MATH 342
 WRITTEN HOMEWORK 8

 DUE MAY 26, 2020.

 DUE MAY 26, 2020.}

INSTRUCTOR: ROBERT LIPSHITZ

Required problems (hand these in):
(1) Which of the following matrices are symmetric?
(a) $\left[\begin{array}{cc}1 & -2 \\ -2 & 4\end{array}\right]$
(b) $\left[\begin{array}{lll}0 & 2 & 4 \\ 2 & 3 & 5 \\ 4 & 7 & 9\end{array}\right]$
(2) Which of the following matrices are orthogonal? If orthogonal, find the inverse:
(a) $\left[\begin{array}{cc}2 & 3 \\ -3 & 2\end{array}\right]$
(b) $\left[\begin{array}{ccc}2 / 3 & 2 / 3 & 1 / 3 \\ 1 / 3 & -2 / 3 & 2 / 3 \\ -2 / 3 & 1 / 3 & 2 / 3\end{array}\right]$
(3) For each of the following, find an orthogonal matrix P and a diagonal matrix D so that $A=P D P^{T}=P D P^{-1}$. Feel free to use a calculator or software to help with computing characteristic polynomials and with row-reduction.
(a) $A=\left[\begin{array}{cc}-6 & 12 \\ 12 & 1\end{array}\right]$
(b) $A=\left[\begin{array}{ccc}-5 & 24 & 6 \\ 24 & -27 & 30 \\ 6 & 30 & 32\end{array}\right]$
(c) $A=\left[\begin{array}{ccc}121 & 24 & -36 \\ 24 & 57 & -12 \\ -36 & -12 & 67\end{array}\right]$. (The eigenvalues in this case are 147, 49, and 49; you can take my word for this. If you're clever, you can solve this one with a little less work, if you start with the 147 eigenspace.)
(4) Compute the quadratic form $\vec{x}^{T} A \vec{x}$ where $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6\end{array}\right]$.
(5) Find the 2×2 matrix for the quadratic form $2 x_{1}^{2}-6 x_{1} x_{2}+8 x_{2}^{2}$.
(6) Find an orthogonal change of variables $\vec{x}=P \vec{y}$ which transforms the following quadratic forms into quadratic forms with no cross-terms (i.e., diagonalizes them), and write the new quadratic forms. Indicate if they are positive definite, positive semi-definite, negative definite, negative
semi-definite, or indefinite. Optional: check your work by plugging in the change of variables directly.
(a) $-6 x_{1}^{2}+24 x_{1} x_{2}+x_{2}^{2}$.
(b) $-5 x_{1}^{2}+48 x_{1} x_{2}+12 x_{1} x_{3}-27 x_{2}^{2}+60 x_{2} x_{3}+32 x_{3}^{2}$.
(c) $121 x_{1}^{2}+57 x_{2}^{2}+67 x_{3}^{3}+48 x_{1} x_{2}-72 x_{1} x_{3}-24 x_{2} x_{3}$.
(7) Let

$$
Q\left(x_{1}, x_{2}, x_{3}\right)=-5 x_{1}^{2}+48 x_{1} x_{2}+12 x_{1} x_{3}-27 x_{2}^{2}+60 x_{2} x_{3}+32 x_{3}^{2} .
$$

Find:
(a) the maximum value of $Q\left(x_{1}, x_{2}, x_{3}\right)$ subject to the constraint $x_{1}^{2}+$ $x_{2}^{2}+x_{3}^{2}=1$
(b) The unit vector $\vec{u}=\left[x_{1}, x_{2}, x_{3}\right]^{T}$ where this maximum is obtained.
(c) The maximum value of $Q(\vec{x})$ subject to the constraints $\vec{x} \cdot \vec{x}=1$ and $\vec{x} \cdot \vec{u}=0$.
Suggested practice (don't hand these in):

- Please read and make sure you can do the practice problems in Sections 7.1, 7.2, and 7.3.
- Use Exercise 7.1.25, 7.1.26, 7.2.21, 7.2.22, for review.
- If you had trouble or got help with any of the assigned problems, solve another, similar problem (or two).

Similar problems:

HW Problems	Similar textbook problems
1	$7.1 .1-6$
$\frac{1}{2}$	$7.1 .7-12$
$\frac{3}{3}$	$7.1 .13-22$
$\overline{4}$	$7.2 .1,2$
$\frac{5}{5}$	$7.2 .3-6$
6	$7.2 .9-18,7.3 .1,2$
7	$7.3 .3-6$

Blog. No new blog entry this week. Sage has a huge amount of code related to quadratic forms (see http://doc.sagemath.org/html/en/reference/quadratic_forms/) but it's focused on number theory, and not well suited to what we've been studying. (Over \mathbb{Z}, quadratic forms are very complicated; over \mathbb{R}, they are simple. We are working over \mathbb{R} in this course.) You already know how to use Sage to do the computations for this week.

Email address: lipshitz@uoregon.edu

