Problems to turn in:

(P-1) Hatcher 4.2.9 (p. 389). (For the second part, I found it easier to ignore Hatcher’s hint.)
(P-2) Hatcher 4.2.12 (p. 389).
(P-3) Hatcher 4.2.15 (p. 389).
(P-4) Hatcher 4.2.16 (p. 389).
(P-5) Hatcher 4.2.18 (p. 389).

Review / qualifying exam practice (not to turn in):

(Q-1) Hatcher 4.2.2, 4.2.8, 4.2.13.

More problems to think about but not turn in:

(OP-1) Homology with local coefficients might be helpful context for understanding the orientation cover M_R of a manifold M. Read Hatcher’s Section 3.H and try problems 3.H.1 and 3.H.2.

(OP-2) This problem assumes you know the basics of Čech cohomology of sheaves. A good cover of a space X is a cover by open sets so that every finite intersection of sets in the cover is either empty or contractible. Given a bundle of groups $p: E \to X$, define a sheaf \mathcal{F} with $\mathcal{F}(U)$ the group of sections of E over U (i.e., continuous maps $s: U \to E$ with $p \circ s = 1_U$). The goal of this exercise is to prove that if X admits a finite good cover $U = \{U_1, \ldots, U_k\}$ then the local cohomology of X with coefficients in E is the Čech cohomology of \mathcal{F}. (The condition that the good cover be finite is not needed, but the condition that X admits a good cover is.)

(a) Prove that \mathcal{F} is a sheaf.
(b) Show that if U is contractible then $E|_U$ is a trivial bundle of groups.
(c) Generalize the proof of the Mayer-Vietoris sequence to show that for each n there is an exact sequence

$$0 \to C^n_{\mathcal{U}}(X; E) \to \bigoplus_i C^n(U_i; E|_{U_i}) \to \bigoplus_{i<j} C^n(U_i \cap U_j; E|_{U_i \cap U_j}) \to \bigoplus_{i<j<\ell} C^n(U_i \cap U_j \cap U_\ell; E|_{U_i \cap U_j \cap U_\ell}) \to \cdots.$$

(d) Show that the maps in the exact sequence above are chain maps, with respect to the differential $\delta: C^n_{\mathcal{U}}(X; E) \to C^{n+1}_{\mathcal{U}}(X; E)$ and $\delta: C^n(U_{i_1} \cap \cdots \cap U_{i_j}; E|_{U_{i_1} \cap \cdots \cap U_{i_j}}) \to C^{n+1}(U_{i_1} \cap \cdots \cap U_{i_j}; E|_{U_{i_1} \cap \cdots \cap U_{i_j}})$.
(e) Now, view

$$\bigoplus_i C^n(U_i; E|_{U_i}) \to \bigoplus_{i<j} C^n(U_i \cap U_j; E|_{U_i \cap U_j}) \to \bigoplus_{i<j<\ell} C^n(U_i \cap U_j \cap U_\ell; E|_{U_i \cap U_j \cap U_\ell}) \to \cdots$$

as a bicomplex, where the horizontal differential is the maps in the exact sequence and the vertical differential is the differential on the singular cochain complex.
Let D^* be the associated total complex. Show that there is a chain map $C^*_U(X; E) \to D^*$ inducing an isomorphism on homology.

(f) Show that the homology of $C^*(U_{i_1} \cap \cdots \cap U_{i_j}; E|_{U_{i_1} \cap \cdots \cap U_{i_j}})$ (with respect to the differential on the singular cochain complex) is:

- 0 if $U_{i_1} \cap \cdots \cap U_{i_j} = \emptyset$.
- 0 in gradings $*>0$.
- G in grading 0 if $U_{i_1} \cap \cdots \cap U_{i_j} \neq \emptyset$.

(g) Prove that the homology of D^* is the Čech cohomology of the sheaf \mathcal{F}. Since this is isomorphic to $H^n(X; E)$, this proves the result.