
Informal Introduction to Set Theory

Kenneth A. Ross

These notes are based on ten lectures given in the Fall of 1988 at the University of Oregon.
They are intended to give an introduction to Zorn’s Lemma and its equivalents. Some results about
cardinal and ordinal numbers are also given. The primary reference is sections 3 and 4 of Hewitt
and Stromberg Real and Abstract Analysis. I thank Peter Horn at Northern Arizona University
who shared some notes from a version of these lectures that I gave back in the 1960’s.

If your understanding of basic logic and its use in mathematics is rusty, or if you never really
understood the ground rules for proofs in mathematics, I highly recommend the readable and lively
book by Robert S. Wolf, Proof, Logic, and Conjecture: the mathematician’s toolbox, W. H. Freeman
and Company, 1998.

There are several equivalent statements that cannot be proved from the usual set-theoretic
axioms. These include Zorn’s Lemma, the Axiom of Choice, and the Well Ordering Principle. I
will present each of them and prove their equivalence later.

The most intuitive is the Axiom of Choice. For any indexed family of sets {Aλ}λ∈Λ, the
product of these sets is

∏
λ∈Λ Aλ. This is the set of all functions f from Λ into ∪λ∈ΛAλ such that

f(λ) is in Aλ for all λ.

Axiom of Choice. If each Aλ is nonempty, then
∏
λ∈Λ Aλ is nonempty.

I.e., there exists a choice function f on Λ that chooses an element f(λ) in each Aλ. If each
Aλ = {0}, then this is obvious: Just set f(λ) = 0 for all λ. If each Aλ = {0, 1}, then the same
choice function f works. But if Λ is huge and all you know is that each Aλ has two points, then
one cannot specify such an f . The Axiom of Choice is needed.

Our equivalent axioms will be less intuitive than the Axiom of Choice, but they are logically
equivalent to it. You either accept all of them or none of them.

We need to discuss some orderings.

Definition. A partial order on a set X is a relation ≤ such that
(R) x ≤ x for all x in X [reflexive]
(AS) x ≤ y and y ≤ x imply x = y [anti-symmetric]
(T) x ≤ y and y ≤ z imply x ≤ z [transitive].

Remarks.
(a) (T) makes it legal to write x ≤ y ≤ z unambiguously.

(b) A relation like ≤ on X is “really” a subset R of X ×X, where we agree that (x, y) is in R
if and only if x ≤ y.

We need two more definitions; then we’ll give some examples.

Definitions. A linear [total, complete, or simple] ordering is a partial ordering such that every
two elements are comparable:

(L) given x, y ∈ X either x ≤ y or y ≤ x (or both).
Linearly ordered sets are sometimes called chains.

A set is well ordered if it is linearly ordered and
(W) every nonempty subset A of X contains a least element, i.e., an element ` ∈ A so

that ` ≤ a for all a ∈ A.
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Examples.
(a) Consider the set R of all real numbers with its usual ordering ≤. This set is linearly

ordered, but not well ordered. The same comments apply to [0,∞), the set Q of rationals, and
Q+ = {r ∈ Q : r ≥ 0}.

(b) Consider the set Z of all integers with the usual ordering. then Z is linearly ordered, but
not well ordered. All finite linearly ordered sets are well ordered. The simplest infinite well ordered
set is N = {1, 2, 3, . . .}.

(c) Here is a more complicated well ordered subset of R: {m− 1
n : n, m ∈ N}. To see why this

is well ordered, draw the real line and mark some of these numbers on it.

(d) Here is a well ordering of N×N:

(m, n) ≤ (m′, n′) if m < m′ or if m = m′ and n ≤ n′.

Thus (1, 1) ≤ (1, 2) ≤ (1, 3) ≤ · · · ≤ (2, 1) ≤ (2, 2) ≤ (2, 3) ≤ · · · etc.
This example is order-isomorphic to the example in (c) via the map

f(m, n) = m− 1
n

.

Definition. Let f :X → Y where (X,≤X) and (Y,≤Y ) are partially ordered sets. f is order-
preserving if

f(x1) ≤Y f(x2) whenever x1 ≤X x2.

If f is one-to-one and onto and both f and f−1 are order-preserving, then f is an order isomorphism.

More examples.
(e) Here’s a nice partial order on N: m|n if m divides n, i.e., n

m is an integer. For transitivity,
note

m|n and n|p =⇒ n

m
and

p

n
are integers =⇒ n

m

p

n
=

p

m
is an integer =⇒ m|p.

This ordering is not a linear order: given 3 and 7, neither divides the other.
Here’s a chain: 3|27|54|108|756| · · ·. Here’s the beginning of a maximal chain: 2|4|8|16|32|64| · · ·.
(f) Let P(X) be the set of all subsets of some set X. Then inclusion ⊆ is a partial order for

P(X). If X has two distinct elements a and b, then ⊆ is not a linear order on P(X): {a} and {b}
are not comparable, i.e., neither is a subset of the other.

Of course, P(X) has chains: A1 ⊆ A2 ⊆ A3 ⊆ · · ·. Here is a maximal chain in P(N):
Ø, {1}, {1, 2}, {1, 2, 3}, {1, 2, 3, 4}, . . ..

(g) Let G be a group. The set of subgroups of G is a partially ordered set under inclusion ⊆.

(h) Let C([0, 1]) be the set of all continuous real-valued functions on [0, 1] and write f ≤ g if
f(x) ≤ g(x) for all x in [0, 1]. This is a fine partial ordering, but not a linear ordering. For example,
the functions f(x) = x and g(x) = 1− x are not comparable.

It is easy to find chains f1 ≤ f2 ≤ f3 ≤ · · · in C([0, 1]). Maximal chains in this partially
ordered set are not particularly useful and tend to be weird.
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(i) Here is an important, more sophisticated partially ordered set. Let F be a set of functions
whose domains are a subset of a fixed set X, and whose ranges are in some set Y . Define f ≤ g if
g extends f , i.e.,

f ≤ g if dom(f) ⊆ dom(g) and f(x) = g(x) for all x ∈ dom(f).

Note. ≤ is simply inclusion if we view functions as relations, i.e., as subsets of X ×Y . To see
this, think what f ⊆ g would have to mean.

Proposition. Let F be as above, and let C be a chain in F . Then h = ∪f∈Cf is a function
whose domain is the union of all the domains dom(f), f ∈ C, and whose range is the union of all
the ranges range(f), f ∈ C.

Proof. To see that h is a function, suppose (x, y1) and (x, y2) are in h. We need to show that
y1 = y2. By the definition of h, there exist f1, f2 in C so that (x, y1) ∈ f1 and (x, y2) ∈ f2. Either
f1 ⊆ f2 or f2 ⊆ f1, say f1 ⊆ f2. Then (x, y1) and (x, y2) both belong to f2. Since f2 is a function,
we conclude that y1 = y2.

Clearly dom(f) ⊆ dom(h) for all f in C, so ∪f∈Cdom(f) ⊆ dom(h). Now suppose that x
is in dom(h). Then (x, y) is in h for some y ∈ Y . Hence (x, y) is in f for some f in C; hence
x belongs to dom(f). This shows that dom(h) ⊆ ∪f∈Cdom(f). A similar argument shows that
range(h) = ∪f∈Crange(f). ♣

Hausdorff Maximality Principle (1915). Every nonempty partially ordered set has a max-
imal chain in it.

This principle is not used very much any more, because it is very closely related to Zorn’s
Lemma. Note that this principle and the last proposition together show that, given nonempty sets
X and Y , there exists a function f :X → Y .

Definitions. Let X be a partially ordered set. For a subset A of X and x in X, x is an upper
bound for A if a ≤ x for all a in A. x0 is a maximal element for X if x0 ≤ x implies x0 = x, i.e.,
nothing in X is bigger than x0.

Examples. (f) again. In P(X), if A ⊆ P(X) then ∪A∈AA is an upper bound for A. The
whole space X is the unique maximal element in P(X).

(i) again. In F , any function with domain X is a maximal element. So F might have many
maximal elements. In the proposition following (i), h is an upper bound for C.

Zorn’s Lemma (1930). Let (X,≤) be a partially ordered set. Suppose
(i) X 6= Ø,
(ii) every nonempty chain C in X has an upper bound (in X).

Then X has a maximal element.

Proof from Maximality Principle. Select a maximal chain C. Let u be an upper bound in X
for C: u is in X and u ≥ c for all c in C. Now u is a maximal element for X, since otherwise there
exists an x in X such that x ≥ u and x 6= u, and then C ∪ {x} would be a bigger chain in X. ♣
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Examples.

1) Let R be a commutative ring with unit 1. Then every ideal I 6= R is contained in a maximal
proper ideal M of R.

Proof. Let X consist of all proper ideals J ⊇ I, ordered by inclusion. X 6= Ø because I is in
X .

Let C be a chain of proper ideals in X . Let J0 = ∪J∈CJ . Then J0 is easily seen to be an ideal.
[For example, suppose a1 and a2 are in J0. Then there exist ideals J1 and J2 in C such that a1 ∈ J1

and a2 ∈ J2. Now J1 ⊆ J2 or J2 ⊆ J1, say J1 ⊆ J2. Then a1 and a2 are both in J2, so the sum
a1 + a2 is in J2 ⊆ J0.] Since 1 /∈ J for all J in C, it follows that 1 /∈ J0. Hence J0 is proper. I.e., J0

is in X and J0 is an upper bound for C. By Zorn’s Lemma, X has a maximal element M . ♣
2) Let G be a group and H an abelian subgroup. Then there exists a maximal abelian subgroup

J of G so that H ⊆ J .

Proof. Let X consist of all abelian subgroups J of G such that H ⊆ J , ordered by inclusion.
X 6= Ø because H is in X .

Let C be a chain in X . Let J0 = ∪J∈CJ . Easily J0 is an abelian subgroup of G. [For example,
given a1 and a2 in J0, as before there exists J2 in C containing both a1 and a2. Since J2 is abelian,
we conclude that a1a2 = a2a1.] So J0 is in X and J0 is an upper bound for C.

By Zorn’s Lemma, X has a maximal element. ♣
3) Let X be a metric space with metric d, and consider a subset S so that

d(x, y) ≥ 1 whenever x and y are in S and x 6= y.

Then there exists a maximal set S0 ⊇ S so that

d(x, y) ≥ 1 whenever x and y are in S0 and x 6= y.

Proof. Let X be the collection of all sets S′ ⊇ S such that

d(x, y) ≥ 1 whenever x and y are in S′ and x 6= y.

Again X is ordered by inclusion. Clearly X 6= Ø since S is in X .
Easily every chain in X has an upper bound in X ; again it’s the union. So by Zorn’s Lemma,

there exists a maximal element in X . ♣
4) Let H be a subgroup of an abelian group (G, +). If h:H → (R,+) is a group homomorphism,

then h extends to a group homomorphism of G into R.

Proof. For such results there are typically two steps:
(i) get a maximal extension using Zorn’s Lemma [the easy step];
(ii) extend it further unless the maximal extension is the desired extension.

(i) Let F be the set of all extensions g of h such that dom(g) is a subgroup of G and such
that g: dom(g)→ R is a group homomorphism. F is partially ordered as in Example (i) on page 3.
Since h itself belongs to F , we see that F 6= Ø.

Consider a chain C in F . Let g0 = ∪g∈Cg. As noted in the proposition on page 3, g0 is a function
whose domain is the union of the domains dom(g), g ∈ C. Since each dom(g) is a subgroup of G, it
follows easily that dom(g0) is a subgroup of G. To see that g0 is a homomorphism, consider x1 and
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x2 in dom(g0). Then there exist g1 and g2 in C so that x1 is in dom(g1) and x2 is in dom(g2). Either
g1 ≤ g2 or g2 ≤ g1, say g1 ≤ g2. Then both x1 and x2 are in dom(g2), so g2(x1−x2) = g2(x1)−g2(x2).
Hence g0(x1 − x2) = g0(x1)− g0(x2). So g0 is a group homomorphism. Hence g0 is in F , and g0 is
an upper bound for C.

Now by Zorn’s Lemma, F has a maximal element g∞. If dom(g∞) = G, then we’re done.

(ii) Claim. Otherwise g∞ extends to a bigger element in F (a contradiction).

Prf. Let H∞ = dom(g∞) and select y in G \H∞. Let H∗ be the group generated by {H∞, y},
i.e.,

H∗ = {x + ky : x ∈ H∞ and k ∈ Z}.

Case 1. ky /∈ H∞ for all integers k 6= 0.

Then we define g∗(x + ky) = g∞(x) for all x + ky in H∗. To see that this is well defined,
observe that

x+ky = x1+`y =⇒ (k−`)y = x1−x is in H∞ =⇒ k−` = 0 =⇒ x = x1 =⇒ g∞(x) = g∞(x1).

It is now easy to check that g∗ is a group homomorphism:

g∗(x+ky−(x1+`y)) = g∗(x−x1+(k−`)y) = g∞(x−x1) = g∞(x)−g∞(x1) = g∗(x+ky)−g∗(x1+`y).

So g∗ is in F and is bigger than g∞, a contradiction.

Case 2. ky ∈ H∞ for some k 6= 0.

Since ky is in H∞ if and only if −ky is, there exists k > 0 with ky ∈ H∞. Select a minimal
k0 > 0 so that k0y is in H∞. Let α = 1

k0
g∞(k0y) and define

g∗(x + ky) = g∞(x) + kα for all x + ky in H∗.

We must first check that this definition is well defined. We begin by showing

ky ∈ H∞ implies k0 divides k. (1)

Suppose that ky ∈ H∞. We can write k as ak0 + r where a and r are integers and 0 ≤ r < k0.
Then the element ry = −ak0y + ky belongs to H∞, so r = 0 by the minimality of k0. That is, k0

divides k. Thus (1) holds. To check that g∗ is well defined, consider x + ky and x1 + `y. Then
(k − `)y = x1 − x belongs to H∞, so by (1) we have k − ` = ak0 for some a ∈ Z. Therefore

g∞(x) + kα = g∞(x) + [ak0 + `]α = g∞(x) + ag∞(k0y) + `α

= g∞(x + ak0y) + `α = g∞(x + (k − `)y) + `α = g∞(x1) + `α.

Thus g∗ is well defined. Now easily g∗ is a homomorphism:

g∗(x + ky − (x1 + `y)) = g∞(x− x1) + (k − `)α = g∞(x) + kα− g∞(x1)− `α

= g∗(x + ky)− g∗(x1 + `y).

Again g∗ belongs to F and is bigger than g∞, a contradiction. ♣
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The Hahn-Banach Theorem in functional analysis is similar to example 4) above, but the
details are even more delicate.

5) See the appendix for an elegant proof of Tychonoff’s Theorem [in topology] that uses nets.

6) Let X be a vector space over a field F. There exist Hamel bases, i.e., maximal independent
subsets of X. The classical case is the vector space R of real numbers over the field Q of rationals.
[A subset E of X is independent over F if, given distinct e1, e2, . . . , en in E and given α1, α2, . . . , αn
in F, the equality

∑n
k=1 αkek = 0 implies αk = 0 for k = 1, 2, . . . , n.]

Proof. The proof is easy. Let P be the set of all nonempty independent subsets of X, ordered
by inclusion. Given x 6= 0, the one-element set {x} belongs to P since αx = 0 and α 6= 0 imply
x = α−1αx = 0. So P 6= Ø.

Consider a chain C in P. Let E0 = ∪E∈CE. We claim that E0 is independent over F. So
consider distinct e1, e2, . . . , en in E and α1, α2, . . . , αn in F where

∑n
k=1 αkek = 0. Each ek belongs

to Ek for some Ek in C. Since C is a chain, one of the sets Ek is biggest, say En ⊇ Ek for all
k = 1, 2, . . . , n. Then e1, e2, . . . , en are in En. Since En is independent, αk = 0 for k = 1, 2, . . . , n.
Thus E0 is independent.

By Zorn’s Lemma, P has a maximal element, i.e., there is a Hamel basis. ♣
Note. All that is vital in the last proof is that a set E is independent over F if and only if

each of its finite subsets is independent over F. This feature comes up so often that some people,
including me, like the following assertion which is equivalent to Zorn’s Lemma, etc.

Tukey’s Lemma. Consider a set X. Let F be a nonempty family of subsets of X of finite
character : E belongs to F if and only if every finite subset of E belongs to F . Then F has a
maximal member.

Proof from Zorn’s Lemma. Just imitate the argument in example 6).

Examples.

6) again. Vector spaces have Hamel bases.

Proof. The family of independent subsets is of finite character. So apply Tukey’s Lemma. ♣
7) Every Hilbert space has an orthonormal basis.

Proof. Apply Tukey’s Lemma to the family of orthonormal sets. ♣
8) LetA be a family of subsets of some set X. There exist maximal pairwise disjoint subfamilies

of A.

Proof. Tukey’s Lemma. ♣
9) Let A be a subset of the plane R2. There exists a maximal subset of A such that no three

points are collinear.

Proof. Tukey. ♣
We have one more assertion that is equivalent to Zorn’s Lemma. It is the least intuitive of the

bunch.
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Well Ordering Principle. Every set can be well ordered, i.e., there is some ordering ≤ on
the set that is well ordered.

Example. So, if you believe this, the set R of real numbers can be well ordered with some
weird ordering. No one has ever seen such an ordering.

In the olden days, the Well Ordering Principle was used in the form:

Transfinite Induction. Let (W,≤) be a nonempty well ordered set. Suppose that A ⊆ W
satisfies

(i) the least element 1 of W is in A;
(ii) whenever x is in W and {y ∈W : y < x} ⊆ A, then x is in A.

Then A = W .

Proof. Suppose A 6= W . Then B = W \ A is nonempty. By (i), 1 /∈ B. So the least element
x0 of B is bigger than 1. Clearly {y ∈W : y < x0} ⊆ A; so by (ii) x0 belongs to A. Thus A ∩B is
nonempty, a contradiction. ♣

Here is the promised big theorem.

Theorem. The following are equivalent:
(A) Axiom of Choice.
(M) Hausdorff Maximality Principle.
(Z) Zorn’s Lemma.
(T) Tukey’s Lemma.
(W) Well Ordering Principle.

Proof. We’ve already shown the implications → indicated below.

A =⇒ M ⇐= T
⇑ ↓
W ⇐= Z

↗

It suffices to prove the four implications marked =⇒.

Tukey =⇒ Maximality. The chains in a partially ordered set are sets of finite character.

Zorn =⇒ Well Ordering. Let S be the set we wish to well order. Let P be the set of all
well orderings W of subsets of S. We regard each W as a subset of S × S and write dom(W ) for
{x ∈ S : (x, y) is in W for some y ∈W}. We partially order P by W1 ≤W2 if and only if W1 ⊆W2

and dom(W1) is an initial segment of dom(W2). It is easy to check that this is a partial order. Also
P 6= Ø, since {(x, x)} is in P for each x in S.

Given a chain C in P, we show that W0 = ∪W∈CW is in P. We easily check that W0 is a
linear order: If x1, x2 are in dom(W0), then x1, x2 are in dom(W ) for some W in C and hence
(x1, x2) ∈ W ⊆ W0 or else (x2, x1) ∈ W ⊆ W0. To see that W0 is a well ordering, consider a
nonempty subset A of dom(W0). Then A ∩ dom(W ) 6= Ø for some W in C. The least element in
A ∩ dom(W ) will also be the least element of A in W0. Thus W0 is in P, and it is easy to check
that W0 is an upper bound to C.

Now by Zorn’s Lemma, P has a maximal element W ∗. If dom(W ∗) = S, we’re done. Otherwise,
select x0 in S \ dom(W ∗) and extend the order to dom(W ∗)∪ {x0} by putting x0 at the top. Since
the new well ordered set would be bigger than W ∗, we have a contradiction.
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Well Ordering =⇒ Axiom of Choice. Consider a family of nonempty sets {Aλ}. Well order
the union ∪λAλ. Define f(λ) = least member of Aλ for each λ. Then f belongs to

∏
λ Aλ, so this

product set is nonempty.

Axiom of Choice =⇒ Maximality Principle. This is the hard implication. Assume that the
Axiom of Choice holds, but that the Maximality Principle fails. Then there exists a partially
ordered set (X,≤) with no maximal chain. Let A be the set of all chains in X. For each C in A,
the set AC = {C ′ ∈ A : C ⊂ C ′} is nonempty. [C ⊂ C ′ means that C is a proper subset of C ′.] By
the Axiom of Choice there is a choice function f from A into ∪C∈AAC so that f(C) is in AC for
each C in A. In other words, f maps A into A and satisfies

C ⊂ f(C) for all C in A. (2)

Note that every chain C in A has a least upper bound (lub) in A, namely ∪C∈CC. The existence of
such an A and f contradicts:

Bourbaki’s Fixed Point Theorem. Let X be a nonempty partially ordered set in which
every nonempty chain in X has a lub in X. If f :X → X satisfies f(x) ≥ x for all x ∈ X, then
there exists an x0 in X with f(x0) = x0.

Proof. Fix a in X. A subset A of X is good if
(a) a is in A,
(b) f(A) ⊆ A,
(c) whenever C is a nonempty chain in A, then lubC is in A.

Clearly X itself is good.

Claim 1. Without loss of generality, X is the only good subset of X, so that if A satisfies
(a)-(c) then A = X.

Prf. Let M be the intersection of all good subsets of X. Easily M is also good. So replace X
by M .

The plan. We will show that X must itself be a chain. Then x0 = lubX must belong to X
and satisfy f(x0) ≥ x0. Therefore f(x0) = x0.

Claim 2. a is the least element of X.

Prf. It suffices to show that A = {x ∈ X : x ≥ a} is good, since this set would then have to
be equal to all of X.

(a) Clearly a is in A.

(b) Given x in A we need to show that f(x) is in A. But f(x) ≥ x ≥ a.

(c) Let C be a nonempty chain in A, and let w = lubC. For any x in C we have w ≥ x ≥ a,
so w is in A.

This completes Claim 2.

Now we say that x in X has property P(x) if y < x implies f(y) ≤ x.

Claim 3. If P(x) holds, then

for each z in X either z ≤ x or z ≥ f(x). (3)

Prf. It suffices to show that A = {z ∈ X : z ≤ x or z ≥ f(x)} is good.
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(a) a ≤ x by Claim 2, so a is in A.

(b) Given z in A we need f(z) ∈ A. Either z ≤ x or z ≥ f(x). If z < x, then f(z) ≤ x by
property P(x). If z = x, then obviously f(z) ≥ f(x). Finally, if z ≥ f(x), then f(z) ≥ z ≥ f(x).
So in all three cases, f(z) belongs to A.

(c) Again consider a nonempty chain C in A and w = lubC. Now either z ≤ x for all z ∈ C
[in which case w ≤ x] or some z in C satisfies z ≥ f(x) [in which case w ≥ f(x)]. Thus w is in A.

So A is good and A = X.

Claim 4. Every x in X satisfies P(x), so X is a chain and we’re done.

Prf. X will be a chain because for all x and z either z ≤ x or z ≥ f(x) ≥ x. So it suffices to
show that A = {x ∈ X : P(x) holds} is good.

(a) a is in A because P(a) holds vacuously.

(b) Assume that P(x) holds; we need to show that P(f(x)) holds. It suffices to show that
y < f(x) implies f(y) ≤ f(x). By Claim 3 for x, either y ≤ x or y ≥ f(x), but the latter cannot
hold since y < f(x). So y ≤ x. If y = x, then f(y) ≤ f(x) is obvious, while if y < x, then f(y) ≤ x
by property P(x), so f(y) ≤ x ≤ f(x).

(c) Again consider a nonempty chain C in A and w = lubC. We need to verify P(w): y < w
implies f(y) ≤ w. We suppose that y < w and we first show

Subclaim. There exists x in C so that y < x.

Prf. Suppose not. Each x in C is in A and satisfies P(x), so by (3) either y < x [which we’ve
disallowed], y = x or y ≥ f(x) ≥ x. Thus y would be an upper bound for C, a contradiction, since
y < lubC. This completes the subclaim.

By the subclaim, we have y < x for some x in C. By property P(x), we have f(y) ≤ x ≤ w.
So (c) holds.

Finally, then, Claim 4 holds, and the proof is completed. ♣

Cardinal Numbers

Let S be a set of sets. We say A ∼ B or that A and B have the same size or cardinality if there
is a one-to-one correspondence mapping A onto B. This gives an equivalence relation. A cardinal
number [or cardinal] will be a symbol attached to each equivalence class. For a set A, card(A) will
denote the cardinal number of its equivalence class. Finite sets have the same cardinal number if
and only if they are the same size.

Some standard cardinals. 0 = card(Ø). For n in N, n = card{1, 2, . . . , n}. card(N) = ℵ0.
card(R) = c. The use of the different symbols, ℵ0 and c, will be justified later.

Definition. A set is countable if it is finite or has cardinality ℵ0. Otherwise it is uncountable.

If a and b are cardinals, we say that a ≤ b if card(A) = a and card(B) = b imply that there is
a one-to-one mapping of A into B.

Clearly 0 ≤ 1 ≤ 2 ≤ · · · ≤ ℵ0 ≤ c.
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Theorem 1. Any set of cardinal numbers is linearly ordered. I.e.,
(R) a ≤ a for all a,
(AS) a ≤ b and b ≤ a imply a = b,
(T) a ≤ b and b ≤ c imply a ≤ c,
(L) given a and b, either a ≤ b or b ≤ a.

Proof. (R) is obvious and (T) is simple.

(L) We are given a = card(A) and b = card(B). Let F be the set of all one-to-one functions f
with dom(f) ⊆ A and range(f) ⊆ B. Viewing functions as sets of ordered pairs, we see that F is
a set of finite character, so by Tukey’s Lemma F has a maximal member h. If dom(h) = A, then
a ≤ b and we’re done. If range(h) = B, then h−1 is a one-to-one map of B into A so that b ≤ a

and again we’re done.
Otherwise, we can choose x in A \ dom(h) and y in B \ range(h). Then h∗ = h ∪ {(x, y)} is in

F , contradicting the maximality of h.

To prove (AS) we need an easy

Fixed Point Lemma. Let X be a partially ordered set in which every nonempty set has a
least upper bound (lub) and greatest lower bound (glb). If f :X → X is order-preserving [x ≤ y
implies f(x) ≤ f(y)], then f has a fixed point.

Proof. Let 0 = glb X. Then f(0) ≥ 0. Let A = {x ∈ X : x ≤ f(x)}. Since 0 is in A, A is
nonempty. Hence x0 = lubA exists. For x in A we have x ≤ f(x) ≤ f(x0), so f(x0) is an upper
bound for A. Thus x0 ≤ f(x0). This implies that f(x0) ≤ f(f(x0)), so f(x0) is in A. Hence
f(x0) ≤ x0, and we conclude that x0 = f(x0). ♣

Here is property (AS).

Schröder-Bernstein Theorem. If a ≤ b and b ≤ a, then a = b.

Proof. Let a = card(A) and b = card(B). By hypothesis, there exist one-to-one functions
f :A→ B and g:B → A. We apply the Fixed Point Lemma to the partially ordered set P(A) of all
subsets of A and the function φ(E) = g(f(E)c)c. Here the exponent c signifies set complementation.
Now φ is order-preserving since

E ⊆ F =⇒ f(E) ⊆ f(F ) =⇒ f(E)c ⊇ f(F )c =⇒ g(f(E)c) ⊇ g(f(F )c) =⇒ φ(E) ⊆ φ(F ).

So by the lemma, there is a set D ⊆ A so that φ(D) = D. Then g(f(D)c)c = D or Dc = g(f(D)c).
So if we define h(x) = f(x) for x ∈ D and h(x) = g−1(x) for x ∈ Dc, we obtain a one-to-one
function that carries D onto f(D) and Dc onto f(D)c. Thus h is one-to-one and maps A onto B.
This shows that a = b. ♣

Definitions. Let a and b be cardinal numbers, card(A) = a and card(B) = b. We define
ab = card(A × B), ab = card(AB) and, if A ∩ B = Ø, a + b = card(A ∪ B). [As usual, AB is the
set of all functions from B into A.]

One can easily check that these definitions are well defined; for example, if card(A) = card(A′)
and card(B) = card(B′), then card(A×B) = card(A′ ×B′).

For finite cardinals, these definitions agree with ordinary arithmetic.
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There is no largest cardinal. Before we prove this, we observe that for any set A, with cardi-
nality a,

card(P(A)) = 2a.

[For f :A→ {0, 1}, let φ(f) = {x ∈ A : f(x) = 1}. then φ: {0, 1}A → P(A) is one-to-one and onto.]

Theorem 2. a < 2a for all cardinals.

Proof. Obviously a ≤ 2a, since x→ {x} is a one-to-one mapping of A into P(A).
Assume that a = 2a. Then there is a one-to-one mapping h:A → P(A) that is onto. But

consider the set
E = {x ∈ A : x /∈ h(x)}.

E must equal h(x0) for some x0 in A. Is x0 in E? If yes, x0 /∈ h(x0) = E, hence no. If no,
x0 ∈ h(x0) = E, hence yes. Either way, we have a contradiction. ♣

Theorem 3. ℵ0 ≤ a for all infinite cardinals a.

Proof. In other words, every infinite set A contains a countably infinite subset. By induction
A contains subsets An with exactly n elements. To get a countably infinite subset, first let

Bn = A2n \
n−1⋃
k=0

A2k .

The Bn’s are disjoint and nonempty, so we can select one element from each Bn to obtain a
countably infinite subset of A. ♣

Corollary. Subsets of countable infinite sets are countable.

It is also easy to give a direct proof of the corollary.

Theorem 4. ℵ0ℵ0 = ℵ0.

Proof. In other words, N ×N ∼ N. Here is a one-to-one map of N ×N onto N: h(m, n) =
2m−1(2n− 1). ♣

Theorem 5. The countable union of countable sets is countable.

Proof. We want to show that if A1, A2, . . . are countable, so is their union A = ∪nAn. Without
loss of generality, we may assume that the An’s are pairwise disjoint. By making them bigger, if
necessary, we may also assume that card(An) = ℵ0 for all n. Thus

An = {ank : k = 1, 2, . . .}.

Then h(n, k) = ank defines a one-to-one mapping h from N ×N onto A. N ×N is countable by
Theorem 4, so A is also countable. ♣

Corollary. The sets Z and Q are countable.

Proof. Z = N ∪ {0} ∪ {−n : n ∈ N} and Q = {mn : m ∈ Z, n ∈ N}. ♣
Example. The sets R, (0, 1), (0, 1], and [0, 1] all have cardinality c.

Proof. This is all clear from the Schröder-Bernstein theorem, provided we can exhibit a one-
to-one function from R to (0, 1). To do this, one can use

h(x) =
x

1 + |x| or h(x) =
1
π

arctan(x) +
1
2
. ♣
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Theorem 6. 2ℵ0 = c.

Proof. 2ℵ0 = card({0, 1}N). For a sequence {εn} in {0, 1}N, we define

f({εn}) =
∞∑
n=1

εn
3n

.

Then f is a one-to-one mapping of {0, 1}N into R, so 2ℵ0 ≤ c.
On the other hand, each x in [0, 1) has a unique binary expansion .ε1ε2ε3 · · · where εn = 0 or 1

and εn = 0 for infinitely many n. [So if x has two binary expansions like 1
2 = .1000 · · · = .0111 · · ·,

the second expansion is not allowed.] This gives a one-to-one map g of [0, 1) into {0, 1}N, so c ≤ 2ℵ0 .
Thus 2ℵ0 ≤ c and c ≤ 2ℵ0 , and we can apply the Schröder-Bernstein theorem. ♣
Theorem 7 [cardinal arithmetic]. For cardinals a, b and c we have

(i) a + (b + c) = (a + b) + c (vii) acbc = (ab)c

(ii) a + b = b + a (viii) (ab)c = abc

(iii) a(b + c) = ab + ac (ix) a ≤ b implies a + c ≤ b + c

(iv) a(bc) = (ab)c (x) a ≤ b implies ac ≤ bc

(v) ab = ba (xi) a ≤ b implies ac ≤ bc

(vi) abac = ab+c (xii) a ≤ b implies ca ≤ cb

Proof. Most of these are easy. We outline a few of the proofs. In each case, A, B and C are
disjoint sets such that card(A) = a, card(B) = b and card(C) = c.

(iii) We need a one-to-one correspondence between the sets A× (B∪C) and (A×B)∪ (A×C).
But these sets are equal.

(vi) We need a one-to-one correspondence between AB × AC and AB∪C . Given φ in AB∪C ,
i.e., a function from B ∪ C into A, we let τ(φ) be the ordered pair (φ|B, φ|C) in AB × AC . Then
τ is a one-to-one mapping of AB∪C onto AB × AC . [The notation φ|B, for example, denotes the
restriction of φ to B.]

(vii) We need a one-to-one correspondence between AC × BC and (A× B)C . Given (φ, ψ) in
AC ×BC , let τ(φ, ψ)(c) = (φ(c), ψ(c)) for all c in C. Then τ is a one-to-one mapping of AC ×BC

onto (A×B)C .

(viii) This is the trickiest. We need a one-to-one correspondence between (AB)C and AB×C .
Given φ in (AB)C , we define τ(φ) via τ(φ)(b, c) = φ(c)(b) for all (b, c) in B × C. Note that each
φ(c) is a function with domain B.

Now τ maps onto AB×C because given ψ in AB×C , for each c in C we can define φ(c) to be
that function on B so that φ(c)(b) = ψ(b, c). Then τ(φ) = ψ.

To see that τ is one-to-one, consider distinct φ1 and φ2 in (AB)C . Then there exists c0 in C
so that φ1(c0) 6= φ2(c0). So there must exist b0 in B so that φ1(c0)(b0) 6= φ2(c0)(b0). But then
τ(φ1)(b0, c0) 6= τ(φ2)(b0, c0). This shows that τ(φ1) 6= τ(φ2). ♣

Lemma. If a is an infinite cardinal and n is finite, then a + n = a.

Proof. Consider A where card(A) = a and B = {1, 2, . . . , n}, so that A and B are disjoint.
A has a countably infinite subset C = {c1, c2, c3, . . .}. We define φ from A to A ∪ B as follows:
φ(a) = a for a /∈ C; φ(ck) = k for 1 ≤ k ≤ n; and φ(ck) = ck−n for k ≥ n + 1. Then φ is a
one-to-one correspondence between A and A ∪B. ♣
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Theorem 8. a + a = a for infinite cardinals.

In other symbols, 2a = a. In fact, na = a for n ∈ N and infinite cardinals a. This all follows
from the next theorem, since na ≤ ℵ0a.

Theorem 9. ℵ0a = a for infinite cardinals a.

Proof. Consider a set A where card(A) = a and set B = A ×N. Our task is to show that
A ∼ B. We will use Zorn’s Lemma. Let F consist of all one-to-one functions f where

dom(f) ⊆ A and range(f) = dom(f)×N.

Since A is infinite, A has a countably infinite subset C by Theorem 3. By Theorem 4, there exists
a one-to-one function f from C onto C ×N. Hence F is nonempty.

Consider a chain C in F and let g = ∪{f : f ∈ C}. Then g is certainly one-to-one, and we
claim that range(g) = dom(g) × N, so that g ∈ F . If x is in the domain of g, then x is in the
domain of f for some f in C, so

g(x) ∈ dom(f)×N ⊆ dom(g)×N.

So range(g) ⊆ dom(g)×N. Given (y, n) in dom(g)×N, there is some f in C so that y ∈ dom(f).
But then (y, n) is in dom(f)×N, so (y, n) is in range(f) ⊆ range(g). Thus dom(g)×N = range(g).

By Zorn’s Lemma, F has a maximal element h. It suffices to show that card(dom(h)) = a.
By the lemma, it suffices to show that A \ dom(h) is finite. Otherwise A \ dom(h) has a countably
infinite subset D and there exists a one-to-one mapping g from D onto D ×N. Then, if we define
h1(x) = h(x) for x ∈ dom(h) and h1(x) = g(x) for x ∈ D, we obtain a function in F , contradicting
the maximality of h. ♣

Corollary to Theorem 8. If a is an infinite cardinal and b ≤ a, then we have a + b = a.

Proof. a ≤ a + b ≤ a + a = a. ♣
Theorem 10. a2 = aa = a for infinite cardinals a.

Proof. Let A be a set where card(A) = a. Let F consist of all one-to-one functions f where

dom(f) ⊆ A and range(f) = (dom f)× (dom f).

Since A contains countably infinite subsets, and since ℵ0ℵ0 = ℵ0 by Theorem 9, F is nonempty.
Just as in the proof of Theorem 9, F has a maximal element h, and it suffices to show that
card(domh) = a.

Let D = dom(h) and assume that b = card(D) < a. Then by the Corollary to Theorem 8,
card(A \D) = a; otherwise card(A \D) = d < a, and we would have

a = card(A) = card(D) + card(A \D) = b + d = max{b, d} < a.

Hence A \D contains a set E where card(E) = card(D) = b. We know b2 = b. So

card((D × E) ∪ (E ×D) ∪ (E × E)) = card(D × E) + card(E ×D) + card(E × E)
= b2 + b2 + b2 = b + b + b = b,

by Theorem 8. Since card(E) = b, there is a one-to-one correspondence

g:E → (D × E) ∪ (E ×D) ∪ (E × E).
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In the picture below, g maps E onto the union of the three white squares, while h maps D onto
the darkened square. If we define h0(x) = h(x) for x in D and h0(x) = g(x) for x in E, we obtain
a one-to-one mapping of D ∪ E onto (D ∪ E) × (D ∪ E). So h0 belongs to F , contradicting the
maximality of h.

Hence card(dom h) = a and so a2 = a as claimed. ♣

Corollary If a is an infinite cardinal and 0 < b ≤ a, then ab = a.

Proof. a ≤ ab ≤ aa = a. ♣
Applications.

1) If 2 ≤ a ≤ c = 2ℵ0 , then aℵ0 = c and ac = 2c.

Proof. We have
c = 2ℵ0 ≤ aℵ0 ≤ cℵ0 = (2ℵ0)ℵ0 = 2ℵ0ℵ0 = 2ℵ0 = c

and 2c ≤ ac ≤ cc = (2ℵ0)c = 2ℵ0c = 2c. ♣
Here is a very easy result that we’ll use in the next application.

Theorem 11. If f :B → A maps B onto A, then card(A) ≤ card(B).

Proof. For each x in A, let g(x) be any element in f−1(x). Then g:A→ B is one-to-one. Note
the use of the Axiom of Choice here. ♣

2) Let F be the family of all finite subsets of a set A with a = card(A) ≥ ℵ0. Then card(F) = a.

Proof. Let B be the union of the sets A{1,2,...,n}. Each A{1,2,...,n} has cardinality a, so card(B) =
aℵ0 = a. Now f → range(f) maps B onto F , so card(F) ≤ a by Theorem 11. Obviously
a ≤ card(F), so we are done. ♣

3) Let C be the set of all countable subsets of a set A with a = card(A) ≥ ℵ0. Then card(C) =
aℵ0 . Notes. By 1) this equals c if 2 ≤ a ≤ c. Also aℵ0 = a if a has the form 2b.

Proof. f → range(f) maps AN onto C, so by Theorem 11, card(C) ≤ aℵ0 .
Now each f in AN “is” its graph Gf ⊆ N×A. So f → Gf is a one-to-one map of AN into the

family C(N×A) of countable subsets of N×A. Hence aℵ0 ≤ card(C(N×A)) = card(C). ♣
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Ordinal numbers

Definitions. If A and B are ordered sets, an order isomorphism is a one-to-one mapping f
of A onto B such that

x ≤ y in A if and only if f(x) ≤ f(y) in B.

This is an equivalence relation on sets of ordered sets. We are interested in the well ordered
sets! An ordinal number [or ordinal] will be a symbol attached to an equivalence class of well
ordered sets. For a well ordered set W , let’s write ord(W ) for this symbol.

Examples. We define
0 = ord(Ø),
n = ord{0 < 1 < · · · < n− 1} for n ∈ N,
ω = ord(N),
Ω to be the (unambiguously defined, as we’ll see) smallest uncountable ordinal.

To get more examples, let’s do a tiny bit of ordinal arithmetic. Say α = ord(A) and β = ord(B),
where A and B are well ordered sets. Then α +β is defined to be the ordinal for the disjoint union
A ∪ B where A and B have their given orders and everything in A precedes everything in B. For
example, 1 + ω is the ordinal of the set obtained by putting one more element at the beginning
of N; this set is order isomorphic to N, so 1 + ω = ω. On the other hand, ω + 1 is the ordinal
of the set obtained by putting one extra element at the end of N. This set has a last element, so
ω + 1 6= ω = 1 + ω. Addition is not even commutative! Note that

ω + 1 = ord({0 < 1 < 2 < · · · < ω}).

Also let αβ be the ordinal of the set obtained by replacing each b in B by a copy of A. In
other words, this is A×B with the reverse lexicographic ordering:

(a, b) < (a′, b′) if and only if b < b′ or b = b′ and a < a′.

Multiplication of ordinals isn’t commutative either. For example, ω2 is the ordinal number for the
well ordered set obtained by placing one copy of N above another copy of N. Thus

ω2 = ω + ω = ord{0 < 1 < 2 < · · · < ω < ω + 1 < ω + 2 < · · ·}.

Note that ω, and each element beyond ω, has an infinite number of predecessors. In contrast, 2ω
is the ordinal number of the well ordered set obtained by replacing each integer in N by a copy of
the two-element ordered set {0 < 1}. That is,

2ω = ord{0 < 1 < 0′ < 1′ < 0′′ < 1′′ < 0′′′ < 1′′′ < · · ·} = ω.

In general, for n ∈ N, nω = ω but ωn has n − 1 limit ordinals, i.e., elements with no immediate
predecessors. Note also that

ω2 = ωω = ord
{

m− 1
n

: n, m ∈ N
}

.

This ordered set was briefly discussed on page 2.
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Definition. Given a well ordered set W and x in W , the initial segment determined by x in
W is the set Wx = {y ∈ W : y < x}. If α = ord(A) and β = ord(B), we write α < β if A is order
isomorphic to some initial segment of B determined by some x in B. α ≤ β means that α < β or
α = β.

It is easy to check that the definition of < is well defined, i.e., is independent of the represen-
tatives A and B. Also, ≤ is a partial ordering on any set of ordinal numbers. Reflexivity is clear,
and transitivity is easy to verify. We will show anti-symmetry in the Corollary to Theorem 12.

Lemma. If W is well ordered and f :W → W is an order isomorphism of W into W , then
x ≤ f(x) for all x ∈W .

Proof. If not, A = {x ∈W : f(x) < x} is nonempty and has a least element a. Then f(a) < a,
so f(f(a)) < f(a). I.e., f(a) is in A, contradicting the fact that a is the least element of A. ♣

Corollary. If ord(W1) = ord(W2) for well ordered sets W1 and W2, then there is exactly one
order isomorphism of W1 onto W2.

Proof. Consider order isomorphisms f and g of W1 onto W2. Then f−1 ◦ g is an order
isomorphism of W1 onto W1. So x ≤ f−1(g(x)) for all x in W1 by the Lemma. Hence f(x) ≤ g(x)
for all x in W1. Similarly, g(x) ≤ f(x) for all x in W1. Therefore we have f = g. ♣

Theorem 12. Let W be a well ordered set. Then
(a) W is order isomorphic to no initial segment of itself;
(b) if ord(Wx) = ord(Wy) for x and y in W , then x = y.

Proof. (a) Otherwise there is an order isomorphism f :W →Wx. Since f(x) is in Wx, we must
have f(x) < x, contradicting the lemma.

(b) Assume that there’s an order isomorphism of Wx onto Wy, with x 6= y. We may assume
that y < x. But then Wy is an initial segment of Wx and we have violated part (a). ♣

Corollary. On any set of ordinal numbers, ≤ is anti-symmetric.

Proof. Assume that α < β and that β < α. Then there exist order isomorphisms f :A → B
and g:B → A whose ranges are initial segments. Then g ◦ f would be an order isomorphism of A
onto an initial segment of A, contradicting Theorem 12(a). ♣

Theorem 13. Any set of ordinal numbers is linearly ordered. That is, given ordinals α and
β, exactly one of the following holds: α < β, α = β, β < α.

Proof. The Corollary to Theorem 12 shows that at most one of these holds.
To show that at least one holds, we will use a now familiar Zorn Lemma argument. Let A

and B be well ordered sets so that ord(A) = α and ord(B) = β. Let F be the family of all order
isomorphisms f where

dom(f) is an initial segment of A or is A itself,
range(f) is an initial segment of B or is B itself.

F is nonempty because we can map the

least element of A onto the least element of B. By Zorn’s Lemma, F has a maximal element h.
[You should check that Zorn’s Lemma applies.] Either

(a) dom(h) = A but range(h) 6= B,
(b) range(h) = B but dom(h) 6= A, or
(c) dom(h) = A and range(h) = B.
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[To see this, assume that A \ dom(h) 6= Ø and B \ range(h) 6= Ø. Let a and b be the least elements
of these sets. If we extend h to dom(h)∪ {a} by defining h∗(a) = b, we obtain a bigger member h∗

of F , a contradiction.] In case (a), α < β; in case (b), we have β < α [using h−1]; and in case (c),
α = β. ♣

More is true: any set of ordinal numbers is well ordered. This follows from

Theorem 14. Let α be an ordinal number, and let Pα be the set of all ordinal numbers
preceding α. Then Pα is well ordered and ord(Pα) = α.

Proof. We know that there exists some well ordered set with ord(A) = α. We need to show
that A and Pα are order isomorphic. Consider β in Pα. Since β < α, there exists x in A so that
ord(Ax) = β. By Theorem 12(b), x is unique. So we can define φ:Pα → A unambiguously so that
ord(Aφ(β)) = β for all β in Pα. It is now easy to check that φ is an order isomorphism of Pα onto
A. Hence ord(Pα) = α. ♣

You might find it worthwhile to look back at the examples of ordinal numbers we’ve given and
observe that most of them were described using sets of predecessors.

Theorem 15. For each cardinal number a, there exists a least ordinal number αa so that
card(Pαa

) = a.

Proof. Let A be any set with card(A) = a. By the Well Ordering Principle, A can be well
ordered. Let α = ord(A). Then A and Pα are order isomorphic. If card({β ∈ Pα : β < γ}) < a for
all γ in Pα, then α works. Otherwise, let αa be the least ordinal α0 in Pα with the property that
card({β ∈ Pα : β < α0}) = a. ♣

Corollary. Any set of cardinal numbers is well ordered.

Proof. If A is any set of cardinals, the corresponding set {αa : a ∈ A} of ordinals has a least
element αa0 . Then a0 is the least element of A. ♣

Now let Ω be the least uncountable ordinal, i.e., the least ordinal α such that Pα is uncountable.
Then ord(PΩ) = Ω and people often write Ω for PΩ. The following theorem is now clear from the
foregoing theory.

Theorem 16.
(a) PΩ is well ordered.
(b) PΩ is uncountable.
(c) For each α in PΩ, the set {β ∈ PΩ : β ≤ α} is countable.
(d) If C is a countable subset of PΩ, then there is an α in PΩ so that β ≤ α for all β ∈ C.

Corollary. There are uncountably many distinct ways to well order N.

Proof. For each infinite ordinal α in PΩ, the set {β ∈ PΩ : β ≤ α} is countably infinite, so it
has the same cardinality as N. Moreover, different α’s in PΩ correspond to different orderings [i.e.,
not order isomorphic] of N in view of Theorem 12. ♣

Applications to topology. The ordinal space PΩ, with the order topology, is an interesting
example in general topology. For any linearly ordered set, the open intervals [plus half-open intervals
at the top and bottom] form a basis for the order topology. It turns out that such spaces are always
regular [Hausdorff] spaces.
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Any closed interval [α, β] consisting of ordinals is compact. To see this, assume not. Then
β belongs to the set A = {γ ≥ α : [α, γ] is not compact}, so A is nonempty. Let γ0 be the least
member of A. We obtain a contradiction by showing that [α, γ0] is, in fact, compact. Given an open
coverW of this set, one of the sets W0 in the cover contains an interval (α0, γ0] where α ≤ α0 < γ0.
Now a finite number of sets in W covers [α, α0], since it is compact. Then these sets plus W0 cover
[α, γ0].

The ordinal space PΩ = [0,Ω) is locally compact, non-compact but sequentially compact. Local
compactness follows from the previous paragraph. It is not compact, since the sets {[0, α) : α < Ω}
form an open cover of [0,Ω) having no finite subcover. Each of its closed subintervals is metrizable
by Urysohn’s Metrization Theorem, which asserts that a regular space with a countable base is
metrizable. [It’s hard to imagine a direct proof that all closed subintervals of [0,Ω) are metrizable.]
To show that [0,Ω) is sequentially compact, consider any sequence {αn} in [0,Ω). By Theorem
16(d), there is α < Ω so that αn ≤ α for all n. Thus {αn} is a sequence in the compact metric
space [0, α], so it has a convergence subsequence.

The space [0,Ω) itself is not metrizable. One reason is that it has the following property:
(P) every continuous function on the space is bounded,

and the only metric spaces with this property are compact. To check property (P), assume that
f is an unbounded continuous function on [0,Ω). For each n in N, there is αn in [0,Ω) so that
|f(αn)| > n. By Theorem 16(d) again, there is an α in [0,Ω) so that αn ≤ α for all n. It follows
that the [continuous] restriction of f to the compact set [0, α] also is unbounded, an impossibility.

A related space is [0,Ω]. This is the one-point compactification of [0,Ω), and it also turns out
to be its Stone-Čech compactification. The space [0,Ω] isn’t metrizable, since its subspace [0,Ω)
isn’t.

Inductive Constructions

Consider the statements
(A) For each n in N there exists a sequence of objects O1, . . . , On so that property Pn(O1, . . . , On)

holds.
(B) There exists an infinite sequence of objects O1, O2, . . . so that

for each n in N, property Pn(O1, . . . , On) holds.

Statements (A) and (B) might look equivalent, but they are not. Confusing them can lead to
unfortunate errors.

Trivial, but illustrative, example. Let X be an infinite subset of R, and let Pn(x1, . . . , xn)
be the property “x1, . . . , xn are in X and x1 < x2 < · · · < xn.”

Claim. (A) holds. I.e., for each n, there exist numbers x1, . . . , xn so that x1 < x2 < · · · < xn.
This is pretty obvious, since we could simply select n numbers from X and note that they can

be ordered. But this wouldn’t be a very constructive proof.

Proof by induction. Since the claim is trivial for n = 1, we assume that the claim is true for n.
Thus there exist x1, . . . , xn in X such that x1 < x2 < · · · < xn. Since X is infinite, there exists a
number y in X \ {x1, . . . , xn}. If y > xn, let xn+1 = y and observe that Pn+1(x1, . . . , xn+1) holds.
If y < xn, then there is a smallest k so that y < xk. If we define x′i = xi for i < k, x′k = y, and
x′i = xi−1 for k < i ≤ n + 1, then clearly Pn+1(x′1, x

′
2, . . . , x

′
n+1) holds. ♣
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So (A) holds. But (B) can fail. For example, (B) fails if X is the set of negative integers. The
trouble is that in our inductive proof of (A) we often changed earlier terms along the way. So our
constructive proof by induction doesn’t qualify as an inductive construction.

Induction Construction. Assume
(i) There exists an object O1 so that property P1(O1) holds.
(ii) Given objects O1, . . . , On so that property Pn(O1, . . . , On) holds, there exists an object

On+1 so that property Pn+1(O1, . . . , On+1) holds.
Then
(iii) There exists an infinite sequence of objects O1, O2, O3, . . . so that

for each n, property Pn(O1, . . . , On) holds.

Remark. This does not follow directly from Peano’s axiom that N is well ordered. If it did,
we’d assume not, consider some set A ⊆ N consisting of integers with some property, and show that
A = N. It’s hard to imagine A in this situation. Indeed, it is not clear how to formulate “assume
not,” i.e., how to deny the conclusion (iii) in a useful way. We seem to need Zorn’s Lemma.

Proof. Let F consist of all functions f such that
(1) dom(f) is a nonempty initial segment of N, i.e., n ∈ dom(f) and m < n imply m ∈ dom(f),
(2) range(f) consists of objects,
(3) for each n in dom(f), property Pn(f(1), . . . , f(n)) holds.

It suffices to show that F contains a function with domain N.

By hypothesis (i), F is nonempty. It is easy to check that if C is a chain in F , then the function
h = ∪f∈Cf also is in F . So by Zorn’s Lemma, F has a maximal element h0.

We claim that dom(h0) = N, completing the proof. Otherwise N\dom(h0) has some elements
in it. So it has a least element [which I will call N ], since N is well ordered by Peano’s axiom.
Note that N > 1, since 1 must be in dom(h0). In view of (1), we have dom(h0) = {1, 2, . . . , N −1}.
Since property PN−1(h0(1), . . . , h0(N − 1)) holds, hypothesis (ii) shows that there is an object ON

so that PN (h0(1), . . . , h0(N − 1), ON ) holds. Now define h∗ on {1, 2, . . . , N} so that h∗(k) = h0(k)
for k < N and h∗(N) = ON . Then h∗ belongs to F and is bigger than [i.e., an extension of] h0,
contradicting the maximality of h0. ♣

Essentially the same proof yields

Transfinite Inductive Construction. Let W be a well ordered set with a least element 1
and no greatest element. For each α ∈ W and objects {Oβ : β < α} indexed by {β ∈ W : β < α},
let Pα({Oβ : β < α}) be a property about the set {Oβ : β < α}. Assume

(i) There is an object O1 so that property P2(O1) holds.
(ii) Given objects {Oβ : β < α} so that property Pα({Oβ : β < α}) holds, there exists an

object Oα so that property Pα+1({Oβ : β < α + 1}) holds. [α + 1 is the successor α,
i.e., the least element bigger than α.]

Then
(iii) There exist objects {Oβ : β ∈W} indexed by W so that

for each α in W, property Pα({Oβ : β < α}) holds.
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Note. In imitating the last proof, (3) gets replaced by
“(3) for each α in W , with α > 1, property Pα({Oβ : β < α}) holds.”

Later in the proof, N gets replaced by α0 in W , so that dom(h0) = {β ∈W : β < α0}.
Example. The plane has a subset that intersects every straight line in exactly two points.

[This is not obvious. Try to prove it directly!]

Proof. The set S of all straight lines has exactly c elements, since each line is determined
by its slope and y-intercept. We index S by the ordinal number αc so that S = {Lβ : β < αc}
and card({β : β < α}) < c for α < αc. Let A1 be any 2-element subset of L1. Given 2-element
subsets Aβ of Lβ for β < α < αc, we note that the line Lα has infinitely many points that are
not in the set ∪{Lβ : β < α}. [Details: Each Lβ can intersect Lα in at most one point, since two
straight lines with two common points must be identical. Consequently, the intersection of Lα with
∪{Lβ : β < α} has at most card({β : β < α}) points while Lα has c points.] Hence there exists a
2-element subset Aα of Lα that is disjoint from ∪{Lβ : β < α}. The set A = ∪{Aβ : β < αc} is the
desired set. ♣

Note. I wrote this proof in typical mathematical style, but I implicitly applied the Transfinite
Inductive Construction, since I had to have the transfinite sequence {Aβ : β < αc} before I could
define A.

Here’s the formal set-up. My allowable objects are 2-element subsets of the plane. Property
Pα({Aβ : β < α}) is

“each Aβ ⊆ Lβ and Aβ is disjoint from ∪ {Lγ : γ < β}.”

Remark. The example remains valid if we replace S by all circles, or all ellipses, etc. Also 2
can be replaced by any finite number or by ℵ0.

For measure theory fans. Using Fubini’s theorem, one can show that if the set A above is
Lebesgue measurable in R2, then A must have measure 0.

Can A be forced to have measure 0? Yes. Here S is all straight lines. Let C be the Cantor set
in [0, 1] with measure 0. Let C + N = ∪{C + n : n ∈ N}, which also has measure 0. Let U be the
union of all circles in R2 centered at 0 whose radii belong to the set C + N. Then the set A can
be selected inside U because every straight line intersects U in a set with c elements. Also, U has
measure 0 in R2, as can be seen by integrating its characteristic function using polar coordinates.
So A also will have measure 0 in R2.

Can A be selected to be a Borel set? I don’t know, and (at least until recently) this is an open
question.

Conclusion

The approach in these notes has been completely pragmatic and non-philosophical, avoiding
questions about “truth” or the wisdom of using the Axiom of Choice and its equivalents. An
excellent article concerning the history of these axioms and their current status is by Solomon
Feferman, Does mathematics need new axioms?, American Mathematical Monthly 106 (1999), 99-
111. Another place to start learning about the subtleties involved is: Chapter 13 of Stan Wagon’s
book The Banach-Tarski Paradox, Cambridge University Press, 1985.
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Appendix

The following proof is due to Paul Chernoff (1992).

Tychonoff’s Theorem. Let X =
∏
i∈I Xi, where each Xi is a compact topological space.

Then X is compact in the product topology.

Proof. It suffices to show that every net 〈fα〉α∈A in X has a cluster point in X.
For each nonempty set J ⊆ I and g in

∏
i∈J Xi, we say g is a partial cluster point of 〈fα〉α∈A

if g is a cluster point of the net 〈fα|J〉α∈A of restrictions to J .
Let F be the set of all partial cluster points of 〈fα〉α∈A. F is nonempty because if J = {i0}

then 〈fα|J〉α∈A is a net in Xi0 , so it has a cluster point since Xi0 is compact.
We partially order F by extension:

g1 ≤ g2 if dom(g1) ⊆ dom(g2) and g1(i) = g2(i) for i ∈ dom(g1).

Consider a chain C in F . By the proposition on page 3, g0 = ∪g∈C g is a function with domain
J = ∪g∈C dom(g).

Claim. g0 is in F , i.e., g0 is a partial cluster point of 〈fα〉α∈A.

Prf. We need to show that g0 is a cluster point of the net 〈fα|J〉α∈A. Consider a basic
neighborhood of g0 in

∏
i∈J Xi having the form

W = {h ∈
∏
i∈J

Xi : h(i) ∈ Ui for i ∈ F},

where F is a finite subset of J and Ui is open in Xi for each i ∈ F . Since C is a chain, there exists
g in C so that F ⊆ dom(g). Consider α ∈ A. Since g is a cluster point of 〈fα|dom(g)〉α∈A, there
exists β in A so that β º α and fβ(i) ∈ Ui for i ∈ F . Therefore fβ|J belongs to W . Since α in A
is arbitrary and the basic neighborhood W of g0 is arbitrary, this shows that g0 is a cluster point
of 〈fα|J〉α∈A. Hence g0 is in F , which verifies the claim.

Since g0 is clearly an upper bound for C, we see that every chain in F has an upper bound in
F . So by Zorn’s Lemma, F has a maximal element g∗. If dom(g∗) = I, then 〈fα〉α∈A has a cluster
point in X and we’re done.

So assume that dom(g∗) = J∗ 6= I. Select k in I \ J∗. Since g∗ is in F , a subnet 〈fαβ |J∗〉β∈B
converges to g∗. Since Xk is compact, the net 〈fαβ (k)|J∗〉β∈B in Xk must have a cluster point p.
Define h on J∗ ∪ {k} so that h = g∗ on J∗ and h(k) = p. Then h is a partial cluster point of
〈fα〉α∈A. Since h is bigger than g∗ in the order of F , and since h is in F , this contradicts the
maximality of g∗. ♣
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