MATH 342 WRITTEN HOMEWORK 4 DUE APRIL 27, 2020.

INSTRUCTOR: ROBERT LIPSHITZ

Required problems (hand these in):

(1) Let V be a vector space and $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \vec{b}_3\}$ an ordered basis for V. Suppose that $T: V \to \mathbb{R}^2$ is a linear transformation so that

$$T(x_1\vec{b}_1 + x_2\vec{b}_2 + x_3\vec{b}_3) = \begin{bmatrix} x_1 - x_2 + 2x_3\\ 3x_1 - 5x_2 \end{bmatrix}.$$

Find the matrix for T with respect to \mathcal{B} and the standard basis for \mathbb{R}^2 . (2) Let $T: \mathbb{P}_2 \to \mathbb{P}_4$ be the transformation

$$T(p(t)) = (t+3)p(t) + p'(t).$$

- (a) Compute $T(2 + 3t + 4t^2)$.
- (b) Show that T is a linear transformation.
- (c) Find the matrix for T with respect to the ordered bases $\{1, t, t^2\}$ for \mathbb{P}_2 and $\{1, t, t^2, t^3\}$ for \mathbb{P}_3 .
- (3) Define $T: \mathbb{P}_1 \to \mathbb{R}_2$ by

$$T(p(t)) = \begin{bmatrix} p(0)\\ p(1)\\ p(2) \end{bmatrix}.$$

- (a) Compute T(2+3t).
- (b) Show that T is a linear transformation.
- (c) Find the matrix for T with respect to the ordered basis $\{1, t\}$ for \mathbb{P}_1 and the standard basis for \mathbb{R}^3 .
- (4) Define $T: \mathbb{R}^2 \to \mathbb{R}^2$ by

$$T(\vec{x}) = \begin{bmatrix} 1 & 2\\ 3 & 4 \end{bmatrix} \vec{x}.$$

Let

$$\mathcal{B} = \left\{ \begin{bmatrix} 2\\ 3 \end{bmatrix}, \begin{bmatrix} 2\\ 1 \end{bmatrix} \right\}.$$

Find the matrix $[T]_{\mathcal{B}}$ for T with respect to \mathcal{B} .

(5) Define $T: \mathbb{R}^2 \to \mathbb{R}^2$ by

$$T(\vec{x}) = \begin{bmatrix} -7 & 18\\ -3 & 8 \end{bmatrix} \vec{x}.$$

Find a basis \mathcal{B} so that $[T]_{\mathcal{B}}$ is diagonal (and find $[T]_{\mathcal{B}}$).

- (6) Let $V = \{a_0 + a_1e^x + a_2e^{2x} + a_3e^{3x} \mid a_1, a_2, a_3 \in \mathbb{R}\}$, which is a subspace of the vector space of functions $\mathbb{R} \to \mathbb{R}$. Let $T: V \to V$ be the linear transformation T(f(x)) = f''(x). What are the eigenvalues of T? Find an eigenvector corresponding to each eigenvalue.
- (7) Consider the linear transformation $T: \mathbb{P}_2 \to \mathbb{P}_2$ given by T(p(x)) = $p(0) + p(1) + p'(x) + 3x^2p''(x)$. Let \mathcal{B} be the basis $\{1, x, x^2\}$ for \mathbb{P}_2 . (a) Find the matrix A for T with respect to the basis \mathcal{B} .

 - (b) Find the eigenvalues of A, and a basis for \mathbb{R}^3 consisting of eigenvectors of A.
 - (c) Find a basis for \mathbb{P}_2 consisting of eigenvectors for T.
- (8) Let

$$A = \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix}.$$

Find the eigenvalues of A (which may be complex numbers) and a basis for each eigenspace in \mathbb{C}^2 .

(9) Let

$$A = \begin{bmatrix} 3 & -2 \\ 1 & 1 \end{bmatrix}.$$

Find the eigenvalues of A (which may be complex numbers) and a basis for each eigenspace in \mathbb{C}^2 .

(10) The matrix

$$\begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix}$$

corresponds to the composition of a rotation and a scaling. Give the angle ϕ of the rotation and the scale factor r.

- (11) Let $A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$. Compute A^{20} (by hand).
- (12) Plot the following complex numbers in the complex plane, on one graph: 1 + i, 2 - 3i, $2e^{\frac{\pi}{4}i}$, $2e^{\frac{\pi}{2}i}$, $2e^{\frac{3\pi}{4}i}$, $2\cos(\pi/3) + 2i\sin(\pi/3)$.
- (13) Plot the following complex numbers in the plane, on one graph: (1 + $i\sqrt{3}$, $(1+i\sqrt{3})^2$, $(1+i\sqrt{3})^3$, $(1+i\sqrt{3})^4$, $e^{\frac{\pi}{3}i}$, $e^{\frac{2\pi}{3}i}$, $e^{\frac{3\pi}{3}i}$, $e^{\frac{4\pi}{3}i}$, $e^{\frac{5\pi}{3}i}$.

Suggested practice (don't hand these in):

- Please read and make sure you can do the practice problems in Sections 5.4 and 5.5.
- If you have taken a course on writing proofs, try problems 5.4.25, 5.4.26, 5.4.19, 5.4.20, 5.4.21, 5.4.23, 5.5.23, and 5.5.24.
- If you had trouble or got help with any of the assigned problems, solve another, similar problem (or two).

Similar problems:

HW Problems	Similar textbook problems
1-3	5.4.1–10
4	5.4.11 - 12
5	5.4.13 - 16
8-9	5.5.1 - 6
10	5.5.7 - 12

Blog. Optional:

• Work through the blog post "Complex numbers".

• Use CoCalc to check your answers to problems 4, 8, 9, 12, and 13.

Email address: lipshitz@uoregon.edu