MATH 692 SPRING 2024
 HOMEWORK 3 DUE JUNE 7, 2024.

INSTRUCTOR: ROBERT LIPSHITZ

Solve any five of these problems. (Problems marked with stars are also available as minipaper topics.)
(1) In class, we discussed Thurston's classification of mapping classes as periodic, reducible, or pseudo-Anosov. How does this work in the genus 1 case? That is, which elements of $S L(2, \mathbb{Z})$ correspond to periodic diffeomorphisms? To reducible ones? To Anosov ones? Be as explicit as you can.
(2) In class, we argued that (orientable) Σ_{g}-bundles over X for $g>1$ correspond to homotopy classes of maps $X \rightarrow \operatorname{BMod}_{g}$. Show that this is not the case for $g=0$ by finding a nontrivial S^{2} bundle over S^{2}.
(3) Let $p: X \rightarrow \mathbb{C} P^{1}$ be a (topological) Lefschetz fibration. Prove that the monodromy around a critical point is a Dehn twist. (Hint: I think this problem takes some work. Reduce this to a local computation for a model where the base is a small disk and the regular fiber is an annulus.)
(4) Show that any factorization of the identity map of Σ_{g} into positive Dehn twists induces a Lefschetz fibration over $\mathbb{C} P^{1}$ with generic fiber Σ_{g} and one critical point for each factor in the factorization.
(5) Let M be a (G, X)-manifold and $D: \widetilde{M} \rightarrow X$ the developing map of M, starting from some point $\widetilde{m}_{0} \in \widetilde{M}$. Show that for $\gamma \in \pi_{1}\left(M, m_{0}\right)$ there is a unique $g_{\gamma} \in G$ so that

$$
D\left(\gamma \cdot \widetilde{m}_{0}\right)=g_{\gamma} \cdot D\left(\widetilde{m}_{0}\right)
$$

(On the left side, • denotes the action of deck transformations on the universal cover, while on the right it denotes the action of G on X.)
(6) Continuing the previous problem, show that D induces a homomorphism $\rho: \pi_{1}\left(M, m_{0}\right) \rightarrow$ $G, \rho(\gamma)=g_{\gamma}$.
(7) Continuing the previous problem, show that different choices in the construction of D give conjugate representations.
(8) Suppose that X is a Riemannian manifold and G is a subgroup of the group of isometries of X which acts transitively on X. Let M be a (G, X)-manifold. Show that M inherits a Riemannian metric from X.
(9) With notation as in the previous problem, explain how the exponential map of M (plus some choices of basepoints) induces a map $\widetilde{M} \rightarrow X$. Show that this map agrees with the developing map. Deduce that M is complete in the sense of (G, X)-manifolds if and only if M is geodesically complete.
(10) We defined an affine structure on T^{2} by viewing T^{2} as a quotient of the sector

$$
\left\{r e^{i \theta} \mid 1<r<r_{0}, 0<\theta<\theta_{0}\right\}
$$

by multiplication by $r_{0}, e^{i \theta_{0}}$. Give an explicit description of this affine structure, in terms of coordinate charts, and check that the transition functions are affine transformations.
(11) Choose a particular quadrilateral in \mathbb{R}^{2} so that all four sides have different lengths. As we discussed in class, this induces an affine structure on T^{2}. Draw the images of, say, 10 fundamental domains under the corresponding developing map $\widetilde{T^{2}}=\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, either carefully by hand or using a computer.
(12) As in the previous problem, any quadrilateral in \mathbb{R}^{2} induces an affine structure on T^{2}. For which quadrilaterals is the corresponding developing map a covering space of \mathbb{R}^{2} (i.e., complete)?
(13) With notation as in the previous problem, for which quadrilaterals is the developing map a covering space of its image?
(14) Show that $\mathbb{C} P^{2} \# \mathbb{C} P^{2} \not \not \mathbb{C} P^{2} \# \overline{\mathbb{C}} P^{2}$, where $\overline{\mathbb{C}} P^{2}$ is $\mathbb{C} P^{2}$ with its orientation reversed. (Hint: consider the cup product, i.e., the intersection forms.)
(15) Given a closed, oriented 3-manifold Y, let $T H_{1}(Y)$ denote the torsion subgroup of $H_{1}(Y)$. Define a map $T H_{1}(Y) \otimes T H_{1}(Y) \rightarrow \mathbb{Q} / \mathbb{Z}$ as follows. Given $x \in T H_{1}(Y)$ there is some integer n so that $n x=0 \in H_{1}(Y)$. Thus, $n x=\partial z$ for some $z \in C_{2}(Y)$. Given another $y \in T H_{1}(Y)$ let $\gamma=\mathrm{PD}(y) \in H^{2}(Y)$ and let

$$
L(x, y)=\frac{1}{n} \gamma(z) .
$$

This is called the linking form of Y.
(a) Prove that the linking form is well-defined.
(b) Compute the linking form for the lens space $L(p, q)$, and deduce that $L(p, q) \simeq$ $L\left(p, q^{\prime}\right)$ only if $q q^{\prime} \equiv \pm n^{2}(\bmod p)$ for some n. (Compare Hatcher, Exercise 3.E.2.)
(c) Use the linking form to show that $L(3,1)$ has no orientation-reversing selfhomeomorphism.
(d) Use the linking form to show that $L(3,1) \# \overline{L(3,1)} \nsimeq L(3,1) \# L(3,1)$.
(16) Prove that every torus $T^{2} \subset S^{3}$ bounds a solid torus. (This should be fairly easy from results we proved in class.) Give an example of a (closed, orientable) 3-manifold Y and a compressible torus $T^{2} \subset Y$ which does not bound a solid torus.
(17) (Hatcher's notes Exercise 1.5) Show that if $M^{3} \subset \mathbb{R}^{3}$ is a compact submanifold with $H_{1}(M)=0$, then $\pi_{1}(M)=0$.
(18) Let $F=F_{1} \amalg \cdots \amalg F_{k} \subset M$ be a collection of disjoint, incompressible surfaces. Prove that a surface $\Sigma \subset M \backslash F$ is incompressible in M if and only if Σ is incompressible in $M \backslash F$.
(19) We stated in class that, given a compact, orientable, irreducible M^{3}, there is a bound on the number of disjoint, incompressible surfaces so that no component of their complement is a product $\Sigma \times I$ of a closed surface and an interval. (See also Hatcher's notes.) Is the hypothesis that M be irreducible needed?
Email address: lipshitz@uoregon.edu

