MATH 342
WRITTEN HOMEWORK 4
INSTRUCTOR: ROBERT LIPSHITZ

Required problems (hand these in):

(1) Let V be a vector space and $B = \{\vec{b}_1, \vec{b}_2, \vec{b}_3\}$ an ordered basis for V. Suppose that $T: V \to \mathbb{R}^2$ is a linear transformation so that

$$T(x_1 \vec{b}_1 + x_2 \vec{b}_2 + x_3 \vec{b}_3) = \begin{bmatrix} x_1 - x_2 + 2x_3 \\ 3x_1 - 5x_2 \end{bmatrix}.$$

Find the matrix for T with respect to B and the standard basis for \mathbb{R}^2.

(2) Let $T: P_2 \to P_4$ be the transformation $T(p(t)) = (t + 3)p(t) + p'(t)$.

(a) Compute $T(2 + 3t + 4t^2)$.

(b) Show that T is a linear transformation.

(c) Find the matrix for T with respect to the ordered bases $\{1, t, t^2\}$ for P_2 and $\{1, t, t^2, t^3\}$ for P_3.

(3) Define $T: P_1 \to \mathbb{R}^2$ by

$$T(p(t)) = \begin{bmatrix} p(0) \\ p(1) \\ p(2) \end{bmatrix}.$$

(a) Compute $T(2 + 3t)$.

(b) Show that T is a linear transformation.

(c) Find the matrix for T with respect to the ordered basis $\{1, t\}$ for P_1 and the standard basis for \mathbb{R}^3.

(4) Define $T: \mathbb{R}^2 \to \mathbb{R}^2$ by

$$T(\vec{x}) = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \vec{x}.$$

Let

$$B = \left\{ \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right\}.$$

Find the matrix $[T]_B$ for T with respect to B.

(5) Define $T: \mathbb{R}^2 \to \mathbb{R}^2$ by

$$T(\vec{x}) = \begin{bmatrix} -7 & 18 \\ -3 & 8 \end{bmatrix} \vec{x}.$$

Find a basis B so that $[T]_B$ is diagonal (and find $[T]_B$).
(6) Let \(V = \{ a_0 + a_1 e^x + a_2 e^{2x} + a_3 e^{3x} \mid a_1, a_2, a_3 \in \mathbb{R} \} \), which is a subspace of the vector space of functions \(\mathbb{R} \to \mathbb{R} \). Let \(T: V \to V \) be the linear transformation \(T(f(x)) = f''(x) \). What are the eigenvalues of \(T \)? Find an eigenvector corresponding to each eigenvalue.

(7) Consider the linear transformation \(T: \mathbb{P}_2 \to \mathbb{P}_2 \) given by \(T(p(x)) = p(0) + p(1) + p'(x) + 3x^2p''(x) \). Let \(\mathcal{B} \) be the basis \(\{1, x, x^2\} \) for \(\mathbb{P}_2 \).
(a) Find the matrix \(A \) for \(T \) with respect to the basis \(\mathcal{B} \).
(b) Find the eigenvalues of \(A \), and a basis for \(\mathbb{R}^3 \) consisting of eigenvectors of \(A \).
(c) Find a basis for \(\mathbb{P}_2 \) consisting of eigenvectors for \(T \).

(8) Let
\[
A = \begin{bmatrix}
2 & -1 \\
1 & 2
\end{bmatrix}.
\]
Find the eigenvalues of \(A \) (which may be complex numbers) and a basis for each eigenspace in \(\mathbb{C}^2 \).

(9) Let
\[
A = \begin{bmatrix}
3 & -2 \\
1 & 1
\end{bmatrix}.
\]
Find the eigenvalues of \(A \) (which may be complex numbers) and a basis for each eigenspace in \(\mathbb{C}^2 \).

(10) The matrix
\[
\begin{bmatrix}
2 & -1 \\
1 & 2
\end{bmatrix}
\]
corresponds to the composition of a rotation and a scaling. Give the angle \(\phi \) of the rotation and the scale factor \(r \).

(11) Let \(A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \). Compute \(A^{20} \) (by hand).

(12) Plot the following complex numbers in the complex plane, on one graph: \(1 + i \), \(2 - 3i \), \(2e^{\pi i} \), \(2e^{\frac{2\pi}{3}i} \), \(2 \cos(\pi/3) + 2i \sin(\pi/3) \).

(13) Plot the following complex numbers in the plane, on one graph: \((1 + i\sqrt{3})^2 \), \((1 + i\sqrt{3})^3 \), \((1 + i\sqrt{3})^4 \), \(e^{\pi i} \), \(e^{\frac{2\pi}{3}i} \), \(e^{\frac{4\pi}{3}i} \), \(e^{\frac{5\pi}{3}i} \).

Suggested practice (don’t hand these in):
- Please read and make sure you can do the practice problems in Sections 5.4 and 5.5.
- If you have taken a course on writing proofs, try problems 5.4.25, 5.4.26, 5.4.19, 5.4.20, 5.4.21, 5.4.23, 5.5.23, and 5.5.24.
- If you had trouble or got help with any of the assigned problems, solve another, similar problem (or two).
Similar problems:

<table>
<thead>
<tr>
<th>HW Problems</th>
<th>Similar textbook problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–3</td>
<td>5.4.1–10</td>
</tr>
<tr>
<td>4</td>
<td>5.4.11–12</td>
</tr>
<tr>
<td>5</td>
<td>5.4.13–16</td>
</tr>
<tr>
<td>8–9</td>
<td>5.5.1–6</td>
</tr>
<tr>
<td>10</td>
<td>5.5.7–12</td>
</tr>
</tbody>
</table>

Blog. Optional:
- Work through the blog post “Complex numbers”.
- Use CoCalc to check your answers to problems 4, 8, 9, 12, and 13.

Email address: lipshitz@uoregon.edu