Note: there are a lot of good problems in Chapter 4. At least read through all the problems (starting on page 122).

Revised: removed 4-27 and 4-32, because we probably will not talk about these topics in class, and half of the first problem because we did prove that in class.

Problems:
(1) Prove Lee, Theorem 4.47.
(2) Lee, Exercise 4.70.
(3) Lee, Problem 4-23.

Challenge problems (required for Math 531, optional for 431):
(4) Let X be a topological space. An end of X is a function f from \{compact subsets of X\} to \{subsets of X\} with the following properties:
(a) For each compact $K \subset X$, $f(K)$ is a connected component of $X \setminus K$.
(b) If $K \subset L$ then $f(L) \subset f(K)$.
Prove that \mathbb{R} has two ends and \mathbb{R}^n has one end for $n > 1$. Give an example of a subspace of \mathbb{R}^n with infinitely many ends, and prove your subspace has infinitely many ends.

Email address: lipshitz@uoregon.edu