Note. This homework assignment is intended partly to make sure you are ready for the course. So, it is about a third the length of, and somewhat easier than, a typical homework assignment.

Math 531 students. This week only it is okay to turn in your homework neatly written, instead of typed in LaTeX.

Problems:

(1) Let X be a set, and d_{dis} be the discrete metric on X, defined by
$$d_{dis}(x, y) = \begin{cases}
1 & x \neq y \\
0 & x = y.
\end{cases}$$
Prove that (X, d_{dis}) is a metric space.

(2) Consider \mathbb{R}^2 with the standard metric $d((x, y), (x', y')) = \sqrt{(x-x')^2 + (y-y')^2}$.
Prove that $U = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 4 \text{ and } y > 0\}$ is open in \mathbb{R}^2.

(3) Let X and Y be sets. Show that there is a bijection between the Cartesian product $X \times Y$ and the set of functions $\{f : \{0, 1\} \to X \cup Y \mid f(0) \in X \text{ and } f(1) \in Y\}$.

Challenge problems (required for Math 531, optional for 431):

(4) The 2-adic metric on the set of rationals \mathbb{Q} is defined as follows. Given $n \in \mathbb{Z}$, define $\text{ord}_2(n) = \max\{r \in \mathbb{N} \mid 2^r \text{ divides } n\}$ if $n \neq 0$. For $p/q \in \mathbb{Q}$, define $\text{ord}_2(p/q) = \text{ord}_2(p) - \text{ord}_2(q)$. Then we define
$$d(p/q, r/s) = \begin{cases}
2^{-\text{ord}_2(p/q-r/s)} & \text{if } p/q \neq r/s \\
0 & \text{if } p/q = r/s.
\end{cases}$$

(a) Compute $d(1, 2)$, $d(1, 3)$, $d(1, 5)$, $d(1, 1/2)$, $d(1/2, 1/3)$.

(b) Prove that (\mathbb{Q}, d) is a metric space.

Email address: lipshitz@uoregon.edu