Required textbook problems (hand these in):
(1) §6.2: 1, 4, 12, 14, 17, 22.
(2) §6.3: 4, 12, 14.
(3) §6.4: 3, 4, 10, 22.

Suggested practice (don’t hand these in):
• Please read and make sure you can do the practice problems in Sections 6.2, 6.3, and 6.4.
• Use Exercises 6.2.23, 6.2.24, 6.3.21, 6.3.22, 6.4.17(a,b), 6.4.18(a,b) for review.
• If you have some experience writing proofs, try Exercises 6.2.28, 6.2.29, 6.2.33.
• If you had trouble or got help with any of the assigned problems, solve another, similar problem (or two).

Bonus points. Sage, as usual. For this week:
(1) Work through the blog post “Dot products and orthogonality”.
(2) Use Sage to check your answers to 6.2.2, 6.4.3, 6.4.4, 6.4.10.
(3) Optional: write a function in Sage which computes the orthogonal projection of \(\vec{v} \) to \(\text{Span}(\vec{w}) \). (Your function should take two inputs, \(\vec{v} \) and \(\vec{w} \).) Test your function in some examples. Only slightly harder: write a function which computes the orthogonal projection of \(\vec{v} \) onto \(\text{Span}(\vec{w}_1, \ldots, \vec{w}_n) \). (In the second case, start by applying Sage’s Gram-Schmidt to \(\vec{w}_1, \ldots, \vec{w}_n \).

E-mail address: lipshitz@uoregon.edu