(1) Hatcher 2.1.26 (p. 133)
(2) Hatcher 2.1.27 (p. 133)
(3) The solid torus is the space $S^1 \times D^2$; this is a donut. Use the Mayer-Vietoris sequence to compute the homology of the solid torus.
(4) Let K be a knot in S^3, that is, a smoothly embedded circle. It follows from the implicit function theorem that K has a neighborhood U homeomorphic to $S^1 \times D^2$, so that K is identified with $S^1 \times 0$. Use the Mayer-Vietoris sequence to compute $H_1(S^3 \setminus K)$. (Hint: cover S^3 by U and $S^3 \setminus K$.)
(5) Hatcher 2.2.28 (p. 157)
(6) Hatcher 2.2.33 (p. 158)
(7) Hatcher 2.2.34 (p. 158). (You can prove the long exact sequence in reduced homology if you prefer.)

Suggested review / qualifying exam practice (not to turn in):
(1) Hatcher 2.1.29, 2.1.30, 2.1.31.
(2) Hatcher 2.2.29, 2.2.30, 2.2.31, 2.2.32, 2.2.35, 2.2.36.

Email address: lipshitz@uoregon.edu