# MATH 342 <br> WRITTEN HOMEWORK 1 DUE APRIL 6, 2020. 

INSTRUCTOR: ROBERT LIPSHITZ

Update 4/1/20: Fixed typo in problems 9 and 10.
Reminder. There is also online homework. The first online homework is also due Monday, April 6.

Required problems: (hand these in):
(1) Let $S=\left\{a t^{2}+b \mid a, b \in \mathbb{R}\right\}$. Is $S$ a subspace of $\mathbb{P}_{2}$ ? Justify your answer.
(2) Let $S=\left\{a t^{2}+2 \mid a \in \mathbb{R}\right\}$. Is $S$ a subspace of $\mathbb{P}_{2}$ ? Justify your answer.
(3) Let $W$ be the set of vectors in $\mathbb{R}^{3}$ of the form $[2 a+b, 3 b-a, a+b]^{T}$. Find vectors $\vec{u}$ and $\vec{v}$ so that $W=\operatorname{Span}\{\vec{u}, \vec{v}\}$. Why does this imply that $W$ is a subspace of $\mathbb{R}^{3}$ ?
(4) Let $W$ be the set of vectors in $\mathbb{R}^{3}$ of the form $[2 a+b, 3 b-a-1, a+b-2]^{T}$. Is $W$ a subspace of $\mathbb{R}^{3}$ ? If so, find vectors $\vec{u}$ and $\vec{v}$ so that $W=$ Span $\{\vec{u}, \vec{v}\}$. If not, give an example showing that $W$ is not a subspace.
(5) Complete the following proof that if $c \vec{u}=\overrightarrow{0}$ and $c \neq 0$ then $\vec{u}=\overrightarrow{0}$ :

$$
\begin{aligned}
c \vec{u} & =\overrightarrow{0} \\
(1 / c)(c \vec{u}) & =(1 / c) \overrightarrow{0} \\
((1 / c)(c)) \vec{u} & =(1 / c) \overrightarrow{0} \\
(1) \vec{u} & =(1 / c) \overrightarrow{0} \\
(1) \vec{u} & =\overrightarrow{0} \\
\vec{u} & =\overrightarrow{0}
\end{aligned}
$$

Scalar multiplication is well-defined
By axiom $\qquad$ (a)

By Problem 28
(6) Let

$$
A=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 3 & 5 & 7
\end{array}\right]
$$

Find a (finite) list of vectors which span the null space of $A$.
(7) Let

$$
W=\left\{\left.\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right] \right\rvert\, a+c=b+d\right\}
$$

with the usual operations of vector addition and scalar multiplication. Use a theorem from class / Section 4.2 to show that $W$ is a vector space.
(8) Let

$$
A=\left[\begin{array}{cc}
3 & -6 \\
2 & -4 \\
5 & -10
\end{array}\right]
$$

Find a non-zero vector in the column space of $A$ and a non-zero vector in the null space of $A$.
(9) Consider the system of equations

$$
\begin{array}{r}
-1 x_{1}-1 x_{2}+4 x_{3}+5 x_{4}+0 x_{5}-13 x_{6}=0 \\
-1 x_{1}-2 x_{2}+8 x_{3}+6 x_{4}-5 x_{5}-7 x_{6}=0 \\
2 x_{1}+8 x_{2}-31 x_{3}-16 x_{4}+27 x_{5}-5 x_{6}=0 \\
3 x_{1}+11 x_{2}-41 x_{3}-22 x_{4}+33 x_{5}+0 x_{6}=0 \\
1 x_{1}+2 x_{2}-7 x_{3}-5 x_{4}+5 x_{5}+4 x_{6}=0 \\
0 x_{1}-5 x_{2}+16 x_{3}+7 x_{4}-5 x_{5}-10 x_{6}=0 .
\end{array}
$$

It can be shown that $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)=(1,-2,-1,-2,-2,-1)$ is a solution. Use material from this week (or Section 4.2 in the book) to explain why $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)=(5,-10,-5,-10,-10,-5)$ is another solution. (Do not do any nontrivial computations.)
(10) Consider the system of equations

$$
\begin{aligned}
-1 x_{1}-1 x_{2}+4 x_{3}+5 x_{4}+0 x_{5} & =-13 \\
-1 x_{1}-2 x_{2}+8 x_{3}+6 x_{4}-5 x_{5} & =-7 \\
2 x_{1}+8 x_{2}-31 x_{3}-16 x_{4}+27 x_{5} & =-5 \\
3 x_{1}+11 x_{2}-41 x_{3}-22 x_{4}+33 x_{5} & =0 \\
1 x_{1}+2 x_{2}-7 x_{3}-5 x_{4}+5 x_{5} & =4 \\
0 x_{1}-5 x_{2}+16 x_{3}+7 x_{4}-5 x_{5} & =-10 .
\end{aligned}
$$

It can be shown that this system has a solution. Explain (using recent material) why the system

$$
\begin{aligned}
-1 x_{1}-1 x_{2}+4 x_{3}+5 x_{4}+0 x_{5} & =26 \\
-1 x_{1}-2 x_{2}+8 x_{3}+6 x_{4}-5 x_{5} & =14 \\
2 x_{1}+8 x_{2}-31 x_{3}-16 x_{4}+27 x_{5} & =10 \\
3 x_{1}+11 x_{2}-41 x_{3}-22 x_{4}+33 x_{5} & =0 \\
1 x_{1}+2 x_{2}-7 x_{3}-5 x_{4}+5 x_{5} & =-8 \\
0 x_{1}-5 x_{2}+16 x_{3}+7 x_{4}-5 x_{5} & =20 .
\end{aligned}
$$

must also have a solution.
(11) Define $T: \mathbb{P}_{2} \rightarrow \mathbb{R}^{2}$ by $T(p(t))=\left[\begin{array}{l}p(1) \\ p(2)\end{array}\right]$.
(a) Show that $T$ is a linear transformation.
(b) Find a polynomial $p(t)$ that spans the kernel of $T$.
(c) Show that the image (book: range) of $T$ is all of $\mathbb{R}^{2}$.
(12) Consider the set of vectors

$$
\left\{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
3 \\
1 \\
4
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\} \subset \mathbb{R}^{3}
$$

(a) Does this set span $\mathbb{R}^{3}$ ? Justify.
(b) Is this set linearly independent? Justify.
(c) Is this set a basis for $\mathbb{R}^{3}$ ? Justify.
(13) Consider the polynomials $p_{1}(t)=1+2 t, p_{2}(t)=-1+2 t$, and $p_{3}(t)=t$. By inspection, write a linear dependence among $p_{1}(t), p_{2}(t)$, and $p_{3}(t)$. Then find a basis for $\operatorname{Span}\left(\left\{p_{1}(t), p_{2}(t), p_{3}(t)\right\}\right)$.
(14) Let $\mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 3\end{array}\right],\left[\begin{array}{l}1 \\ 4\end{array}\right]\right\}$.
(a) Suppose $[\vec{x}]_{\mathcal{B}}=\left[\begin{array}{l}2 \\ 5\end{array}\right]$. Find $\vec{x}$.
(b) Let $\vec{y}=\left[\begin{array}{l}2 \\ 5\end{array}\right]$. Find $[\vec{y}]_{\mathcal{B}}$.
(15) Find a basis for the subspace from Problem 3 and find its dimension.
(16) Find the dimensions of the subspaces from Problems 1 and 13.
(17) Let

$$
A=\left[\begin{array}{lll}
1 & 2 & -7 \\
0 & 1 & -4 \\
2 & 2 & -6
\end{array}\right]
$$

Find bases for $\operatorname{Null}(A)$ and $\operatorname{Col}(A)$ 4.5.14
Suggested practice (don't hand these in):

- Please read and make sure you can do the practice problems in sections 4.1-4.5.
- Please read and use for review problems 4.1.23(a-d), 4.1.24(a-c), 4.2.25, 4.2.26, 4.3.21, 4.3.22, 4.4.15, 4.4.16, 4.5.19, 4.5.20.
- If you had trouble or got help with any of the assigned problems, solve another, similar problem.

Similar problems:

| HW Problems | Similar textbook problems |
| :--- | :--- |
| $1-3$ | $4.1 .5-12$ |
| 4 | $4.1 .15-18$ |
| 5 | $4.1 .25-30$ |
| 6 | $4.2 .3-6$ |
| 7 | $4.2 .7-14$ |
| 8 | $4.2 .21,22$ |
| 9,10 | $4.2 .27,28$ |
| 11 | $4.2 .31-34$ |
| 12 | $4.3 .1-8$ |
| 13 | $4.3 .33,34$ |
| 14 | $4.4 .1-8$ |
| 15,16 | $4.5 .1-12$ |
| 17 | $4.5 .13-18$ |

Blog. Optional: Follow the steps in the post "Getting Started" on the 342 in CoCalc, Spring 2020 blog. The blog is at:
https://blogs.uoregon.edu/math342sp201ipshitz/
Email address: lipshitz@uoregon.edu

