Minerva Mini-Course Lecture 4 Exercises

Robert Lipshitz

September 29, 2025

The s-invariant

- 1. Problem 11 from Lecture 2's exercises actually corresponds to a topic covered in Lecture 4. Problems 12 and 13 from Lecture 2 correspond to material I have skipped so far, but might cover in a future lecture.
- 2. Given link diagrams D and D', the disjoint union $D \coprod D'$ just means drawing D next to D', with no crossings between them. Prove that the Khovanov complex $CKh(D \coprod D')$ is isomorphic to the tensor product $CKh(D) \otimes_{\mathbb{Z}} CKh(D')$. What does this imply about Khovanov homology? What are the analogous statements for the Bar-Natan deformation $CKh_{b}(D \coprod D')$?
- 3. Given a link diagram D, the mirror m(D) of D is the result of reversing all the crossings (i.e., reflecting across the projection plane). Show that the Khovanov complex of m(D) is the dual of the Khovanov complex of D. How do the gradings work?
- 4. Prove that if K is a knot, then s(m(K)) = -s(K).
- 5. Extend our proof that the s-invariant is an obstruction to being topologically slice to prove: If K bounds a genus-g, orientable surface Σ in B^4 , then $|s(K)| \leq 2g$. (Hint: this should be easy.)

Satellites

- 6. Prove that, up to isotopy in $\mathbb{R}^3 \setminus K$, the Seifert longitude of K is independent of choice of Seifert surface.
- 7. The Whitehead double of the trefoil I drew in lecture is *not* the diagram on the left below:
 - Rather, it has several extra twists in the box of the diagram on the right. Do an isotopy from the diagram I drew to this diagram with extra twists, and see how many twists there are.
- 8. Explain how to turn (a bunch of copies of) a Seifert surface for K and a surface with boundary on $P \cup \partial(S^1 \times D^2)$ into a Seifert surface for K_P . (This leads to a proof of the Alexander polynomial formula for satellites.)

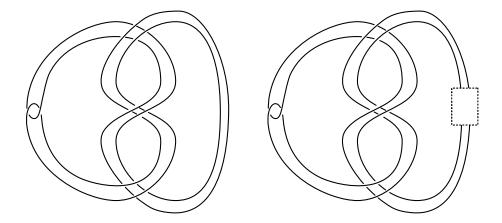


Figure 1: Twisted Whitehead doubles of the trefoil

A lemma from the construction of an exotic \mathbb{R}^4

9. Suppose M and N are n-dimensional, oriented manifolds with boundary, and $\phi_0, \phi_1 : \partial M \to \partial N$ are isotopic homeomorphisms (meaning there is a 1-parameter family of homeomorphisms $\phi_t : \partial M \to \partial N$ connecting them). Prove that $M \cup_{\phi_0} N$ and $M \cup_{\phi_1} N$ are homeomorphic. (Here, $M \cup_{\phi_0} N = M \coprod N/\sim \text{where } \partial M \ni m \sim \phi_0(m) \in \partial N$, and similarly for ϕ_1 .)

Also, we didn't really need the conditions that M and N are manifolds, or that the subspaces being glued were their boundaries. In what more general setting does your proof work?