Duals of Hardy spaces on homogeneous groups

Marcin Bownik**1 and Gerald B. Folland**2

1 Department of Mathematics, University of Oregon, Eugene, OR 97403-1222, USA
2 Department of Mathematics, University of Washington, Seattle, WA 98195-4350, USA

Received 13 January 2005, accepted 24 July 2005
Published online 9 July 2007

Key words Hardy space, Campanato space, homogeneous group, duality
MSC (2000) Primary: 42B30; Secondary: 43A80, 46E35

Hardy spaces on homogeneous groups were introduced and studied by Folland and Stein [3]. The purpose of this note is to show that duals of Hardy spaces \(H^p \), \(0 < p \leq 1 \), on homogeneous groups can be identified with Morrey–Campanato spaces. This closes a gap in the original proof of this fact in [3].

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

We begin by reviewing some definitions. Let \(G \) be a homogeneous group, i.e., \(G \) is a connected and simply connected nilpotent Lie group which is endowed with a family of dilations \(\{ \delta_r \}_{r>0} \). We recall that a family of dilations on the Lie algebra \(g \) of \(G \) is a one parameter family of automorphisms of \(g \) of the form \(\{ \exp(A \log r) : r > 0 \} \), where \(A \) is diagonalizable linear operator on \(g \) with positive eigenvalues \(1 = d_1 \leq d_2 \leq \cdots \leq d_n \), \(n = \dim(G) \). Then the exponential map from \(g \) to \(G \) defines the corresponding family of dilations \(\{ \delta_r \}_{r>0} \) on \(G \). We will often use the abbreviated notation \(\delta_r x = rx \) for \(x \in G \) and \(r > 0 \).

We fix a homogeneous norm on \(G \), i.e., a continuous map \(|\cdot| : G \to [0, \infty) \) that is \(C^\infty \) on \(G \setminus \{0\} \) and satisfies

\[
|x^{-1}| = |x| \quad \text{for all} \quad x \in G,
\]

\[
|\delta_r x| = r|x| \quad \text{for all} \quad x \in G, \ r > 0,
\]

\[
|x| = 0 \iff x = 0.
\]

The ball \(B(r, x) \) of radius \(r > 0 \) and center \(x \in G \) is defined as

\[
B(r, x) = \{ y \in G : |x^{-1}y| < r \},
\]

and we denote by \(\gamma \) be the minimal constant such that

\[
|xy| \leq \gamma(|x| + |y|) \quad \text{for all} \quad x, y \in G.
\]

If \(\psi \) is a function on \(G \) and \(t > 0 \), we define its dilate \(D_t \psi \) as

\[
D_t \psi(x) = t^{-Q} \psi(\delta_{1/t} x) = t^{-Q} \psi(x/t),
\]

where

\[
Q = d_1 + \cdots + d_n
\]

is the homogeneous dimension of \(G \). The dilate \(D_t \psi \) is also denoted by \(\psi_t \). The (left) translate of \(\psi \) by \(x_0 \in G \) is defined as

\[
\tau_{x_0} \psi(x) = \psi((x_0)^{-1}x).
\]

__

* e-mail: mownik@uoregon.edu, Phone: +1 541 346 5622, Fax: +1 541 346 0987
** Corresponding author: e-mail: folland@math.washington.edu, Phone: +1 206 543 7083, Fax: +1 206 543 0397

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Given a multiindex \(I = (i_1, \ldots, i_n) \in \mathbb{N}^n \), we set

\[
|I| = i_1 + \cdots + i_n, \quad d(I) = d_1 i_1 + \cdots + d_n i_n.
\]

Let \(\Delta \) be the additive semi-group of \(\mathbb{R} \) generated by \(0, d_1, d_2, \ldots, d_n \). That is, \(\Delta = \{ d(I) : I \in \mathbb{N}^N \} \). Let \(\eta_1, \ldots, \eta_n \) be a basis for the linear polynomials on \(G \) such that \(\eta_i \) is homogeneous of degree \(d_i \). Then every polynomial \(P \) can be written uniquely as

\[
P = \sum_I a_I \eta^I, \quad \eta^I = \eta_1^{i_1} \cdots \eta_n^{i_n}, \quad a_I \in \mathbb{C}.
\]

The homogeneous degree of \(P = \sum_I a_I \eta^I \) is defined as

\[
\text{deg}(P) = \max \{ d(I) : a_I \neq 0 \}.
\]

Given \(s \in \Delta \), we denote the space of polynomials of homogeneous degree \(\leq s \) by

\[
P_s = \{ P \in \mathcal{P} : \text{deg}(P) \leq s \}.
\]

We recall that \(\mathcal{P}_s \) is invariant under left and right translations; see [3, Proposition 1.25].

Suppose that \(0 < p \leq 1, 1 \leq q \leq \infty \) and \(s \in \Delta \). We say that a triplet \((p, q, s) \) is admissible if \(p < q \) and

\[
s \geq \max \{ s' \in \Delta : s' \leq Q(1/p - 1) \}.
\]

We say that a function \(a \) is a \((p, q, s) \)-atom, where \((p, q, s) \) is admissible, if

\[
\text{supp } a \subset B(x_0, r) \quad \text{for some} \quad x_0 \in G, \quad r > 0,
\]

\[
\|a\|_q \leq |B(x_0, r)|^{1-1/p},
\]

\[
\int_G a(x) P(x) \, dx = 0 \quad \text{for all} \quad P \in \mathcal{P}_s.
\]

The atomic Hardy space \(H^q_{p,s} \) is the set of all tempered distributions \(f \) such that \(f = \sum \lambda_i a_i \) (convergence in \(S' \)) such that the \(a_i \) are \((p,q,s) \)-atoms, \(\lambda_i \geq 0 \), and \(\sum \lambda_i^q < \infty \). \(H^q_{p,s} \) is actually independent of \(q \) and \(s \) ([3, Theorem 3.30]) and so may be denoted simply by \(H^p \).

Let \(B \) denote the collection of all open balls in \(G \). If \(l \geq 0, 1 \leq q \leq \infty \), and \(s \in \Delta \), we define the Campanato space \(C^q_{l,s} \) to be the space of all locally \(L^q \) functions \(a \) on \(G \) so that

\[
\|a\|_{C^q_{l,s}} := \sup_{B \in B} \inf_{P \in \mathcal{P}_s} |B|^{-l} \left(\frac{1}{|B|} \int_B |a(x) - P(x)|^q \, dx \right)^{1/q} < \infty \quad (q < \infty),
\]

\[
\|a\|_{C^{q\infty}_{l,s}} := \sup_{B \in B} \inf_{P \in \mathcal{P}_s} |B|^{-l} \text{ess sup}_{x \in B} |a(x) - P(x)| < \infty \quad (q = \infty).
\]

We identify two elements of \(C^q_{l,s} \) if they are equal almost everywhere. (Note: The space called \(C^q_{l,s} \) here is called \(C^q_{l,s} \) in [3].)

\section{Duals of Hardy spaces}

The main goal of this note is to prove that the dual of the Hardy space \(H^p_{q,s} \) is isomorphic to the Campanato space \(C^{1/p-1}_{q',s} / \mathcal{P}_s \), where \((p,q,s) \) is an admissible triplet and \(1/q + 1/q' = 1 \). This result in the setting of Hardy spaces on homogeneous groups was obtained by Folland and Stein [3, Chapter 5]. However, careful examination of the arguments in [3] reveals a gap in the first part of the proof of [3, Theorem 5.3]. The trouble is that uniform boundedness of a functional on atoms does not guarantee that the functional is bounded on \(H^p \); see [2]. Hence, the operator norm of a functional \(L \) on \(H^p \) is given by the supremum of \(|L a| \) over all atoms \(a \), as asserted in [3, Lemma 5.1], only when the functional is known a priori to be continuous. To remedy this situation we will apply a rather subtle approximation argument inspired by [4, Chapter III.5], see also [1, Section 8].
We will need some simple observations about Campanato spaces. First, note that for any $t > 0$, the substitution $s = r/t$ gives

$$
|\|u_t||_{C_q^{l,s}} = \sup_{x_0 \in G, r > 0} \inf_{P \in P_x} |B(x_0, r)|^{-1} \int_{B(x_0, r)} |t^{-Q}u(x/t) - P(x)|^q dx
$$

$$
= \sup_{x_0 \in G, s > 0} \inf_{P \in P_x} \left(t^{-Q} |B(x_0, s)|^{-1} \int_{B(x_0, s)} |t^{-Q}u(x) - t^Q P(tx)|^q dx \right)^{1/q}
$$

Next, for any $B \in \mathcal{B}$, let $\pi_B : L^1(B) \to \mathcal{P}_s$ be the natural projection defined by

$$
\int_B (\pi_B f(x))Q(x) \, dx = \int_B f(x)Q(x) \, dx \quad \text{for all } f \in L^1(B), \quad Q \in \mathcal{P}_s.
$$

We claim that there is a constant $C = C_s$, independent of f and B, such that

$$
\sup_B |\pi_B f(x)| \leq C \frac{1}{|B|} \int_B |f(x)| \, dx.
$$

Indeed, for the fixed ball $B_0 = B(0, 1)$, let $\{Q_I : d(I) \leq s\}$ be an orthonormal basis of \mathcal{P}_s with respect to the $L^2(B_0)$ norm. Then

$$
\pi_{B_0} f = \sum_{d(I) \leq s} \left(\int_{B_0} f(x)Q_I(x) \, dx \right) Q_I,
$$

so the estimate (2.2) holds for $B = B_0$ with $C = |B_0| \sum_{d(I) \leq s} (\sup_{x \in B_0} |Q_I(x)|)^2$. Since $\pi_{B(x_0, r)} f = (\tau_{x_0} \circ D_r \circ \pi_{B_0} \circ D_{1/r} \circ \tau_{x_0}) f$, (2.2) then follows for arbitrary $B = B(x_0, r) \in \mathcal{B}$.

Next, we claim that we can define an equivalent norm on $C_q^{l,s}$ by setting

$$
|\|u|||_{C_q^{l,s}} = \sup_B |B|^{-1} \int_B |u(x) - \pi_B u(x)|^q dx
$$

$$
|\|u|||_{C_q^{l,\infty}} = \sup_B |B|^{-1} \inf_{u \in B} |u(x) - \pi_B u(x)|
$$

Indeed, for any $B \in \mathcal{B}$ and $P \in \mathcal{P}_s$, by the fact that $P = \pi_B P$ and (2.2) we have

$$
\left(\frac{1}{|B|} \int_B |u(x) - \pi_B u(x)|^q dx \right)^{1/q} \leq \left(\frac{1}{|B|} \int_B |u(x) - P(x)|^q dx \right)^{1/q} + \left(\frac{1}{|B|} \int_B |\pi_B (P-u)(x)|^q dx \right)^{1/q} \leq \left(\frac{1}{|B|} \int_B |u(x) - P(x)|^q dx \right)^{1/q} + C \frac{1}{|B|} \int_B |u(x) - P(x)| dx \leq (C + 1) \left(\frac{1}{|B|} \int_B |u(x) - P(x)|^q dx \right)^{1/q}.
$$

Therefore,

$$
|\|u|||_{C_q^{l,s}} \leq |\|u|||_{C_q^{l,\infty}} \leq (C + 1) |\|u|||_{C_q^{l,s}} \quad \text{for all } u \in C_q^{l,s}.
$$

The key ingredients in the proof of the duality theorem are some approximation results for Campanato spaces. To begin with, define the space

$$
\Theta_q^s = \{ f \in L^q(G) : \text{supp } f \text{ is compact and } \int_G f(x)P(x) \, dx = 0 \text{ for } P \in \mathcal{P}_s \}.
$$
Lemma 2.1 Suppose \(u \in C^l_{q',s} \), where \(l \geq 0, 1 \leq q' \leq \infty \), and \(s = 0, 1, \ldots \). Fix a nonnegative function \(\varphi \in C^\infty \) with compact support and \(\int \varphi = 1 \), and let \(\varphi_r(x) = r^{-Q} \varphi(x/r) \). Then
\[
\int_G f(x)(u * \varphi_r)(x) \, dx \longrightarrow \int_G f(x)u(x) \, dx \quad \text{as} \quad r \to 0 \quad \text{for all} \quad f \in \Theta^q_2, \tag{2.7}
\]
and
\[
||u * \varphi_r||_{C^l_{q',s}} \leq ||u||_{C^l_{q',s}} \quad \text{for all} \quad r > 0. \tag{2.8}
\]

Proof. If \(q' < \infty \), (2.7) holds since \(u * \varphi_r \to u \) in \(L^q_{\text{loc}}(G) \) as \(r \to 0 \). If \(q' = \infty \), \(u * \varphi_r \) is uniformly bounded on compact sets and converges a.e. to \(u(x) \) by [3, Theorem 2.6], so (2.7) holds by the dominated convergence theorem. Next, given \(B \in \mathcal{B} \) and \(r > 0 \), define a function \(P_r \) by
\[
P_r(x) = \int_G \pi_{y-1,B}u(y^{-1}x) \varphi_r(y) \, dy.
\]
Since we can write \(\pi_{y-1,B}u(y^{-1}x) = \sum_{d(f) \leq c_0(y)}q^f(y^{-1}x) \) and the coefficients \(c_0(y) \) are continuous functions of \(y \), \(P_r \) is a polynomial of homogeneous degree \(\leq s \). By the Minkowski inequality,
\[
\left(\frac{1}{|B|} \int_B \left| (u * \varphi_r)(x) - P_r(x) \right|^q \, dx \right)^{1/q} \leq \left(\frac{1}{|B|} \int_B \left(u(y^{-1}x) - \pi_{y-1,B}u(y^{-1}x) \right) \varphi_r(y) \, dy \right)^{1/q'} \leq \left(\frac{1}{|y^{-1}B|} \int_{y^{-1}B} |u(z) - \pi_{y-1,B}u(z)|^{q'} \, dz \right)^{1/q'} \leq ||u||_{C^l_{q',s}} |B|^l.
\]
This proves (2.8). \(\square \)

Lemma 2.2 Let \(\psi \in C^\infty \) be such that \(supp \psi \subset B(0,1), 0 \leq \psi(x) \leq 1 \), and \(\psi(x) = 1 \) for \(x \in B(0,1/2) \). There exist \(C > 0 \) and \(\delta \in \Delta \) with \(\delta \geq 2 \) such that
\[
||(u - \pi_{B_0}u)\psi||_{C^l_{q',s}} \leq C ||u||_{C^l_{q',s}} \quad \text{for all} \quad u \in C^l_{q',s}, \tag{2.9}
\]
where \(B_0 = B(0, \gamma(2\gamma + 1)) \).

Proof. Suppose \(u \in C^l_{q',s} \) with \(||u||_{C^l_{q',s}} \leq 1 \). For brevity, we only consider the case \(q' < \infty \); the case \(q' = \infty \) uses a similar argument. Let \(U = u - \pi_{B_0}u \). Since \(supp \psi \subset B_0 \),
\[
\int_G |U(x)\psi(x)|^q \, dx \leq \int_{B_0} |U(x)|^q \, dx \leq |B_0|^{q' + 1} < \infty. \tag{2.10}
\]
Therefore, if \(B = B(x_0, r) \in \mathcal{B} \) with \(r \geq 1 \), then
\[
|B|^{-1} \left(\frac{1}{|B|} \int_B |U(x)\psi(x)|^{q'} \, dx \right)^{1/q'} \leq \left(\frac{|B_0|}{|B|} \right)^{l + 1/q'} \leq C < \infty.
\]
Hence, to show (2.9) it is enough to estimate the integral of \(U\psi \) over balls \(B = B(x_0, r) \) with \(0 < r < 1 \). Moreover, we can assume that \(B \cap B(0,1) \neq \varnothing \), since otherwise \(U\psi \) is 0 on \(B \). Consequently, we are limited to balls \(B \subset B_0 \). Let \(P_1 = \pi_{B}U \). By (2.2) and (2.10),
\[
\left(\frac{1}{|B|} \int_B |P_1(x)|^{q'} \, dx \right)^{1/q'} \leq C \left(\frac{1}{|B|} \int_B |U(x)|^{q'} \, dx \right)^{1/q'} \leq C_1 |B|^{-1/q'}.
\]
Let \(P_2(x) \) be the left Taylor polynomial of \(\psi \) at \(x_0 \) of homogenous degree \(s_0 \) (i.e., the polynomial whose left-invariant derivatives at the origin of homogeneous degree \(\leq s_0 \) agree with the corresponding derivatives of \(f \) at \(x_0 \)), where \(s_0 \in \Delta \) is chosen to satisfy \(s_0 \geq q(l + 1/q') \). By the Taylor inequality ([3, Theorem 1.37] and the remark following it), the remainder satisfies
\[
\left| \psi(x) - P_2(x^{-1}0) \right| \leq C_2|x^{-1}0|^{s_0} \quad \text{for} \quad x \in B \subset B(x_0, 1),
\]
with \(C_2 \) independent of \(x_0 \). Finally, let \(P(x) = P_1(x)P_2(x^{-1}0) \), which is a polynomial of homogeneous degree at most \(\tilde{s} = s + s_0 \). By (2.11),
\[
\left(\int_B |U(x)\psi(x) - P(x)|^q \, dx \right)^{1/q} \\
\leq \left(\int_B \left| \psi(x) - P_2(x^{-1}0) \right|^q \, dx \right)^{1/q} + \left(\int_B |P_1(x)|^q \, dx \right)^{1/q} \leq \left(\int_B \left| \psi(x) - P_2(x^{-1}0) \right|^q \, dx \right)^{1/q} + \sup_{x \in B} \left| \psi(x) - P_2(x^{-1}0) \right| \left(\int_B |P_1(x)|^q \, dx \right)^{1/q} \\
\leq |B|^{1/q'} + C_1C_2r^{r_0}.
\]
But \(r^{r_0} = C_3|B|^{s_0} = C_3|B|^{l+1/q} \), so (2.9) is proved with \(\tilde{s} = s + s_0 \).

Lemma 2.3 Suppose \(u \in C_{q', s}^l \), where \(l \geq 0, 1 \leq q' \leq \infty \), and \(s = 0, 1, \ldots \). There exist \(\tilde{s} \geq s \), a constant \(C > 0 \) independent of \(u \), and a sequence of test functions \(\{u_k\}_{k \in \mathbb{N}} \subset S \) so that
\[
\|u_k\|_{C_{q', s}^l} \leq C \|u\|_{C_{q', s}^l} \quad \text{for all} \quad k \in \mathbb{N},
\]
\[
\lim_{k \to \infty} \int_{\mathbb{G}} f(x)u_k(x) \, dx = \int_{\mathbb{G}} f(x)u(x) \, dx \quad \text{for all} \quad f \in \Theta^q_{q'}, \quad 1/q + 1/q' = 1.
\]

Proof. First suppose \(u \in C_{q', s}^l \cap C^\infty \). Let \(\tilde{u}_k = D_{2-k}u \) and \(u_k = D_{2^k}((\tilde{u}_k - \pi_{B_0}\tilde{u}_k)\psi) \), where \(B_0 \) is as in Lemma 2.2. By (2.1) and (2.9),
\[
\|((\tilde{u}_k - \pi_{B_0}\tilde{u}_k)\psi)\|_{C_{q', s}^l} \leq C \|u_k\|_{C_{q', s}^l} \leq C 2^{kQ(l+1)}\|u\|_{C_{q', s}^l}.
\]

Therefore (2.12) holds, since
\[
\|u_k\|_{C_{q', s}^l} = 2^{-kQ(l+1)}\|((\tilde{u}_k - \pi_{B_0}\tilde{u}_k)\psi)\|_{C_{q', s}^l} \leq C \|u\|_{C_{q', s}^l}.
\]

Moreover,
\[
u_k(x) = u(x) - (D_{2^k} \circ \pi_{B_0} \circ D_{2-k})u(x) = u(x) - \pi_{B(0, 2^{k-1})}u(x) \quad \text{for} \quad x \in B(0, 2^k).
\]

Thus (2.13) also holds.

To end the proof we remove the assumption that \(u \in C^\infty \). Given \(u \in C_{q', s}^l \), define the sequence \(\{u_k\}_{k \in \mathbb{N}} \subset S \) by \(u_k = D_{2^k}((\tilde{u}_k - \pi_{B_0}\tilde{u}_k)\psi) \), where \(\tilde{u}_k = D_{2-k}(u \ast \varphi_k) \) with \(\varphi_k \) as in Lemma 2.1. Combining (2.8) and (2.14) yields (2.12), whereas (2.7) and (2.15) yield (2.13), completing the proof of Lemma 2.3.

Lemma 2.4 Suppose that \((p, q, s) \) is admissible and \(f \in \Theta^q_1 \), where \(\Theta^q_1 \) is given by (2.6). Suppose \(u \in C_{q', s}^l \), \(1/q + 1/q' = 1 \), \(l = 1/p - 1 \). There exists \(\tilde{s} \geq s \) such that if \(f \) is decomposed into \(f = \sum_{i=1}^\infty \lambda_i a_i \), where \(\sum_{i=1}^\infty |\lambda_i|^p < \infty \) and the \(a_i \)’s are \((p, q, \tilde{s}) \)-atoms, then
\[
\int f u = \sum_{i=1}^\infty \lambda_i \int a_i u.
\]
Proof. Let a be a (p, q, s)-atom supported on a ball $B \in \mathcal{B}$ and $u \in C^{l}_{q', s}$. Since $\int u a = \int (u - P)a$ for all $P \in \mathcal{P}_{s}$ then by the standard calculation we have

$$\left| \int u a \right| = \inf_{P \in \mathcal{P}_{s}} \int (u - P)a \leq \left(\int_{B} |u|^{q} \right)^{1/q} \left(\inf_{P \in \mathcal{P}_{s}} \int |u - P|^{q'} \right)^{1/q'} \leq |B|^{1/q - 1/p} |B|^{(l + 1)/q'} \left(\frac{1}{|B|} \inf_{P \in \mathcal{P}_{s}} \int |u - P|^{q'} \right)^{1/q'} \leq \|u\|_{C^{l}_{q', s}}. \tag{2.17}$$

Next, suppose that $f \in \Theta_{q}^{l}$ is decomposed into $f = \sum_{i=1}^{\infty} \lambda_{i} a_{i}$, where $\sum_{i=1}^{\infty} |\lambda_{i}|^{p} < \infty$ and the a_{i}'s are (p, q, s)-atoms, where $s \geq s$ is the same as in Lemma 2.3. Suppose also that $u \in C^{l}_{q', s}$, $1/q + 1/q' = 1$, $l = 1/p - 1$. Let $(u_{k})_{k \in \mathbb{N}} \subset \mathcal{S}$ be the sequence guaranteed by Lemma 2.3. For every $k \in \mathbb{N}$ we have

$$\int f u_{k} = \sum_{i=1}^{\infty} \lambda_{i} \int a_{i} u_{k}, \tag{2.18}$$

since convergence in H^{p} implies convergence in \mathcal{S}' by [3, Proposition 2.15]. By (2.13)

$$\lim_{k \to \infty} \int_{G} a_{i}(x) u_{k}(x) dx = \int_{G} a_{i}(x) u(x) dx \quad \text{for all} \quad i \in \mathbb{N}. \tag{2.19}$$

By (2.12) and (2.17) we have $|\int u a_{i}| \leq \|u\|_{C^{l}_{q', s}} \leq C \|u\|_{C^{l}_{q', s'}}$. Since $\sum_{i=1}^{\infty} |\lambda_{i}| \leq (\sum_{i=1}^{\infty} |\lambda_{i}|^{p})^{1/p} < \infty$ we can take the limit as $k \to \infty$ in (2.18) by the dominated convergence theorem applied to counting measure on \mathbb{N}. This shows (2.16).

At last we are in a position to prove the duality theorem.

Theorem 2.5 Suppose (p, q, s) is admissible. Then

$$(H^{p}_{q, s})^{\ast} \cong C^{l}_{q', s}/\mathcal{P}_{s}, \quad \text{where} \quad 1/q + 1/q' = 1, \quad l = 1/p - 1. \tag{2.18}$$

More precisely, if $u \in C^{l}_{q', s}$ and f is a finite linear combination of (p, q, s)-atoms, let $L_{u} f = \int u f$. Then L_{u} extends continuously to $H^{p}_{q, s}$ and every $L \in (H^{p}_{q, s})^{\ast}$ is of this form. Moreover,

$$\|u\|_{C^{l}_{q', s}} = \|L_{u}\|_{(H^{p}_{q', s})^{\ast}} \quad \text{for all} \quad u \in C^{l}_{q', s}. \tag{2.19}$$

Proof. The fact that any bounded functional L on $H^{p}_{q, s}$ must be of the form $L = L_{u}$ for some $u \in C^{l}_{q', s}$ was already shown in [3].

Conversely, suppose $u \in C^{l}_{q', s}$. Our goal is to demonstrate that the functional $L_{u} f = \int u f$ defined initially for $f \in \Theta_{q}^{l}$, where Θ_{q}^{l} is given by (2.6), extends to a bounded functional on $H^{p}_{q, s}$ and $\|L_{u}\|_{(H^{p}_{q, s})^{\ast}} \leq \|u\|_{C^{l}_{q', s}}$. We emphasize again that boundedness of L_{u} on atoms (2.17) alone does not guarantee boundedness on the entire space.

Suppose that $f \in \Theta_{q}^{l}$. By [3, Theorem 3.30] we can find an atomic decomposition of $f = \sum_{i=1}^{\infty} \lambda_{i} a_{i}$, where

$$\left(\sum_{i=1}^{\infty} |\lambda_{i}|^{p} \right)^{1/p} \leq 2 \|f\|_{H^{p}_{q, s}} \leq C \|f\|_{H^{p}_{q, s}},$$

and the a_{i}'s are (p, q, s)-atoms. By (2.17) and Lemma 2.4

$$|L_{u} f| \leq \sum_{i=1}^{\infty} |\lambda_{i}| |L_{u} a_{i}| \leq \|u\|_{C^{l}_{q', s}} \left(\sum_{i=1}^{\infty} |\lambda_{i}|^{p} \right)^{1/p} \leq C \|u\|_{C^{l}_{q', s}} \|f\|_{H^{p}_{q, s}}.$$
Therefore, \(L_u \) extends uniquely to a bounded functional on \(H^p_{q,s} \). Next, we recall that the norm of a bounded functional on \(H^p_{q,s} \) is always achieved on atoms; see [3, Lemma 5.1], which holds under the assumption of continuity. Therefore, (2.17) implies \(\|L_u\|_{(H^p_{q,s})^*} \leq \|u\|_{C_q^r,s} \), which finishes the proof of Theorem 2.5.

References