>0</td>
<td>\mathbb{Z}</td>
</tr>
<tr>
<td>Lens space $L(p, q) = S^3_p(U)$ $\frac{q}{\bar{q}}$</td>
<td>$\mathbb{Z}/p\mathbb{Z}$</td>
<td>\mathbb{Z}^p</td>
</tr>
<tr>
<td>(Any manifold with spherical geometry.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Sigma(K)$ for K alternating</td>
<td>$</td>
<td>H_1</td>
</tr>
<tr>
<td>$S^3_p(P(-2,3,7))$ (Hyperbolic for $p>19$)</td>
<td>$\mathbb{Z}/p\mathbb{Z}$</td>
<td>$\mathbb{Z}/p\mathbb{Z}$</td>
</tr>
</tbody>
</table>

(From Wikipedia)
Some results for L-spaces

• Strangely, Floer theory is very useful for studying L-spaces. Some examples:

 • **Theorem.** (Ozsváth-Szabó 2003) If $S^3_p(K)$ is an L-space then
 \[\Delta_K(t) = (-1)^k + \sum_{j=1}^{k}(-1)^{k-j}(T^{n_j} + T^{-n_j}) \]
 for an increasing sequence $0 < n_1 < \cdots < n_k$.
 • Strong restriction on what knots have lens space surgeries.

 • **Theorem.** (Lidman-Moore 2015) If $\Sigma(K)$ is an L-space and $\det(K)$ is square-free then K satisfies the cosmetic crossing conjecture.

 • **Theorem.** (Greene 2011) If K, K' are alternating and $\Sigma(K) \cong \Sigma(K')$ then K and K' are related by a sequence of mutations.
 • Partial converse to an old observation of Viro.
 • Uses (grading on) $\widehat{H}F(\Sigma(K))$.

The L-space = left orderability conjecture

• **Definition.** A group G is *left orderable* if there is a total order $<$ on G so that for all $f, g, h \in G$, $g < h \Rightarrow fg < fh$.

• **Example.** \mathbb{Z} is left orderable.

• **Example.** Any finite group is not left orderable.

• By convention, the trivial group is not left orderable.

• **Conjecture.** (Ozsváth-Szabó, Boyer-Gordon-Watson) For irreducible rational homology spheres Y, TFAE:
 • Y is an L-space.
 • $\pi_1(Y)$ is not left orderable.
 • Y does not admit a co-orientable taut foliation.
Evidence for the conjecture

• **Theorem.** (Ozsváth-Szabó 2003) If Y admits a co-orientable taut foliation then Y is not an L-space.

• **Theorem.** (Levine-Lewallen 2011) *Strong L-spaces* are not left orderable.

• Many computations. e.g., Boyer-Clay 2015, Hanselman-Rasmussen-Rasmussen-Watson 2015: true for all graph manifolds.

• Obvious: if $\tilde{Y} \to Y$ is a finite cover and $\pi_1(\tilde{Y})$ is not left orderable then $\pi_1(Y)$ is not left orderable.

• **Theorem.** (Lidman-Manolescu, 2016) If $\tilde{Y} \to Y$ is a regular, solvable cover, \tilde{Y} is an L-space, and $\widehat{HF}(Y')$ is torsion free for all $\tilde{Y} \to Y' \to Y$ then Y is an L-space.

• *(Question. Is $\widehat{HF}(Y')$ torsion free for all rational homology spheres Y?)*
More L-space questions

• **Conjecture.** (Lidman, Moore) If $\Sigma(Y, K)$ is an L-space then Y is an L-space.
 • Compatible with the L-space / non-left orderable conjecture.
 • Would be implied by a spectral sequence $\widehat{HF}(\Sigma(Y, K)) \Rightarrow \widehat{HF}(Y)$.

• **Question.** (Alishahi, Levine, Lidman, ...) Does \widehat{HF} say anything about positive degree maps?
 • Maybe if there is a positive degree map $Y \to Y'$ then
 \[
 \text{rank} \left(\widehat{HF}(Y) \right) \geq \text{rank} \left(\widehat{HF}(Y') \right) ?
 \]

• **Question.** What can you say about relationship between \widehat{HF} and π_1 beyond L-spaces?
The Poincaré conjecture

• **Theorem.** (Perelman, 2003) If \(\pi_1(Y) = \{1\} \) then \(Y \cong S^3 \).

• **Conjecture.** (Ozsváth-Szabó) If \(\widehat{HF}(Y) \cong \mathbb{Z} \) then \(Y \) is a connect sum of copies of the Poincaré homology sphere (and its mirror).

• Together with L-space = not left orderable conjecture, this implies the Poincaré conjecture:
 • \(\pi_1(Y) = \{1\} \) (trivially) implies \(Y \) not left orderable.
 • By first conjecture, \(Y \) not left orderable implies \(\widehat{HF}(Y) \cong \mathbb{Z} \).
 • By second conjecture, \(Y \) is a connect sum of Poincaré spheres.
 • Thus, since \(\pi_1(Y) = \{1\}, \ Y = S^3 \).
Thanks!

(Lots more to figure out...)