MATH 342
 WRITTEN HOMEWORK 6

 DUE MAY 11, 2020.

 DUE MAY 11, 2020.}

INSTRUCTOR: ROBERT LIPSHITZ

Updated: fixed a typo in Problem 4c.
Required problems (hand these in):
(1) Determine whether each of the following sets of vectors is orthonormal, orthogonal but not orthonormal, or not orthogonal.
(a)

$$
\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

(b)

$$
\left[\begin{array}{l}
2 / 3 \\
2 / 3 \\
1 / 3
\end{array}\right], \quad\left[\begin{array}{c}
-2 / 3 \\
1 / 3 \\
2 / 3
\end{array}\right],\left[\begin{array}{c}
1 / 3 \\
-2 / 3 \\
2 / 3
\end{array}\right]
$$

(c)

$$
\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

(2) Compute the orthogonal projection of $\vec{v}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$ onto the line L through $\left[\begin{array}{c}-1 \\ 4\end{array}\right]$ and the origin. Then write \vec{v} as the sum of a vector in L and a vector orthogonal to L.
(3) Consider the pair of vectors

$$
\vec{u}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \quad \vec{u}_{2}=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]
$$

(a) Normalize these vectors to obtain an orthonormal set.
(b) Find the orthogonal projection of $\vec{v}=\left[\begin{array}{l}3 \\ 1 \\ 4\end{array}\right]$ onto the subspace $\operatorname{Span}\left(\left\{\vec{u}_{1}, \vec{u}_{2}\right\}\right)$.
(4) Let

$$
\vec{y}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right] \quad \vec{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right] \quad \vec{v}_{2}=\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right]
$$

(a) Find the closest point to \vec{y} in $\operatorname{Span}\left(\left\{\vec{v}_{1}, \vec{v}_{2}\right\}\right)$.
(b) Write \vec{y} as the sum of a vector in $\operatorname{Span}\left(\left\{\vec{v}_{1}, \vec{v}_{2}\right\}\right)$ and a vector orthogonal to $\operatorname{Span}\left(\left\{\vec{v}_{1}, \vec{v}_{2}\right\}\right)$.
(c) Find the best approximation to \vec{y} by vectors of the form $c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}$. What are c_{1} and c_{2} ?
(5) Consider the subspace

$$
W=\operatorname{Span}\left(\left\{\left[\begin{array}{l}
4 \\
4 \\
7
\end{array}\right],\left[\begin{array}{l}
5 \\
3 \\
7
\end{array}\right]\right\}\right) \subset \mathbb{R}^{3} .
$$

Apply the Gram-Schmidt process to find an orthonormal basis for W.
(6) Find an orthonormal basis for the column space of the following matrix:

$$
\left[\begin{array}{ccc}
4 & 3 & 5 \\
2 & 4 & 5 \\
2 & 0 & -4 \\
1 & 5 & 3
\end{array}\right]
$$

(7) Let $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ be an orthonormal basis for a subspace W of \mathbb{R}^{n}. Define $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ to be $T(\vec{x})=\operatorname{proj}_{W}(\vec{x})$. Show that T is a linear transformation. (Hint: start by writing down the formula for T.)
Suggested practice (don't hand these in):

- Please read and make sure you can do the practice problems in Sections 6.2, 6.3, and 6.4.
- Use Exercises 6.2.23, 6.2.24, 6.3.21, 6.3.22, 6.4.17(a,b), 6.4.18(a,b) for review.
- If you have some experience writing proofs, try Exercises 6.2.28, 6.2.29, 6.2.33.
- If you had trouble or got help with any of the assigned problems, solve another, similar problem (or two).

Similar problems:

HW Problems	Similar textbook problems
1	$6.2 .1-6$
2	$6.2 .11-16$
3	$6.2 .17-22,6.3 .3-6$
4	$6.3 .7-14$
5	$6.4 .1-8$
6	$6.4 .9-12$
7	6.4 .22

Blog. Optional:

- Work through the blog post "Dot Products and Orthogonality".
- Use CoCalc to check your answers to the problems above (except for Problem 7).
- Write a function in CoCalc (Sage) which computes the orthogonal projection of \vec{v} to $\operatorname{Span}(\vec{w})$, where \vec{v} and \vec{w} are vectors in the same \mathbb{R}^{n}. (Your function should take two inputs, \vec{v} and \vec{w}.) Test your function in some examples. Only slightly harder: write a function which computes the orthogonal projection of \vec{v} onto $\operatorname{Span}\left(\vec{w}_{1}, \ldots, \vec{w}_{k}\right)$. (In the second case, start by applying Sage's Gram-Schmidt to $\vec{w}_{1}, \ldots, \vec{w}_{k}$.)
Email address: lipshitz@uoregon.edu

