MATH 636 HOMEWORK 3
DUE APRIL 16, 2021.

INSTRUCTOR: ROBERT LIPSHITZ

(1) Hatcher 4.1.4 (p. 358).
(2) Hatcher 4.1.11 (pp. 358–359).
(3) (a) Suppose that \(M \) is a closed, connected \(m \)-manifold. Suppose further that \(M \) is triangulated, i.e., is an \(m \)-dimensional simplicial complex. Suppose \(p \in M \) is on a codimension-1 face (or facet) \(\partial \sigma \) of some simplex \(\sigma \). Show that \(p \) is on a codimension-1 face of exactly two simplices \(\sigma, \sigma' \).

(b) With notation as in the previous part, let \(\alpha = \sum \sigma_i \in C_m(M; \mathbb{F}_2) \) be the sum of the \(m \)-simplices in \(M \), viewed, via their characteristic maps, as maps \(\sigma_i: \Delta^m \to M \). Show that \(\alpha \) is a cycle.

(c) Show that for any point \(p \) in the interior of some \(m \)-simplex \(\sigma_i \), the image of \(\alpha \) in \(H_m(M, M \setminus \{p\}; \mathbb{F}_2) \) is a generator. Deduce that \(\alpha \) is the generator of \(H_m(M; \mathbb{F}_2) \cong \mathbb{F}_2 \) so \(\alpha \) is a (in fact, the) mod-2 fundamental class for \(M \).

(d) Now, suppose that \(M^m \subset N^n \) is a closed submanifold of a manifold \(N \), and that \(N \) is triangulated in such a way that \(M \subset N \) is a subcomplex. Show that \(i_*[M] \in H_m(N; \mathbb{F}_2) \), the homology class represented by \(M \), is the sum of the \(m \)-simplices in \(N \) which are contained in \(M \). (Hint: this is easy.)

Suggested review / qualifying exam practice (not to turn in):

(1) Hatcher 4.1.3, 4.1.5, 4.1.8, 4.1.12, 4.1.13, 4.1.14.
(2) In class, we showed that if \(f: Y \to Z \) is a weak homotopy equivalence then for any CW complex \(X \), \(f_*: [X,Y] \to [X,Z] \) is injective. We also sketched a proof that \(f_* \) is surjective. Fill in the details of that proof.
(3) With notation as in the previous problem, fill in the proof that the map \(f_*: [(X,x_0),(Y,y_0)] \to [(X,x_0),(Z,z_0)] \) of based homotopy classes of maps is bijective.

More problems to think about but not turn in:

(1) Hatcher 4.1.10, 4.1.18.
(2) Extend Problem 3 to the case that instead of the manifold \(M \) being triangulated, \(M \) is an \(n \)-dimensional CW complex and \(\alpha \in C_n^{\text{cell}}(M; \mathbb{F}_2) \) is the sum of the \(n \)-cells in \(M \). (You’ll have to follow \(\alpha \) through the isomorphism between cellular and singular homology.)
(3) Extend Problem 3 to \(\mathbb{Z} \)-coefficients.

Email address: lipshitz@uoregon.edu