MATH 342
 WRITTEN HOMEWORK 2
 DUE APRIL 13, 2020.

INSTRUCTOR: ROBERT LIPSHITZ

Required problems: (hand these in):
(1) Consider the ordered basis

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
2 \\
5
\end{array}\right],\left[\begin{array}{l}
1 \\
3
\end{array}\right]\right\}
$$

(a) Find the change of coordinates matrix from \mathcal{B} to the standard basis $\mathcal{E}=\left\{\vec{e}_{1}, \vec{e}_{2}\right\}$ for \mathbb{R}^{2}.
(b) Find the change of coordinates matrix from \mathcal{E} to \mathcal{B}.
(c) Suppose $[\vec{x}]_{\mathcal{B}}=\left[\begin{array}{l}-3 \\ -2\end{array}\right]$. Find \vec{x}.
(d) Suppose $\vec{y}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$. Find $[\vec{y}]_{\mathcal{B}}$.
(2) Consider the set $\mathcal{B}=\left\{1+t+t^{2}, t+t^{2}, t^{2}\right\} \subset \mathbb{P}_{2}$.
(a) Explain why \mathcal{B} forms a basis for \mathbb{P}_{2}, as efficiently as you can.
(b) Find $\left[2+3 t-t^{2}\right]_{\mathcal{B}}$, the coordinates of $p(t)=2+3 t-t^{2}$ with respect to \mathcal{B}. Do this two ways: directly and using a change-of-coordinates matrix.
(3) The vectors

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
2
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \vec{v}_{3}=\left[\begin{array}{l}
1 \\
4
\end{array}\right]
$$

span \mathbb{R}^{2} but are not linearly independent. Find two different ways to express $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ as a linear combination of $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$.
(4) Consider the polynomials $p_{1}(t)=2+3 t+4 t^{2}, p_{2}(t)=5 t+6 t^{2}, p_{3}(t)=$ $7 t^{2}$.
(a) Use coordinate vectors to show that $\mathcal{B}=\left\{p_{1}(t), p_{2}(t), p_{3}(t)\right\}$ is a basis for \mathbb{P}_{2}.
(b) Suppose that $[q(t)]_{\mathcal{B}}=[1,0,-1]^{T}$. Find $q(t)$.
(5) The first four Chebyshev polynomials of the first kind are $T_{0}(t)=1$, $T_{1}(t)=t, T_{2}(t)=2 t^{2}-1, T_{3}(t)=4 t^{3}-3 t$. (These satisfy $\cos (n \theta)=$ $T_{n}(\cos (\theta))$; see, e.g., Wikipedia.)
(a) Show that $\mathcal{B}=\left\{T_{0}(t), T_{1}(t), T_{2}(t), T_{3}(t)\right\}$ is a basis for \mathbb{P}_{3}.
(b) Let $p(t)=1+t+t^{2}+t^{3}$. Find the coordinates of $p(t)$ with respect to \mathcal{B}.
(6) Here is a matrix and its row-reduced echelon form (thanks, CoCalc):
$A=\left[\begin{array}{ccccccc}3 & -11 & 59 & -7 & -25 & -68 & -129 \\ 2 & -7 & 38 & -4 & -16 & -44 & -83 \\ -1 & 8 & -37 & 11 & 18 & 44 & 89 \\ -3 & 17 & -83 & 19 & 32 & 73 & 149 \\ -2 & 12 & -58 & 14 & 29 & 72 & 145\end{array}\right]$

$$
\operatorname{RREF}(A)=\left[\begin{array}{ccccccc}
1 & 0 & 5 & 5 & 0 & 0 & 1 \\
0 & 1 & -4 & 2 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 1 & 0 & 3 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Without doing any calculations, find the rank of A and the nullity of A. Then find bases for the column space of A, the row space of A, and the null space of A.
(7) Suppose a 5×7 matrix A has five pivot columns. Is $\operatorname{Col}(A)=\mathbb{R}^{5}$? Is $\operatorname{Null}(A)=\mathbb{R}^{2} ?$ Explain.
(8) If the null space of a 7×13 matrix is 8 -dimensional, what is the dimension of the column space?
(9) Suppose all solutions of a homogeneous system of seven linear equations in eight variables are all multiples of a single non-zero solution. If you change the constants on the right-hand side to some non-zero vector (so the system becomes inhomogeneous), is there necessary a solution? Explain.
(10) Let $\mathcal{B}=\left\{\vec{b}_{1}, \vec{b}_{2}\right\}$ and $\mathcal{C}=\left\{\vec{c}_{1}, \vec{c}_{2}\right\}$ be bases for a vector space V. Suppose $\vec{b}_{1}=2 \vec{c}_{1}+3 \vec{c}_{2}$ and $\vec{b}_{2}=3 \vec{c}_{1}+4 \vec{c}_{2}$.
(a) Find the change of coordinates matrix from \mathcal{B} to $\mathcal{C}, P_{\mathcal{C} \leftarrow \mathcal{B}}$.
(b) Find the change of coordinates matrix from \mathcal{C} to $\mathcal{B}, P_{\mathcal{B} \leftarrow \mathcal{C}}$.
(c) Suppose $\vec{x}=3 \vec{c}_{1}+5 \vec{c}_{2}$. Find $[\vec{x}]_{\mathcal{C}}$ and $[\vec{x}]_{\mathcal{B}}$.
(d) Suppose $\vec{x}=3 \vec{b}_{1}+5 \vec{b}_{2}$. Find $[\vec{x}]_{\mathcal{C}}$ and $[\vec{x}]_{\mathcal{B}}$.
(11) Consider the bases

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right]\left[\begin{array}{l}
2 \\
3
\end{array}\right]\right\} \quad \mathcal{C}=\left\{\left[\begin{array}{l}
3 \\
1
\end{array}\right]\left[\begin{array}{l}
4 \\
1
\end{array}\right]\right\}
$$

for \mathbb{R}^{2}. Find the change of coordinates matrix $P_{\mathcal{C} \leftarrow \mathcal{B}}$ from \mathcal{B} to \mathcal{C} and the change of coordinates matrix $P_{\mathcal{B} \leftarrow \mathcal{C}}$ from \mathcal{C} to \mathcal{B}.
(12) Here is a proof of the book's Theorem 15 , which reads:

Theorem. Let $\mathcal{B}=\left\{\vec{b}_{1}, \ldots, \vec{b}_{n}\right\}$ and $\mathcal{C}=\left\{\vec{c}_{1}, \ldots, \vec{c}_{n}\right\}$ be bases for a vector space V. Then there is a unique $n \times n$ matrix $P_{\mathcal{C} \leftarrow \mathcal{B}}$ so that for any $\vec{x} \in V$,

$$
\begin{equation*}
[\vec{x}]_{\mathcal{C}}=P_{\mathcal{C} \leftarrow \mathcal{B}}[\vec{x}]_{\mathcal{B}} . \tag{1}
\end{equation*}
$$

Further,

$$
\begin{equation*}
P_{\mathcal{C} \leftarrow \mathcal{B}}=\left[\left[\vec{b}_{1}\right]_{\mathcal{C}} \cdots\left[\vec{b}_{n}\right]_{\mathcal{C}}\right] \tag{2}
\end{equation*}
$$

Fill in the blanks in the following proof:
Fix a vector $\vec{v} \in V$. Since (a) \qquad _ there are real numbers x_{1}, \ldots, x_{n} so that

$$
\vec{v}=x_{1} \vec{b}_{1}+\cdots+x_{n} \vec{b}_{n}
$$

Applying the coordinate mapping associated to \mathcal{C} to both sides, this gives

$$
[\vec{v}]_{\mathcal{C}}=x_{1}\left[\vec{b}_{1}\right]_{\mathcal{C}}+\cdots+x_{n}\left[\vec{b}_{n}\right]_{\mathcal{C}} .
$$

This uses the fact that the coordinate mapping is (b) \qquad . By the definition of (c) \qquad , this equation can be rewritten as

$$
[\vec{v}]_{\mathcal{C}}=\left[\left[\vec{b}_{1}\right]_{\mathcal{C}} \cdots\left[\vec{b}_{n}\right]_{\mathcal{C}}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]
$$

Notice that the vector $\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right]$ is equal to (d)_Hence, the matrix in Equation (2) satisfies Equation (1).

Now, suppose Q is any other matrix so that for any $\vec{x} \in V$,

$$
\begin{equation*}
[\vec{x}]_{\mathcal{C}}=Q[\vec{x}]_{\mathcal{B}} . \tag{3}
\end{equation*}
$$

Take $\vec{x}=\vec{b}_{i}$. Then $[\vec{x}]_{\mathcal{B}}$ is equal to (e) \qquad , so the right side of Equation (3) is equal to (f) \qquad . Since this is true for every i, this proves that Q is equal to the matrix from Equation (2).
(a) Show that the two elements (signals) $\left\{(-2)^{k}\right\}_{k \in \mathbb{Z}},\left\{3^{k}\right\}_{k \in \mathbb{Z}} \in \mathbb{S}$ are solutions of the difference equation

$$
y_{k+2}-y_{k+1}-6 y_{k}=0 .
$$

(b) Show that these two signals $\left\{(-2)^{k}\right\}_{k \in \mathbb{Z}},\left\{3^{k}\right\}_{k \in \mathbb{Z}}$ are linearly independent in \mathbb{S}.
(c) Show that these two signals $\left\{(-2)^{k}\right\}_{k \in \mathbb{Z}},\left\{3^{k}\right\}_{k \in \mathbb{Z}}$ span the space of solutions to

$$
y_{k+2}-y_{k+1}-6 y_{k}=0 .
$$

hence form a basis for it.
(14) Show that the signal $y_{k}=k^{2}$ is a solution to the inhomogeneous difference equation

$$
y_{k+2}+2 y_{k+1}-3 y_{k}=8 k+6 .
$$

Then find the general solution to this inhomogeneous difference equation.
(15) Find a steady state vector for the matrix

$$
\left[\begin{array}{ll}
1 / 4 & 5 / 6 \\
3 / 4 & 1 / 6
\end{array}\right] .
$$

(16) (cf. problem 4.9.3 in the textbook) Here is a questionable model for infection. On any given day, each person is either healthy or sick. Of the healthy people, 95% will be healthy tomorrow, and the remainder will be sick. Of the sick people, 60% will still be sick tomorrow, and the remainder will be healthy.
(a) Write the stochastic matrix representing this situation.
(b) If 10% of people are sick today, what fraction will be sick tomorrow? The day after tomorrow?
(c) If a student is healthy today, what is the chance s/he will be healthy in two days?
(d) Find a steady-state vector for this model. What do its entries represent?
(e) What are some problems with this model, in general?
(f) Can you describe a situation or disease where this model (perhaps with different numbers) seems relatively reasonable?
Suggested practice (don't hand these in):

- Please read and make sure you can do the practice problems in sections 4.6-4.9.
- Please read and use for review problems 4.6.17(a,c,d,e), 4.6.18, 4.7.11, 4.7.12.
- If you had trouble or got help with any of the assigned problems, solve another, similar problem.

Similar problems:

HW Problems	Similar textbook problems
1	$4.4 .9-12$
2	$4.4 .13-14,4.7 .12-14$
3	4.4 .17
4	$4.4 .31,4.4 .32$
5	$4.4 .21-24$
6	$4.6 .1-4$
7,8	$4.6 .5-16$
9	$4.6 .19-25$
10	$4.7 .1-6$
11	$4.7 .7-10$
12	$4.7 .15-16$
13	$4.8 .1-12$
14	$4.8 .25-28$
15	$4.9 .5-8$
16	$4.9 .1-4,12$

Blog. Optional: Follow the steps in the post "Matrix Operations in CoCalc" on the 342 in CoCalc, Spring 2020 blog. The blog is at:
https://blogs.uoregon.edu/math342sp201ipshitz/
Email address: lipshitz@uoregon.edu

