
MATH 692 SPRING 2024
HOMEWORK 3

DUE JUNE 7, 2024.

INSTRUCTOR: ROBERT LIPSHITZ

Solve any five of these problems. (Problems marked with stars are also available as mini-
paper topics.)

(1) In class, we discussed Thurston’s classification of mapping classes as periodic, re-
ducible, or pseudo-Anosov. How does this work in the genus 1 case? That is, which
elements of SL(2,Z) correspond to periodic diffeomorphisms? To reducible ones? To
Anosov ones? Be as explicit as you can.

(2) In class, we argued that (orientable) Σg-bundles over X for g > 1 correspond to
homotopy classes of maps X → BMod g. Show that this is not the case for g = 0 by
finding a nontrivial S2 bundle over S2.

(3) Let p : X → CP 1 be a (topological) Lefschetz fibration. Prove that the monodromy
around a critical point is a Dehn twist. (Hint: I think this problem takes some work.
Reduce this to a local computation for a model where the base is a small disk and
the regular fiber is an annulus.)

(4) Show that any factorization of the identity map of Σg into positive Dehn twists
induces a Lefschetz fibration over CP 1 with generic fiber Σg and one critical point
for each factor in the factorization.

(5) Let M be a (G,X)-manifold and D : M̃ → X the developing map of M , starting

from some point m̃0 ∈ M̃ . Show that for γ ∈ π1(M,m0) there is a unique gγ ∈ G so
that

D(γ · m̃0) = gγ ·D(m̃0).

(On the left side, · denotes the action of deck transformations on the universal cover,
while on the right it denotes the action of G on X.)

(6) Continuing the previous problem, show thatD induces a homomorphism ρ : π1(M,m0) →
G, ρ(γ) = gγ.

(7) Continuing the previous problem, show that different choices in the construction of
D give conjugate representations.

(8) Suppose that X is a Riemannian manifold and G is a subgroup of the group of
isometries of X which acts transitively on X. Let M be a (G,X)-manifold. Show
that M inherits a Riemannian metric from X.

(9) With notation as in the previous problem, explain how the exponential map of M

(plus some choices of basepoints) induces a map M̃ → X. Show that this map agrees
with the developing map. Deduce thatM is complete in the sense of (G,X)-manifolds
if and only if M is geodesically complete.

(10) We defined an affine structure on T 2 by viewing T 2 as a quotient of the sector

{reiθ | 1 < r < r0, 0 < θ < θ0}
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by multiplication by r0, e
iθ0 . Give an explicit description of this affine structure, in

terms of coordinate charts, and check that the transition functions are affine trans-
formations.

(11) Choose a particular quadrilateral in R2 so that all four sides have different lengths. As
we discussed in class, this induces an affine structure on T 2. Draw the images of, say,

10 fundamental domains under the corresponding developing map T̃ 2 = R2 → R2,
either carefully by hand or using a computer.

(12) As in the previous problem, any quadrilateral in R2 induces an affine structure on
T 2. For which quadrilaterals is the corresponding developing map a covering space
of R2 (i.e., complete)?

(13) With notation as in the previous problem, for which quadrilaterals is the developing
map a covering space of its image?

(14) Show that CP 2#CP 2 ̸≃ CP 2#CP 2, where CP 2 is CP 2 with its orientation reversed.
(Hint: consider the cup product, i.e., the intersection forms.)

(15) Given a closed, oriented 3-manifold Y , let TH 1(Y ) denote the torsion subgroup of
H1(Y ). Define a map TH 1(Y ) ⊗ TH 1(Y ) → Q/Z as follows. Given x ∈ TH 1(Y )
there is some integer n so that nx = 0 ∈ H1(Y ). Thus, nx = ∂z for some z ∈ C2(Y ).
Given another y ∈ TH 1(Y ) let γ = PD(y) ∈ H2(Y ) and let

L(x, y) =
1

n
γ(z).

This is called the linking form of Y .
(a) Prove that the linking form is well-defined.
(b) Compute the linking form for the lens space L(p, q), and deduce that L(p, q) ≃

L(p, q′) only if qq′ ≡ ±n2 (mod p) for some n. (Compare Hatcher, Exercise
3.E.2.)

(c) Use the linking form to show that L(3, 1) has no orientation-reversing self-
homeomorphism.

(d) Use the linking form to show that L(3, 1)#L(3, 1) ̸≃ L(3, 1)#L(3, 1).
(16) Prove that every torus T 2 ⊂ S3 bounds a solid torus. (This should be fairly easy

from results we proved in class.) Give an example of a (closed, orientable) 3-manifold
Y and a compressible torus T 2 ⊂ Y which does not bound a solid torus.

(17) (Hatcher’s notes Exercise 1.5) Show that if M3 ⊂ R3 is a compact submanifold with
H1(M) = 0, then π1(M) = 0.

(18) Let F = F1⨿· · ·⨿Fk ⊂ M be a collection of disjoint, incompressible surfaces. Prove
that a surface Σ ⊂ M \ F is incompressible in M if and only if Σ is incompressible
in M \ F .

(19) We stated in class that, given a compact, orientable, irreducible M3, there is a bound
on the number of disjoint, incompressible surfaces so that no component of their
complement is a product Σ×I of a closed surface and an interval. (See also Hatcher’s
notes.) Is the hypothesis that M be irreducible needed?
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