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September 8, 2025

Here are some supplementary comments to the slides, spelling out precisely some state-
ments that they leave vague. It is organized slide-by-slide; not every slide has com-
ments.

6: Intuition from curves I

Lots of definitions here:

• A map 𝑓 ∶ 𝑋 → 𝑌 is injective if different points in 𝑋 map to different points in
𝑌 ; surjective if every point in 𝑌 is the image of some point in 𝑋; and bijective
if both injective and surjective.

• If 𝑓 ∶ 𝑋 → 𝑌 bijective, then it has a well-defined inverse function 𝑔 ∶ 𝑌 → 𝑋,
satisfying 𝑓(𝑔(𝑦)) = 𝑦 and 𝑔(𝑓(𝑥)) = 𝑥 for all 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 (exercise).
Often one writes 𝑔 = 𝑓−1, of course.

• Suppose 𝐴 is a subset of ℝ𝑛 and 𝐵 is a subset of ℝ𝑚. A function 𝑓 ∶ 𝐴 → 𝐵 is
continuous if it sends nearby points in 𝐴 to nearby points in 𝐵. More precisely,
for every point 𝑥 ∈ 𝐴 and every 𝜖 > 0 there is a 𝛿 > 0 so that if 𝑦 ∈ 𝐴 and
|𝑥 − 𝑦| < 𝛿 then |𝑓(𝑥) − 𝑓(𝑦)| < 𝜖.

• A function 𝑓 ∶ 𝑋 → 𝑌 is a homeomorphism if 𝑓 is continuous and bijective and
𝑓−1 is also continuous. The spaces 𝑋 and 𝑌 are homeomorphic if there exists a
homeomorphism from 𝑋 to 𝑌 .

• Exercise. The property of being homeomorphic is an equivalence relation (for
spaces).

• A curve is a subset 𝐶 ⊂ ℝ𝑛 so that for every point 𝑐 ∈ 𝐶 , there is an open
neighborhood 𝑈 ⊂ 𝐶 of 𝑐 which is homeomorphic to (−𝜖, 𝜖) or [0, 𝜖) for some
𝜖 > 0.

• Exercise. Equivalently, 𝑈 is homeomorphic to ℝ or [0, ∞).
• Exercise. Implicit in the definition of curve on the slide is the following: if

𝑓 ∶ (−𝜖, 𝜖) → (−𝛿, 𝛿) is a continuous, bijective map, then 𝑓−1 is also con-
tinuous. (So, in this case, I can drop the latter condition from the definition of
homeomorphism.)

• During the lecture, I typically require subspaces to be closed and bounded subsets
of ℝ𝑛, i.e., compact.
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• Note that the word “closed” is used for two different things for curves: being a
closed subspace (contains all its limit points) and being a closed curve (no bound-
ary). The latter usage is old and, in particular, predates the (relatively recent)
modern formulation of point-set topology. It does cause confusion, but is un-
likely to go away. (I think perhaps all students get confused by this double use
of the world “closed” at some point.)

• A curve is smooth if both the maps (−𝜖, 𝜖) → 𝑈 ⊂ 𝐶 can be chosen so that they
and their inverses 𝑈 → (−𝜖, 𝜖) are both 𝐶∞.

• Exercise. It is not enough to just require that the maps (−𝜖, 𝜖) → 𝑈 are 𝐶∞.
For example, find a 𝐶∞ function ℝ → ℝ2 whose image is a square.

• A curve 𝐶 ⊂ ℝ𝑛 is topologically locally flat (or, for these lectures, just locally
flat) if for each point 𝑝 ∈ 𝐶 there is an open neighborhood 𝑈 of 𝑝 in ℝ𝑛 and a
homeomorphism 𝑓 ∶ 𝑈 → 𝐵𝑛 so that 𝑓(𝑈 ∩ 𝐶) = {(𝑥, 0, 0, … , 0) ∈ 𝐵𝑛}.
That is, each point has a standard neighborhood that sits inside ℝ𝑛 in a standard
way.

• Exercise. Smooth curves are locally flat. (Hint: use the Implicit Function Theo-
rem, or one of its cousins.)

• Exercise. Write down a curve which is not locally flat.
• A point 𝑝 on a curve is a boundary point if 𝑝 has a neighborhood homeomorphic
to [0, 𝜖) by a homeomorphism sending 𝑝 to 0, and an interior point if 𝑝 has a
neighborhood homeomorphic to (−𝜖, 𝜖). Prove that 𝑝 cannot be both a boundary
point and an interior point.

7: Intuition from curves II

For continuous curves, by intrinsically the same I mean homeomorphic (see above).
For smooth curves, we require both the homeomorphism and its inverse to be smooth.
That is:

• Given (closed) subsets 𝐴 ⊂ ℝ𝑚, 𝐵 ⊂ ℝ𝑛, a function 𝑓 ∶ 𝐴 → 𝐵 is smooth if 𝑓
extends to a 𝐶∞ function from an open neighborhood of 𝐴 to ℝ𝑛.

• A function 𝑓 ∶ 𝐴 → 𝐵 is a diffeomorphism if 𝑓 is bijective and smooth, and
𝑓−1 ∶ 𝐵 → 𝐴 is also smooth. 𝐴 and 𝐵 are diffeomorphic if there exists a
diffeomorphism from 𝐴 to 𝐵.

• Exercise. Being diffeomorphic is an equivalence relation.
• For smooth curves, being diffeomorphic is what I mean by being intrinsically the
same.

8: Intuition from curves III

The notion of isotopy from the slides is typically called ambient isotopy. That is, a
continuous ambient isotopy of ℝ𝑛 is a continuous function 𝐹 ∶ ℝ𝑛 × [0, 1] → ℝ𝑛 so
that 𝐹|ℝ𝑛×{0} = Id and 𝐹|ℝ𝑛×{𝑡} is a homeomorphism for every 𝑡. We say that subsets
𝐴, 𝐵 ⊂ ℝ𝑛 are continuously ambiently isotopic (or, for this lecture, just continuously
isotopic) if there is an ambient isotopy 𝐹 of ℝ𝑛 so that 𝐹(𝐴 × {1}) = 𝐵.

A smooth ambient isotopy is defined the same way, except 𝐹 should be 𝐶∞ and
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𝐹|ℝ𝑛×{𝑡} should be a diffeomorphism.

Exercise. Being continuously ambiently isotopic is an equivalence relation, as is being
smoothly ambiently isotopic.

The two versions of ambient isotopy are our notions of extrinsically equivalent.

9: Surface basics

The basic definitions for curves carry over without real changes for surfaces:

• A surface is a subset 𝑆 ⊂ ℝ𝑛 so that every point in 𝑆 has a neighborhood home-
omorphic to the open unit disks {(𝑥, 𝑦) ∈ ℝ2 ∣ 𝑥2 + 𝑦2 < 1} or to the half-disk
{(𝑥, 𝑦) ∈ ℝ2 ∣ 𝑥2 + 𝑦2 < 1, 𝑦 ≥ 0}.

• A surface is smooth if these homeomorphisms can be chosen to be diffeomor-
phisms.

• We require surfaces to be topologically locally flat, meaning that for each point
𝑝 ∈ 𝑆 there is an open neighborhood 𝑈 of 𝑝 in ℝ𝑛 and a homeomorphism 𝑓 ∶
𝑈 → 𝐵𝑛 so that 𝑓(𝑈 ∩ 𝐶) = {(𝑥, 𝑦, 0, … , 0) ∈ 𝐵𝑛}.

• Exercise. Smooth surfaces are topologically locally flat.
• Surfaces are continuously/smoothly locally equivalent if they are homeomor-
phic/diffeomorphic.

11: Intrinsic equivalence

To reiterate, the reason the longitude and latitude on earth have to be badly behaved
somewhere is that the sphere and the torus are not homeomorphic.

12: Orientability

There are many equivalent definitions of what it means for a space to be orientable,
none of which are quick to state precisely. For a surface inside ℝ3, orientability cor-
responds to having two sides, i.e., being able to construct a continuous normal vector
field along the surface. This has the disadvantage of not looking intrinsic, and also
doesn’t generalize to surfaces in ℝ4, so the slides mention a notion of “clockwise” and
“counterclockwise”. If you have a normal vector field to a surface in ℝ3, you can get a
notion of counterclockwise using the right-hand rule.

The usual generalization of having awell-defined notion of counterclockwise is in terms
of having a preferred equivalence class of ordered bases for the tangent space. Another
useful definition is being able to choose a notion of signed volume (or, for surfaces,
area), as shows up in Stokes’s Theorem.

13: Euler characteristic

The usual general setting for the Euler characteristic is CW complexes (also called cell
complexes). See, for instance, Allen Hatcher’s Algebraic Topology or John M. Lee’s
Introduction to Topological Manifolds for basic definitions.

3

https://pi.math.cornell.edu/~hatcher/AT/AT.pdf


Triangulated surfaces, or surfaces divided into polygons, are a special case.

The last example on the slide is a space built as a union of handles, instead of as a
CW complex. An 𝑛-dimensional 𝑘-handle just means 𝐷𝑘 × 𝐷𝑛−𝑘, attached along
𝑆𝑘−1 × 𝐷𝑛−𝑘. So, if 𝑛 = 2, 0-handles are attached along ∅, 1-handles are strips
𝐷1 × 𝐷1 attached along pairs of arcs 𝑆0 × 𝐷1, and 2-handles are disks 𝐷2 × 𝐷0

attached along their entire boundaries. In the picture, the green 10-gons are 0-handles,
the brown rectangles are 1-handles, and the blue hexagons are 2-handles. Surfaces
divided into handles, as in the last example on the slide, induce cell complex structures,
so one also gets an Euler characteristic as the alternating sum of the dimensions of the
handles.

14: Classification of surfaces

The Classification of Surfaces theorem states:

Theorem. Let 𝑆 and 𝑆′ be compact surfaces, possibly with boundary. Assume that:

• 𝑆 and 𝑆′ have the same number of boundary components.
• Either 𝑆 and 𝑆′ are both orientable or they are both nonorientable.
• The Euler characteristics agree, 𝜒(𝑆) = 𝜒(𝑆′).

Then 𝑆 and 𝑆′ are homeomorphic. If 𝑆 and 𝑆′ are smooth surfaces, then they are
diffeomorphic.

16 and 17: Weird phenomena in dimension 4

Two good graduate-level textbooks to read more about strange smooth phenomena in
dimension 4 are 4-Manifolds and Kirby Calculus by Robert Gompf and András Stipsicz
and The Wild World of 4-Manifolds by Alexandru Scorpan.

19: Surfaces in the sea

Given a smooth function 𝑓 ∶ 𝑆 → ℝ, a critical point of 𝑓 is a point 𝑝 on 𝑆 where the
derivative of 𝑓 vanishes. To make sense of this, we have to first parameterize 𝑆 near 𝑝
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by a smooth function ℝ2 → ℝ3. That is, suppose 𝑆 ⊂ ℝ3. (The case of surfaces in ℝ4

is similar.) Choose a smooth (𝐶∞) function

(𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣), 𝑧(𝑢, 𝑣)) ∶ ℝ2 → ℝ3

so that (𝑥(0, 0), 𝑦(0, 0), 𝑧(0, 0)) = 𝑝 and

⎡⎢
⎣

𝜕𝑥
𝜕𝑢(0, 0) 𝜕𝑥

𝜕𝑣 (0, 0)
𝜕𝑦
𝜕𝑢(0, 0) 𝜕𝑦

𝜕𝑣 (0, 0)
𝜕𝑧
𝜕𝑢(0, 0) 𝜕𝑧

𝜕𝑣(0, 0)
⎤⎥
⎦

has rank 2. (The latter guarantees that the function gives a reasonable set of coordinates
near 𝑝.) Then the composition

𝑔(𝑢, 𝑣) ∶= 𝑓(𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣), 𝑧(𝑢, 𝑣))
is a function ℝ2 → ℝ. The function 𝑓 is smooth if 𝑔(𝑢, 𝑣) is, and 𝑝 is a critical point
of 𝑓 is (0, 0) is a critical point of 𝑔(𝑢, 𝑣) (i.e., 𝜕𝑔

𝜕𝑢(0, 0) = 𝜕𝑔
𝜕𝑣(0, 0) = 0).

Exercise. Prove that these definitions do not depend onwhich (𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣), 𝑧(𝑢, 𝑣))
you choose.

If 𝑝 is a critical point, with this choice of coordinates we get a second derivative matrix

Hess𝑝(𝑓) [
𝜕2𝑔
𝜕𝑢2

𝜕2𝑔
𝜕𝑢𝜕𝑣

𝜕2𝑔
𝜕𝑣𝜕𝑢

𝜕2𝑔
𝜕𝑣2

] .

I say 𝑓 passes the second derivative test at the critical point 𝑝 if Hess𝑝(𝑓) is invertible.
(In that case, the second derivative test tells you if 𝑝 is a local min, local max, or saddle.
Otherwise, the second derivative test tells you nothing.)

Exercise. Prove that passing the second derivative test at 𝑝 is independent of the choice
of coordinates (𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣), 𝑧(𝑢, 𝑣)) near 𝑝.
AMorse function is one that passes the second derivative test at all of its critical points.

Exercise. Prove that a Morse function on a (closed and bounded) surface 𝑆 has only
finitely many critical points.

21: Movies for surfaces in ℝ4, II

The surface of revolution in the slide is given more precisely as follows. Fix an arc 𝐴
in {(𝑥, 𝑦, 𝑧) ∣ 𝑥 ≥ 0} ⊂ ℝ3 with both endpoints on the 𝑧-axis. Then the spin of 𝐴 is
the set

{(𝑥 cos(𝜃), 𝑦, 𝑧, 𝑥 sin(𝜃)) ∣ (𝑥, 𝑦, 𝑧) ∈ 𝐴, 0 ≤ 𝜃 ≤ 2𝜋} ⊂ ℝ4.

Exercise. Prove that the spin of 𝐴 is a 2-sphere.
(Note that the word “spin” is used for lots of things in mathematics, mostly not con-
nected to this.)
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23: Another view of ribbon knots

A disk in ℝ3 with boundary a knot 𝐾 has only ribbon singularities if the fol-
lowing holds. Think of the disk as the image of a map 𝑓 ∶ 𝐷2 → ℝ3 (so that
the restriction of 𝑓 to the boundary winds around 𝐾 once). First, we require
𝑓(𝑢, 𝑦) = (𝑓1(𝑢, 𝑣), 𝑓2(𝑢, 𝑣), 𝑓3(𝑢, 𝑣)) to be an immersion, meaning that its total
derivative matrix

𝐷𝑓 = ⎡⎢
⎣

𝜕𝑓1
𝜕𝑢

𝜕𝑓1
𝜕𝑣𝜕𝑓2

𝜕𝑢
𝜕𝑓2
𝜕𝑣𝜕𝑓3

𝜕𝑢
𝜕𝑓3
𝜕𝑣

⎤⎥
⎦

has rank 2 everywhere. (This is a smoothness condition.) Second, for every point 𝑝 ∈
ℝ3, 𝑓−1(𝑝) consists of 0, 1, or 2 points. (That is, 𝑓 has only double point singularities.)
Finally, let 𝐴 ⊂ 𝐷2 be the preimages of the double points (so 𝑓|𝐷2∖𝐴 is injective).
Thenwe require that𝐴 is a union of disjoint arcs in𝐷2 each of which is either entirely in
the interior of 𝐷2 or has both endpoints on the boundary of 𝐷2. (What is not allowed is
for one endpoint of a double point arc to be in the interior and the other on the boundary.)

24: Another ribbon example

Symmetric union is an operation on diagrams, not on knots—and even for diagrams, it
depends on some choices. I believe the following is a correct description; see the orig-
inal paper (Kinoshita, Shin’ichi and Terasaka, Hidetaka, “On unions of knots”, Osaka
Mathematics Journal, 1957, 131–153) for a definitely correct description.

Start with a knot diagram 𝐾, and let 𝑚(𝐾) be the result of reflecting 𝐾 across the 𝑦-
axis, say. (I used the 𝑥-axis on the slides.) Put𝑚(𝐾) above𝐾 and take their connected
sum at, say, the right-most local maximum of 𝐾 and the corresponding local minimum
of𝑚(𝐾). Then pick up some other local maxima of𝐾 and corresponding local minima
of 𝑚(𝐾) and twist 𝐾 with 𝑚(𝐾) near those points. The example from the slides,
shown here rotated, does this twisting at only one point, with one full twist.
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26: An exotic pair of disks

Suppose 𝐷 and 𝐷′ are smoothly embedded disks in 𝐵4 with boundary the same knot
𝐾 ⊂ 𝑆3.

• We say 𝐷 and 𝐷′ are exotic relative boundary if
1. There is a homeomorphism 𝜙 ∶ 𝐵4 → 𝐵4 so that 𝜙|𝑆3 = Id and 𝜙(𝐷) =

𝐷′, but
2. There is no diffeomorphism 𝜙 ∶ 𝐵4 → 𝐵4 so that 𝜙|𝑆3 = Id and 𝜙(𝐷) =

𝐷′.
• We say that 𝐷 and 𝐷′ are absolutely exotic if

1. There is a homeomorphism 𝜙 ∶ 𝐵4 → 𝐵4 so that 𝜙(𝐷) = 𝐷′, but
2. There is no diffeomorphism 𝜙 ∶ 𝐵4 → 𝐵4 so that 𝜙(𝐷) = 𝐷′.

I think the more natural-seeming notion to newcomers is the notion of absolutely exotic,
but the more natural one to experts is of exotic relative boundary. In the slides, I am
not always careful about which of the two I mean when I write “exotic”.

29: Exotic closed surfaces

The space RP2 on the slide, the real projective plane, is the result of gluing a disk to
a Möbius band by a homeomorphism of their boundaries. (The boundary of a Möbius
band is a single circle.) It is the closed (connected) surface with the largest Euler char-
acteristic, i.e., which can be built with the smallest number of handles (bands). Equiv-
alently, it is the result of identifying opposite pairs of points on the 2-sphere. (Proving
this gives a homeomorphic surface is a good exercise, if you’ve seen a little topology
but not done it before.)

34: unknotting number.

We defined 𝑔4(𝐾) to be the minimum genus of any smooth, orientable surface in 𝐵4

with boundary 𝐾. This is called the slice genus or 4-ball genus. By definition, a knot
is slice if and only if 𝑔4(𝐾) = 1.
The unknotting number 𝑢(𝐾) is the minimum number of times a knot has to pass
through itself (transversely) in order to get the unknot.

Exercise. Prove that 𝑔4(𝐾) ≤ 𝑢(𝐾).
Exercise. Prove that, in any knot diagram, you can change some subset of the crossings
(exchanging under and over strands) to turn the diagram into a diagram for the unknot.

Exercise. Prove that 𝑢(𝐾) is theminimum, over all diagrams, of the number of crossing
changes in that diagram needed to get a diagram for the unknot.

More exercises
1. The paper arXiv:2205.15283 of Hayden-Kim-Miller-Park-Sundberg has a num-

ber of beautiful pictures of surfaces in 3-space, one of which was on the classifi-
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cation of surfaces slide during the lecture. Compute the Euler characteristics of
several of them—say, the surfaces in Figure 5, 9, and 20—and check if they are
orientable, and then use the Classification of Surfaces theorem to identify them
with model surfaces.

2. Prove that the connected sum of a knot with its mirror image always bounds a
smooth disk in 4-space and, in fact, is a ribbon knot.

3. Prove the following knots are slice (bound smooth disks in the 4-ball), by

1. Finding a movie for such a disk.
2. Finding a ribbon disk in 3-space.
3. Presenting the knot as a symmetric union.

(All three parts are tricky. The diagrams are from KnotInfo; these are the knots
61, 88, and 89.)

4. Find the best upper bound you can on the unknotting number of 𝑇 (3, 7), the
(3, 7)-torus knot:

(Picture produced by Blender.)

5. How are 𝑇 (3, 7) and 𝑇 (7, 3) related?
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6. Prove the surface from slide 28 is non-orientable.
7. Prove equivalence of the two definitions of ribbon disks: as embedded disks in

the 4-ball given by movies with no local maxima, and as disks in 3-space that are
embedded except for ribbon singularities.
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