MATH 342
 WRITTEN HOMEWORK 3
 DUE APRIL 20, 2020.

INSTRUCTOR: ROBERT LIPSHITZ

Required problems: (hand these in):
(1) Let

$$
A=\left[\begin{array}{cc}
14 & 30 \\
-5 & -11
\end{array}\right]
$$

Is 3 an eigenvalue of A ? What about 4?
(2) Let

$$
A=\left[\begin{array}{cc}
8 & 10 \\
-5 & -7
\end{array}\right] .
$$

Is $[1,1]^{T}$ an eigenvector of A ? If so, find the corresponding eigenvalue.
Is $[1,-1]^{T}$ an eigenvector of A ? If so, find the corresponding eigenvalue.
(3) Let

$$
A=\left[\begin{array}{ll}
-3 & 8 \\
-4 & 9
\end{array}\right]
$$

The eigenvalues of A are 1 and 5 . Find a basis for the corresponding eigenspaces.
(4) Let

$$
A=\left[\begin{array}{cccc}
0 & 13 & 32 & -24 \\
-2 & -3 & -4 & 12 \\
0 & 4 & 10 & -8 \\
-1 & 1 & 5 & 1
\end{array}\right]
$$

The eigenvalues of A are 1, 2, and 3 . Find bases for the corresponding eigenspaces.
(5) Let

$$
A=\left[\begin{array}{lll}
3 & 1 & 4 \\
3 & 1 & 4 \\
3 & 1 & 4
\end{array}\right]
$$

Find one eigenvalue of A without doing any calculation. Justify your answer.
(6) Explain why a 3×3 matrix can have at most three distinct eigenvalues.
(7) Suppose A is an invertible matrix and λ is an eigenvalue of A. Show that $1 / \lambda$ is an eigenvalue of A^{-1}. (Hint: your argument will start "If λ is an eigenvalue of A then there is a nonzero vector \vec{v} so that. ...")
(8) Let

$$
A=\left[\begin{array}{cc}
-10 & 12 \\
-6 & 8
\end{array}\right]
$$

Find the characteristic polynomial and eigenvalues of A.
(9) Find the characteristic polynomial of

$$
\left[\begin{array}{ccc}
-1 & 8 & 2 \\
-1 & 5 & 1 \\
1 & -4 & 0
\end{array}\right]
$$

(10) Suppose an $n \times n$ matrix A has n real eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. So,

$$
\operatorname{det}(A-\lambda I)=\left(\lambda_{1}-\lambda\right) \cdots\left(\lambda_{n}-\lambda\right)
$$

Explain why $\operatorname{det}(A)=\lambda_{1} \cdots \lambda_{n}$, the product of the eigenvalues of A.
Remark. If we consider also complex eigenvalues, as we will, a version of this statement is true for any square matrix.
(11) Show that A and A^{T} have the same eigenvalues. (Hint: how are their characteristic polynomials related?)
(12) Let $A=P D P^{-1}$ where

$$
P=\left[\begin{array}{cc}
-1 & -5 \\
1 & 4
\end{array}\right] \quad D=\left[\begin{array}{cc}
2 & 0 \\
0 & 1 / 2
\end{array}\right]
$$

Compute A and A^{5}.
(13) Let

$$
A=\left[\begin{array}{cc}
7 & 10 \\
-5 & -8
\end{array}\right]
$$

Diagonalize A. That is, find matrices P and D so that $A=P D P^{-1}$ (or equivalently, $D=P^{-1} A P$).
(14) One of the roots of the characteristic polynomial you found in Problem 9 is 2 . Diagonalize

$$
\left[\begin{array}{ccc}
-1 & 8 & 2 \\
-1 & 5 & 1 \\
1 & -4 & 0
\end{array}\right]
$$

Suggested practice (don't hand these in):

- Please read and make sure you can do the practice problems in sections 5.1-5.3.
- Please read and use for review problems 5.1.21, 5.1.22, 5.2.21, 5.2.22, and 5.3.21.
- If you had trouble or got help with any of the assigned problems, solve another, similar problem.

Similar problems:

HW Problems	Similar textbook problems
$1-2$	$5.1 .1-8$
$3-4$	$5.1 .9-16$
5	$5.1 .19-20$
6	$5.1 .23-24$
7	$5.1 .25-30$
8	$5.2 .1-8$
9	$5.2 .9-14$
10	5.2 .19
11	5.2 .20
12	$5.3 .1-4$
$13-14$	$5.3 .7-20$

Blog. Optional:

- Follow the steps in the post "Eigenvectors and Eigenvalues" on the 342 in CoCalc, Spring 2020 blog. The blog is at: https://blogs.uoregon.edu/math342sp201ipshitz/
- Use Sage to check your work on problems 1, 9, and 14.
- How big a matrix can CoCalc (Sage) find eigenvectors / eigenvalues for in reasonable time? Do some experiments. You might find the random_matrix command useful for this. (You can also use the time command to time your computations, if you like.)

