(1) Use the path-loop fibration to compute the homology of ΩS^n for $n \geq 2$. Comment also on the case $n = 1$.

(2) Explain how the group $SU(3)$ acts transitively on S^5 so that the stabilizer of a point is $SU(2)$. It follows that there is a fibration $SU(2) \to SU(3) \to S^5$; this is a standard result which you do not have to prove this (see, e.g., Exercise 21.6 in Lee’s *Introduction to Smooth Manifolds*, and/or chapter 24 there). Use this fibration and the fact that $SU(2) \cong S^3$ (which you may again assume) to compute the homology of $SU(3)$. Then use the fibration $SU(3) \to SU(4) \to S^7$ to compute the homology of $SU(4)$.

(3) Suppose $F \to E \to S^n$, $n \geq 2$, is a fibration. Show that for any field k there is a long exact sequence

$$\cdots \to H^k(F) \to H^k(E) \to H^k_{-n}(F) \to H^k_{-1}(F) \to \cdots.$$

(This is called the Wang sequence, and is due to Hsien-Chung Wang from 1949. The assumption that we are working over a field is unnecessary, but saves you a little algebra.)

(4) Show that if every term in the E_∞-page of the Serre spectral sequence for a fibration $F \to E \to B$ is a finite abelian group then $H_i(E)$ is a finite abelian group for each i.

(Hint: this is easy.)

(5) Let \mathcal{C} be the class of torsion-free abelian groups. Find a space X so that $H_*(X) \in \mathcal{C}$ but $\pi_*(X) \notin \mathcal{C}$. Find another space Y so that $\pi_*(Y) \in \mathcal{C}$ but $H_*(Y) \notin \mathcal{C}$. So, Serre’s mod-$\mathcal{C}$ Hurewicz theorem definitely does not apply to \mathcal{C}. Where does the proof break down?

Suggested review / qualifying exam practice (not to turn in):

(1) Extend our computation of $H^n(K(\mathbb{Z}, 3))$ for $n \leq 7$ to compute $H^8(K(\mathbb{Z}, 3))$ and $H^9(K(\mathbb{Z}, 3))$. (In fact, you can keep going for a while longer than this before you get stuck.)

(2) Use the method of canceling arrows to compute the homology of some familiar simplicial complexes—for example, some triangulations of T^2 or the Klein bottle.

(3) Extend Problem 4 to the other Serre classes we introduced.

(4) Use the Serre spectral sequence and the path-loop fibration to deduce the n-dimensional Hurewicz theorem from the 1-dimensional case. (This is about the original Hurewicz theorem, not the mod-\mathcal{C} version.)

More problems to think about but not turn in:

(1) Along the lines of Problem 2, a standard application of the Serre spectral sequence to inductively prove that $H^*(SU(n)) \cong \Lambda(x_1, \ldots, x_n)$ where $x_i \in H^{2i-1}(SU(n))$. This is easy if you assume that the ring structure on the E_∞-page of the Serre spectral sequence for $SU(n) \to SU(n+1) \to S^{2n+1}$ is isomorphic to the ring structure on $H^*(SU(n+1))$. Prove the result assuming that.
Slightly harder is to prove that the fact you used about the ring structure, using the fact that the ring structure on the E_∞-page is the associated graded to a filtration on $H^*(SU(n+1))$. Prove that, too, or see for example McCleary’s book.

(2) Strengthen our proofs of the Gysin and Wang sequences to work with \mathbb{Z}-coefficients.
(This is an algebra problem.)

Email address: lipshitz@uoregon.edu