MATH 342
 WRITTEN HOMEWORK 4
 DUE APRIL 27, 2020.

INSTRUCTOR: ROBERT LIPSHITZ

Required problems (hand these in):
(1) Let V be a vector space and $\mathcal{B}=\left\{\vec{b}_{1}, \vec{b}_{2}, \vec{b}_{3}\right\}$ an ordered basis for V. Suppose that $T: V \rightarrow \mathbb{R}^{2}$ is a linear transformation so that

$$
T\left(x_{1} \vec{b}_{1}+x_{2} \vec{b}_{2}+x_{3} \vec{b}_{3}\right)=\left[\begin{array}{c}
x_{1}-x_{2}+2 x_{3} \\
3 x_{1}-5 x_{2}
\end{array}\right] .
$$

Find the matrix for T with respect to \mathcal{B} and the standard basis for \mathbb{R}^{2}.
(2) Let $T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{4}$ be the transformation

$$
T(p(t))=(t+3) p(t)+p^{\prime}(t)
$$

(a) Compute $T\left(2+3 t+4 t^{2}\right)$.
(b) Show that T is a linear transformation.
(c) Find the matrix for T with respect to the ordered bases $\left\{1, t, t^{2}\right\}$ for \mathbb{P}_{2} and $\left\{1, t, t^{2}, t^{3}\right\}$ for \mathbb{P}_{3}.
(3) Define $T: \mathbb{P}_{1} \rightarrow \mathbb{R}_{2}$ by

$$
T(p(t))=\left[\begin{array}{l}
p(0) \\
p(1) \\
p(2)
\end{array}\right]
$$

(a) Compute $T(2+3 t)$.
(b) Show that T is a linear transformation.
(c) Find the matrix for T with respect to the ordered basis $\{1, t\}$ for \mathbb{P}_{1} and the standard basis for \mathbb{R}^{3}.
(4) Define $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by

$$
T(\vec{x})=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \vec{x}
$$

Let

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
2 \\
3
\end{array}\right],\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right\}
$$

Find the matrix $[T]_{\mathcal{B}}$ for T with respect to \mathcal{B}.
(5) Define $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by

$$
T(\vec{x})=\left[\begin{array}{cc}
-7 & 18 \\
-3 & 8
\end{array}\right] \vec{x} .
$$

Find a basis \mathcal{B} so that $[T]_{\mathcal{B}}$ is diagonal (and find $[T]_{\mathcal{B}}$).
(6) Let $V=\left\{a_{0}+a_{1} e^{x}+a_{2} e^{2 x}+a_{3} e^{3 x} \mid a_{1}, a_{2}, a_{3} \in \mathbb{R}\right\}$, which is a subspace of the vector space of functions $\mathbb{R} \rightarrow \mathbb{R}$. Let $T: V \rightarrow V$ be the linear transformation $T(f(x))=f^{\prime \prime}(x)$. What are the eigenvalues of T ? Find an eigenvector corresponding to each eigenvalue.
(7) Consider the linear transformation $T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{2}$ given by $T(p(x))=$ $p(0)+p(1)+p^{\prime}(x)+3 x^{2} p^{\prime \prime}(x)$. Let \mathcal{B} be the basis $\left\{1, x, x^{2}\right\}$ for \mathbb{P}_{2}.
(a) Find the matrix A for T with respect to the basis \mathcal{B}.
(b) Find the eigenvalues of A, and a basis for \mathbb{R}^{3} consisting of eigenvectors of A.
(c) Find a basis for \mathbb{P}_{2} consisting of eigenvectors for T.
(8) Let

$$
A=\left[\begin{array}{cc}
2 & -1 \\
1 & 2
\end{array}\right]
$$

Find the eigenvalues of A (which may be complex numbers) and a basis for each eigenspace in \mathbb{C}^{2}.
(9) Let

$$
A=\left[\begin{array}{cc}
3 & -2 \\
1 & 1
\end{array}\right]
$$

Find the eigenvalues of A (which may be complex numbers) and a basis for each eigenspace in \mathbb{C}^{2}.
(10) The matrix

$$
\left[\begin{array}{cc}
2 & -1 \\
1 & 2
\end{array}\right]
$$

corresponds to the composition of a rotation and a scaling. Give the angle ϕ of the rotation and the scale factor r.
(11) Let $A=\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]$. Compute A^{20} (by hand).
(12) Plot the following complex numbers in the complex plane, on one graph: $1+i, 2-3 i, 2 e^{\frac{\pi}{4} i}, 2 e^{\frac{\pi}{2} i}, 2 e^{\frac{3 \pi}{4} i}, 2 \cos (\pi / 3)+2 i \sin (\pi / 3)$.
(13) Plot the following complex numbers in the plane, on one graph: $(1+$ $i \sqrt{3}),(1+i \sqrt{3})^{2},(1+i \sqrt{3})^{3},(1+i \sqrt{3})^{4}, e^{\frac{\pi}{3} i}, e^{\frac{2 \pi}{3} i}, e^{\frac{3 \pi}{3} i}, e^{\frac{4 \pi}{3} i}, e^{\frac{5 \pi}{3} i}$.
Suggested practice (don't hand these in):

- Please read and make sure you can do the practice problems in Sections 5.4 and 5.5.
- If you have taken a course on writing proofs, try problems 5.4.25, 5.4.26, $5.4 .19,5.4 .20,5.4 .21,5.4 .23,5.5 .23$, and 5.5.24.
- If you had trouble or got help with any of the assigned problems, solve another, similar problem (or two).

Similar problems:

HW Problems	Similar textbook problems
$1-3$	$5.4 .1-10$
4	$5.4 .11-12$
5	$5.4 .13-16$
$8-9$	$5.5 .1-6$
10	$5.5 .7-12$

Blog. Optional:

- Work through the blog post "Complex numbers".
- Use CoCalc to check your answers to problems 4, 8, 9, 12, and 13. Email address: lipshitz@uoregon.edu

