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Abstract. In this paper we study the properties of multiplication invariant (MI) operators
acting on subspaces of the vector-valued space L2(X;H). We characterize such operators
in terms of range functions by showing that there is an isomorphism between the category
of MI spaces (with MI operators as morphisms) and the category of measurable range
functions whose morphisms are measurable range operators. We investigate how global
properties of an MI operator are reflected by local pointwise properties of its corresponding
range operator. We also establish several results about frames generated by multiplications
in L2(X;H). This includes the classification of frames of multiplications with respect to
unitary equivalence by measurable fields of Gramians. Finally, we show applications of our
results in the study of abelian group frames and translation-invariant (TI) operators acting
on subspaces of L2(G), where G is a locally compact group.

1. Introduction

The main goal of this paper is to develop the theory of multiplication-invariant (MI) op-
erators and study its applications for abelian group frames and translation-invariant spaces.
A general theory of MI subspaces of a vector-valued space L2(X;H), where X is a measure
space and H is a separable Hilbert space, was developed by the first author and Ross [14].
The development of MI spaces extracts a measure-theoretic component from a characteriza-
tion of shift-invariant (SI) spaces in terms of range functions which dates back to the work
of Helson [35]. This result has been extended in various settings such as Rn [12, 22, 23, 51],
locally compact abelian (LCA) groups [15, 43], and more general translation-invariant spaces
[8, 14, 40]. It is worth adding that in the setting of MI spaces the role of characters of an
LCA group is played by the concept of determining set—a collection of functions in L∞(X)
whose linear span is dense in the weak-* topology.

However, much less attention was devoted to the study of operators acting between SI
spaces which are invariant under shifts. In the setting of Rn the study of shift-preserving
operators was initiated by the first author [12] who has shown a characterization of SI
operators in terms of range operators. In the LCA setting SI operators were studied in
[44]. In this paper we extend this characterization to the general setting of MI operators
by appropriately identifying range operators with decomposable operators appearing in the
setting of von Neumann algebras [24]. In particular, we show that the category of MI spaces
(with MI operators as morphisms) is isomorphic with the category of measurable range
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functions whose morphisms are measurable range operators. Moreover, we show that this
isomorphism preserves a large number of global properties of an MI operator T in terms of
local pointwise properties of its corresponding range operator R, which are satisfied uniformly
almost everywhere over a measure space X. This also includes spectral properties between
T and R, which necessitates the use of the machinery of measurable set-valued maps [4, 17].

As an example, we show that an MI operator T =
∫ ⊕
X
R(x)dµ(x) is normal with spectrum

contained in a compact set K ⊆ C if and only if the range operators R(x) are normal with
spectra contained in K for a.e. x ∈ X. Moreover, using functional calculus for MI operators
we exhibit the precise relationship between spectral measure of the global MI operator T
and spectral measures of (local) range operators R(x).

The theory of MI spaces and MI operators is developed with the aim of applications
in the study of Bessel systems generated by multiplications in L2(X;H). Such study was
initiated by the second author in [40] with the introduction of the concept of a Parseval
determining set in L1(X), which is a measure-theoretic generalization of characters on an
LCA group. In particular, it was shown in [40] that the global frame properties of an MI
system are characterized in terms of local frame properties, which are satisfied uniformly
almost everywhere over X, thus generalizing the characterization of SI frames over fibers
from the work of the first author [12]. Moreover, we show that the analogy between the
global and local frame behavior goes much deeper in the setting of MI spaces. The analysis,
synthesis, and frame operators of a Bessel system of multiplications, which themselves are
MI operators, correspond to appropriate range operators acting locally over fibers indexed
by x ∈ X. Furthermore, several natural properties such as orthogonality of ranges for a pair
of Bessel systems, duality, and canonical duality for a pair of frames are also preserved.

In addition, we give a classification for Bessel systems of multiplications with respect to
unitary equivalence in terms of positive, integrable MI operators with the corresponding
range operator being the measurable field of Gramians {Gr(x)}x∈X . The same classification
holds for frames of multiplications with the additional constraint that MI operators are
locally invertible operators. In particular, we deduce that Parseval frames of multiplications
are in one-to-one correspondence with range operators being orthogonal projections, hence
with measurable range functions.

We show two major applications of our measure-theoretic results on MI operators and
frames of multiplications. The first deals with admissible unitary representations π : G →
U(H) of an LCA group G, which are also known as square integrable representations
[55, 50, 59]. We show that every abelian group system, which is generated by a count-
able collection in H by the action of π, is unitarily equivalent to an appropriate system
of multiplications (by characters of G) in the MI space L2(Ĝ;K), where K is a separa-
ble Hilbert space. This enables us to apply the above mentioned results for MI operators
and Bessel systems of multiplications to characterize abelian group frames. Similar re-
sults have been widely reported in the setting of translation-invariant spaces on abelian
groups [8, 10, 12, 14, 15, 40, 43, 51], as well as for representations of finite groups [56, 57],
discrete groups [7, 55], and compact groups [41]. As a consequence, we obtain a classifica-
tion (up to unitary equivalence) of abelian group frames with N ∈ N ∪ {∞} generators as

positive, locally invertible, and integrable MI operators on L2(Ĝ; `2
N).

Our second application deals with translation-invariant (TI) subspaces of L2(G), where
the underlying locally compact group G does not have to be abelian. Instead, we merely
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assume that a subgroup of translations G ⊆ G is abelian. The second author [40] has
shown that the study of TI spaces at such level of generality can be reduced to the study of
MI spaces using a generalized Zak transform which converts left translation operators into
multiplication operators acting on appropriate vector-valued MI spaces L2(X;H). Similar
results were obtained by Barbieri, Hernández, and Paternostro in the LCA setting [8] and
for discrete non-commutative groups [7, 9]. Using the generalized Zak transform, whose
existence and properties were established in [40], we apply the above mentioned results on MI
operators and frames of multiplications to the setting of TI spaces and frames of translates.
In particular, we classify the unitary equivalence of TI spaces using the dimension function,
thus generalizing the corresponding results for SI spaces on Rn shown in [12].

The paper is organized as follows. In Section 2 we introduce the general setup of frame
reproducing systems generated by a unitary representation π of a second countable, locally
compact group G. We show that for an admissible representation π and sufficiently large
group G containing G, any such reproducing system is unitarily equivalent to the system
of translates of a closed subspace of L2(G) invariant under left translation by G. When
the group G is abelian, we show that such reproducing system is unitarily equivalent to
the system of multiplications of an MI subspace. In Section 3 we study the category of MI
spaces with MI operators as morphisms. We show that there exists a natural isomorphism
between the category of MI spaces and the category of range functions with range opera-
tors as morphisms. In the following section we study this isomorphisms in greater detail.
We show that global properties of MI operators are reflected by local (pointwise) properties
of the corresponding range operators. This includes the spectral properties and functional
calculus of MI operators. In Section 5 we move our attention to Bessel systems of mul-
tiplications. We show that global properties of systems of multiplications are reflected by
pointwise properties holding uniformly almost everywhere. In the following section we clas-
sify Bessel systems of multiplications up to unitary equivalence in terms of range operators.
We also identify the range operators that correspond with frames. In Section 7 we apply
the measure-theoretic results of the previous sections in the special setting of LCA groups.
We characterize invariant subspaces, intertwining operators, and Bessel systems obtained
as orbits of admissible representations. We also show a classification of Bessel systems and
(Parseval) frames generated by the action of a given LCA group. In the final section we
show how results of previous sections give a unifying approach in the study of shift-invariant
(SI) spaces, which are invariant under translations by an abelian group, and SI operators
acting on these spaces.

2. Shift-invariant spaces and Bessel systems generated by group actions

We begin with a piece of motivation. Consider a separable Hilbert space H evolving
discretely over time through the action of a unitary U , and fix a countable collection of
“sensors” A = {ui}i∈I in H. Suppose we use these sensors to measure the evolutions of
various v ∈ H, thereby obtaining the data

Tv = {〈Ukv, ui〉}k∈Z,i∈I = {〈v, U−kui〉}k∈Z,i∈I .

In general it is possible to stably reconstruct any v ∈ H from Tv if and only if the system
E(A ) := {Ukui}k∈Z,i∈I is a frame for H [1, 2]. One of the goals of this paper is to classify
such systems.
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From a group-theoretic perspective, the unitary U is equivalent to a unitary representation
of Z, and the system E(A ) consists of orbits of A under this action. In this section, we
consider reproducing systems of this form for a broad class of groups in place of Z. In
the general case we establish a close correspondence with the theory of translation-invariant
spaces. For abelian groups we show that the action may as well be given by modulation on
a multiplication-invariant space involving the Pontryagin dual. This puts a classification of
all such reproducing systems within reach—provided we first understand morphisms of MI
spaces. Following a detailed study of those morphisms in the body of this paper, we return
to classify Bessel systems generated by abelian groups in Section 7.

2.1. Preliminaries. We refer the reader to [28, 37, 38] for background on abstract harmonic
analysis. Throughout Section 2 we fix a second-countable, locally compact group G, which
is not necessarily abelian. By a (unitary) representation of G, we mean a homomorphism
π : G→ U(H) into the group of unitaries of a Hilbert space H, continuous with the respect
to the strong (or equivalently, the weak) operator topology on U(H). If π′ : G → U(H′) is
another such representation, then an operator T : H → H′ is said to intertwine π and π′

when Tπ(x) = π′(x)T for all x ∈ G.
We write Cc(G) for the space of continuous complex-valued functions on G having compact

support. The left Haar measure on G, denoted dµG(x) (or simply dx when the meaning is
clear), is a regular Borel measure such that

(2.1)

∫
G

f(x) dx =

∫
G

f(yx) dx for all y ∈ G

whenever f ∈ Cc(G). This measure is unique up to a scaling factor, which we now fix.
Whenever we treat G as a measure space below, it is with this measure in mind. Thus we
abbreviate Lp(G) = Lp(G, µG) for 1 ≤ p ≤ ∞. Likewise, if I is any indexing set, we give it
the counting measure and then talk freely of the product measure space G× I.

To any representation π : G→ U(H) we associate the mapping π : L1(G)→ B(H) defined
weakly by the relation

〈π(f)u, v〉 =

∫
G

f(x)〈π(x)u, v〉 dx (u, v ∈ H).

A closed subspace V ⊆ H is invariant under the mappings {π(x) : x ∈ G} if and only if it
is invariant under {π(f) : f ∈ Cc(G)}. In particular, for any set of vectors {ui}i∈I′ in H we
have

span{π(x)ui : i ∈ I ′, x ∈ G} = span{π(f)ui : i ∈ I ′, f ∈ Cc(G)}.
Let H be a separable Hilbert space, and let (X,µ) be a σ-finite measure space for which

L2(X) is separable. We define L2(X;H) = L2(X,µ;H) to be the space of equivalence
classes of measurable functions ϕ : X → H, modulo equality a.e., with the property that∫
X
‖ϕ(x)‖2 dµ(x) <∞. It becomes a Hilbert space with the inner product

〈ϕ, ψ〉 =

∫
X

〈ϕ(x), ψ(x)〉 dµ(x) (ϕ, ψ ∈ L2(X;H)).

When H = L2(Y ) there is a natural identification L2(X × Y ) ∼= L2(X;L2(Y )) that maps
f ∈ L2(X × Y ) to ϕ ∈ L2(X;L2(Y )) given by ϕ(x)(y) = f(x, y) a.e. x ∈ X, y ∈ Y .

Taking X = G, we associate each x ∈ G with the left translation operator Lx : L2(G;H)→
L2(G;H) given by (Lxϕ)(y) = ϕ(x−1y). Then x 7→ Lx defines a unitary representation
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of G. When H = L2(Y ) as above, the identification L2(X;L2(Y )) ∼= L2(X × Y ) gives
the translation operators Lx ∈ U(L2(G × Y )) the form (Lxf)(y, z) = f(x−1y, z) for f ∈
L2(G× Y ), x, y ∈ G, and z ∈ Y .

Definition 2.1. Given a representation π : G → U(H) and a sequence A = {ui}i∈I in H,
we write E(A ) = {π(x)ui}x∈G, i∈I . (This should properly be viewed as a map G× I → H.)
We say that A generates E(A ), so that the latter has |I| generators. We call E(A ):

• complete, if span{π(x)ui : x ∈ G, i ∈ I} = H;
• a Bessel G-system, if there is a constant B > 0 such that∑

i∈I

∫
G

|〈v, π(x)ui〉|2 dx ≤ B ‖v‖2 for all v ∈ H;

• a G-frame, if there are constants A,B > 0 such that

A ‖v‖2 ≤
∑
i∈I

∫
G

|〈v, π(x)ui〉|2 dx ≤ B ‖v‖2 for all v ∈ H.

When E(A ) is Bessel, its analysis operator is the bounded linear map T : H → L2(G × I)
given by

(2.2) (Tv)(x, i) = 〈v, π(x)ui〉 (v ∈ H, x ∈ G, i ∈ I).

and its synthesis operator is T ∗ : L2(G× I)→ H, given by

T ∗f =
∑
i∈I

∫
G

f(x, i)π(x)ui dx (f ∈ L2(G× I)),

with the vector-valued integral interpreted in the weak sense.

What we have called Bessel G-systems (respectively, G-frames) are examples of contin-
uous Bessel systems (respectively, continuous frames), in the sense of [3, 42]. The present
terminology emphasizes the role of G in the construction of the system. We will discuss
more general Bessel systems and frames (absent a group) in a later section.

Definition 2.2. Let π : G → U(H) and π′ : G → U(H′) be representations, and let A =
{ui}i∈I and A ′ = {u′i}i∈I be sequences in H and H′, respectively, with a common indexing
set I. We say that E(A ) and E(A ′) are unitarily equivalent if there is a unitary

U : span{π(x)ui : i ∈ I, x ∈ G} → span{π′(x)u′i : i ∈ I, x ∈ G}

satisfying Uπ(x)ui = π′(x)u′i for every i ∈ I and x ∈ G.

We emphasize that unitary equivalence must preserve the indexing while mapping E(A )
to E(A ′). In case E(A ) and E(A ′) are both complete, it is easy to show that a unitary
equivalence between them is the same as a unitary U : H → H′ that intertwines π with π′

while mapping Uui = u′i for every i ∈ I. Finally, notice that “Bessel G-system” and “G-
frame” are properties of unitary equivalence classes, while “complete” is not. This concludes
our review of the preliminaries.

5



2.2. Reduction to translation.

Assumption 2.3. For the remainder of Section 2 we use the following assumptions. As
above, G denotes a second-countable locally compact group, which is not necessarily abelian.
In addition, we fix a representation π : G → U(H) with H separable. We assume that π
is admissible, in the sense that there is a countable sequence A = {ui}i∈I in H for which
E(A ) = {π(x)ui}x∈G, i∈I is both complete and Bessel. We also fix a choice of A .

Theorem 2.4. Let G be any second-countable locally compact group containing G as a closed
subgroup of index [G : G] ≥ |I|. Then there is a closed subspace V ⊆ L2(G) invariant under
left translation by G, and a unitary U : H → V that intertwines π with left translation.
Consequently, E(A ) is unitarily equivalent to the system of translates {LxUui}x∈G,i∈I in V .

When |I| = 1 and G = G, it is well known that any Bessel system of the form {π(x)u}x∈G
may as well be given by left translation in L2(G). Theorem 2.4 generalizes to the case of
countably many generators. For compact groups, a version of this theorem appeared as [41,
Theorem 4.6].

When G = Z, as in the introduction to this section, we can take G = R in Theorem 2.4.
Thus, any complete Bessel Z-system {Ukui}k∈Z,i∈I may as well be given by integer shifts
in a shift-invariant subspace of L2(R). There is a large literature devoted to the study
of such systems, which are closely related to multiresolution analysis in classical wavelet
theory [10, 11, 12, 22, 23, 51].

The lemma below is essentially contained in a paper by Weber [59], following a strategy
of Rieffel [50]. We give a proof for the sake of clarity.

Lemma 2.5. Let T : H → L2(G× I) be the analysis operator of (2.2). In its polar decom-
position T = UP , the partial isometry U : H → L2(G × I) is a linear isometry onto ranT
that intertwines π with left translation. Thus, E(A ) is unitarily equivalent to the system of
translates {LxUui}x∈G,i∈I in ranT .

Proof. Given any y ∈ G and v ∈ H, we have

(Tπ(y)v)(x, i) = 〈π(y)v, π(x)ui〉 = 〈v, π(y−1x)ui〉 = (Tv)(y−1x, i) = (LyTv)(x, i)

for all x ∈ G and i ∈ I. Consequently, Tπ(y) = LyT for all y ∈ G. It follows that U
intertwines π with the regular representation; see [27, Prop. VI.13.13].

Now we only need to prove that U is an isometry. Since kerU = (ranP )⊥ = kerT , it
suffices to prove that the synthesis operator T ∗ has dense range in H. Given an index j ∈ I
and a function f ∈ Cc(G), we let fj ∈ L2(G× I) be the function

fj(x, i) =

{
f(x), if i = j;

0, otherwise.

Then

T ∗fj =

∫
G

f(x)π(x)uj dx = π(f)uj.

Holding j fixed and letting f vary across Cc(G), we see that ranT ∗ contains the entire space
span{π(f)uj : f ∈ Cc(G)}. By density, it also contains span{π(f)uj : f ∈ L1(G)}, which
equals span{π(x)uj : x ∈ G} (see [28, Thm. 3.12(c)]). In particular, ranT ∗ contains π(x)uj
for all j ∈ I and all x ∈ G. Since E(A ) is complete, it follows that ranT ∗ = H. Therefore,
U is an isometry. �
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We are almost ready to prove Theorem 2.4. First we require a measure-theoretic result
from [40]. Let G be as in the hypothesis of Theorem 2.4. We write G\G for the topological
space of right cosets for G in G, and q : G → G\G for the quotient map. By [26], there is a
Borel measurable function τ : G\G → G mapping compact sets in G\G to pre-compact sets
in G, with the property that τ ◦ q = id. Hence τ gives a measurable choice of right coset
representatives for G in G. Then [40, Theorem 3.4] provides a unique regular Borel measure
µG\G on G\G such that the Weil-like identity

(2.3)

∫
G
f dµG =

∫
G\G

∫
G

f(xτ(Gy)) dµG(x) dµG\G(Gy)

holds for all f ∈ L1(G). With this measure in mind, there is a unitary L2(G×G\G) ∼= L2(G)
that preserves left translation by G; see [40, Corollary 3.7].

Proof of Theorem 2.4. Let I ′ index an orthonormal basis for L2(G\G), so that L2(G\G) ∼=
`2(I ′). We claim that |I ′| = [G : G] when the right-hand side is finite, and that I ′ is infinite
otherwise. Assuming the claim holds for now, our hypothesis implies that |I| ≤ |I ′|, so there
is a linear isometry `2(I)→ L2(G\G). Consequently, we have a sequence of linear isometries

L2(G× I) ∼= L2(G; `2(I))→ L2(G;L2(G\G)) ∼= L2(G×G\G) ∼= L2(G)

that all preserve left translation by G. Write U1 : L2(G × I) → L2(G) for the resulting
composition, and let U2 : H → L2(G × I) be the isometry from Lemma 2.5. Then U :=
U1U2 : H → L2(G) is a linear isometry intertwining π with left translation by G, and the
desired result follows by taking V = U(H).

It remains to prove our claim. First, we we will show that every nonempty open subset
U ⊆ G\G has positive measure. That nonempty open sets have positive measure in G is well
known [28, Proposition 2.19]. As µG is regular, it follows that q−1(U) contains a compact
subset K with 0 < µG(K) <∞. By (2.3),

0 < µG(K) =

∫
G
χK dµG =

∫
G\G

∫
G

χK(xτ(Gy)) dµG(x) dµG\G(Gy)

≤
∫
G\G

∫
G

χq−1(U)(xτ(Gy)) dµG(x) dµG\G(Gy).

For any x ∈ G and Gy ∈ G\G, we have xτ(Gy) ∈ q−1(U) if and only if q(xτ(Gy)) ∈ U .
Since q(xτ(Gy)) = q(τ(Gy)) = Gy, we have χq−1(U)(xτ(Gy)) = χU(Gy). The inequality
above now reads

0 <

∫
G\G

∫
G

χU(Gy) dµG(x) dµG\G(Gy) = µG\G(U) · µG(G),

so µG\G(U) > 0, as desired.
If [G : G] = n < ∞, then G is open in G as the complement of a union of finitely many

closed cosets. Applying right translation, we see that all right cosets of G are open in G.
Thus, G\G is discrete with n points. Each of these has positive measure by the above, so
dimL2(G\G) = n.

Now assume that [G : G] is infinite. As a topological space, G\G is homeomorphic to G/G
through the mapping Gx 7→ x−1G. Since G is closed, G/G is Hausdorff by [37, Theorem 5.21],
so G\G is, too. Thus, any open set in G\G with at least two points contains two disjoint
open subsets, each of which has positive measure. Therefore, G\G either contains an infinite
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sequence of open sets U1 ⊇ U2 ⊇ · · · with the property that 0 < µG\G(Un) < ∞ and
µG\G(Un \ Un+1) > 0 for each n, or G\G contains an open set which is a point. In the first
case, the characteristic functions χU1 , χU2 , . . . all belong to L2(G\G) and satisfy χUn+1 /∈
span{χU1 , . . . , χUn} for all n, so L2(G\G) is infinite dimensional. In the second case, at least
one right coset of G is open in G. As above, this implies that every point in G\G has positive
measure, so dimL2(G\G) =∞. This completes the proof. �

2.3. Abelian groups. We now specialize to the case where G is abelian, with the follow-
ing conventions. We write Ĝ for the Pontryagin dual group of continuous homomorphisms
α : G→ T. It is a locally compact abelian group under the operation of pointwise multipli-
cation, and the topology of uniform convergence on compact sets. The Fourier transform of
f ∈ L1(G) is the function f̂ ∈ C0(Ĝ) given by

f̂(α) =

∫
G

f(x)α(x) dx (α ∈ Ĝ).

The Fourier transform extends by continuity to a linear mapping L2(G) → L2(Ĝ). We

assume that Haar measure on Ĝ is scaled to make this mapping a unitary. Finally, given
a Hilbert space K we associate each x ∈ G with the modulation Mx : L2(Ĝ;K) → L2(Ĝ;K)
given by

(Mxϕ)(α) = α(x) · ϕ(α) (ϕ ∈ L2(Ĝ;K), α ∈ Ĝ).

The mapping x 7→Mx is a unitary representation of G. Taking K = C, we have the familiar
intertwining property

(Lxf)ˆ = Mxf̂ (x ∈ G, f ∈ L2(G)).

When G is abelian, Theorem 2.4 reduces E(A ) to a system of translates by an abelian
subgroup. Reproducing systems of this form have been the focus of considerable research
in the last two decades [8, 12, 14, 15, 40, 43]. The by-now standard approach is to apply a

unitary L2(G) ∼= L2(Ĝ;H) that converts translation by G into modulation. The existence of
such a unitary, for any choice of second-countable G ⊇ G, was proven in [40]. In that sense,
the theorem below can be seen abstractly as a corollary to Theorem 2.4. We provide a more
direct proof below.

Theorem 2.6. If G is abelian, then for every separable Hilbert space K with dimK ≥
|I| there exists a linear isometry U : H → L2(Ĝ;K) that intertwines π with modulation.
Consequently, E(A ) is unitarily equivalent to the system of modulations {MxUui}x∈G,i∈I in
the modulation-invariant subspace U(H).

Proof. Without loss of generality, we may assume that K = `2(I ′) for a countable set I ′

satisfying |I ′| ≥ |I|. By Lemma 2.5, π is unitarily equivalent to the translation action of G
on a closed invariant subspace of L2(G × I). Any choice of injection I → I ′ determines a
linear isometry L2(G × I) → L2(G × I ′) that preserves left translation by G. To the latter
space we apply a sequence of unitaries

L2(G× I ′)
U1∼= `2(I ′;L2(G))

U2∼= `2(I ′;L2(Ĝ))
U3∼= L2(Ĝ; `2(I ′)),

where U1 and U3 are the natural identifications and U2 is the “entrywise” Fourier transform
U2{fi}i∈I′ = {f̂i}i∈I′ . The resulting unitary L2(G × I ′) ∼= L2(Ĝ; `2(I ′)) intertwines left
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translation with modulation. The composition

H → L2(G× I)→ L2(G× I ′)→ L2(Ĝ; `2(I ′))

is the desired isometry U : H → L2(Ĝ; `2(I ′)). �

A major goal of this paper is to classify Bessel G-systems for a given abelian group G. By
the last result, we can focus our attention on systems of modulations in modulation-invariant
subspaces of L2(Ĝ; `2(I)). These subspaces were studied in [14], and the corresponding sys-
tems of modulations in [40]. Any unitary equivalence between modulation systems necessar-
ily commutes with the modulation operators. In order to classify such systems, we therefore
require an understanding of morphisms between modulation-invariant spaces. In other words,
we must broaden our vantage to see modulation-invariant spaces as a category [47]. The next
few sections focus on this goal, working in an even broader, measure-theoretic context. We
return to classify Bessel G-systems in Section 7.

3. Morphisms of multiplication-invariant spaces

In this section we prove that multiplication-invariant operators are in one-to-one corre-
spondence with range operators (both defined below). The main result in Theorem 3.7 sets
up a correspondence between “global” and “pointwise” properties that we will repeatedly
exploit and investigate in later sections.

Assumption 3.1. Throughout Sections 3–6, we fix separable Hilbert spaces H,H′ and a
positive, σ-finite, and complete measure space (X,M, µ) for which L2(X) is separable.

For example, X = R or [0, 1] with Lebesgue measure. More generally, X can be any second
countable locally compact group equipped with the completion of a left Haar measure. The
condition that L2(X) is separable occurs whenever X is the completion of a standard measure
space equipped with a sigma-finite measure [20, Prop. 3.4.5].

We are interested in the Hilbert space L2(X;H), which provides the setting for a measure-

theoretic abstraction of modulation: instead of multiplying L2(Ĝ; `2(I)) by characters of

Ĝ, we multiply L2(X;H) by elements of L∞(X). Specifically, every φ ∈ L∞(X) gives a
multiplication operator Mφ ∈ B(L2(X;H)), which is defined by the formula

(Mφϕ)(x) = φ(x)ϕ(x) (ϕ ∈ L2(X;H), a.e. x ∈ X).

We write M ′
φ for the corresponding operator on L2(X;H′).

Definition 3.2. A closed subspace V ⊆ L2(X;H) is called multiplication-invariant (MI) if
MφV ⊆ V for every φ ∈ L∞(X). Given two MI spaces V ⊆ L2(X;H) and V ′ ⊆ L2(X;H′), a
multiplication-invariant operator (MI operator) between them is a bounded linear operator
T : V → V ′ such that TMφ = M ′

φT for all φ ∈ L∞(X).

MI spaces have been characterized in [36, 14]. Our purpose here is to give a compatible
characterization of MI operators.

In general, we are interested in preserving multiplication by a large subset of L∞(X), akin

to the characters when X = Ĝ. The following notion was introduced in [14] for this purpose.
9



Definition 3.3. A determining set for L1(X) is a subset D of the dual L∞(X) which
separates points in L1(X): given f1 6= f2 in L1(X), there exists g ∈ D such that∫

X

f1g dµ 6=
∫
X

f2g dµ.

Definition 3.4. An H-valued range function on X is a mapping

J : X → {closed subspaces of H}.
Equivalently, it is a choice of orthogonal projection PJ(x) ∈ B(H) for every x ∈ H, where
PJ(x) projects onto J(x). We call J measurable if PJ is weakly measurable: for any u, v ∈ H,
the mapping x 7→ 〈PJ(x)u, v〉 is measurable on X.

With every range function J : X → {closed subspaces of H} we associate a closed subspace

VJ := {ϕ ∈ L2(X;H) : ϕ(x) ∈ J(x) for a.e. x ∈ X}.
A moment’s reflection shows that VJ is multiplication invariant. The fundamental charac-
terization of MI spaces says that this construction exhausts all possibilities.

Theorem 3.5 ([36, 14]). Let V ⊆ L2(X;H) be a closed subspace. For every determining set
D, the following are equivalent:

(i) V is an MI space.
(ii) For every φ ∈ D, MφV ⊆ V .

(iii) There is a measurable range function J such that V = VJ .

More precisely, suppose that V is an MI space which is generated by an (at most) countable
collection of functions {ϕi}i∈I , in the sense that {Mφϕi : φ ∈ L∞(X), i ∈ I} is dense in V .
Then the corresponding range function J satisfies

(3.1) J(x) = span{ϕi(x) : i ∈ N} for a.e. x ∈ X.
Moreover, the mapping J 7→ VJ gives a bijection between the set of measurable H-valued
range functions on X (up to equality a.e.) and the set of MI subspaces of L2(X;H).

We introduce the following notion in order to derive an operator version of Theorem 3.5.

Definition 3.6. Given measurable range functions

J : X → {closed subspaces of H} and J ′ : X → {closed subspaces of H′},
a range operator R : J → J ′ is a choice of linear operators R(x) : J(x) → J ′(x) for each
x ∈ X. We say R is bounded if

‖R‖ := ess supx∈X ‖R(x)‖op <∞.
It is measurable if for every u ∈ H, v ∈ H′ the function x 7→ 〈R(x)PJ(x)u, v〉 is measurable
on X.

Just as with range functions and MI spaces, every bounded, measurable range operator
R : J → J ′ defines a bounded MI operator

∫ ⊕
X
R(x) dµ(x) : VJ → VJ ′ , given by[∫ ⊕

X

R(x)dµ(x)ϕ

]
(y) = R(y)[ϕ(y)] (ϕ ∈ VJ , y ∈ X).

We call such operators decomposable.
Our main result in this section is the following analogue of [12, Theorem 4.5].
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Theorem 3.7. Let

J : X → {closed subspaces of H} and J ′ : X → {closed subspaces of H′}
be measurable range functions, and let T : VJ → VJ ′ be a bounded linear operator. For every
determining set D, the following are equivalent:

(i) T is an MI operator.
(ii) For every φ ∈ D, TMφ = M ′

φT .

(iii) There is a bounded measurable range operator R : J → J ′ such that T =
∫ ⊕
X
R(x) dµ(x).

Moreover, the mapping R 7→
∫ ⊕
X
R(x) dµ(x) gives a one-to-one correspondence between

bounded measurable range operators and MI operators, provided we identify range operators
that agree a.e. on X.

In order to prove Theorem 3.7, we will consider each VJ to be a direct integral of Hilbert
spaces, in the following sense. Fix an orthonormal basis {uj}j∈I for H. Given a measurable

H-valued range function J , we define
∫ ⊕
X
J(x)dµ(x) to be the space of all functions ϕ ∈∏

x∈X J(x) such that both of the following hold:

(1) for every j ∈ I, the mapping x 7→ 〈ϕ(x), PJ(x)uj〉 is measurable on X, and

(2)
∫
X
‖ϕ(x)‖2 dµ(x) <∞.

(The integral in (2) is well defined by (1) and Pettis’s measurability theorem [48, Theo-

rem 1.1].) As with Lp spaces, we consider functions in
∫ ⊕
X
J(x)dµ(x) to be identical when

they differ only on a set of measure zero. The direct integral then becomes a Hilbert space
with inner product 〈ϕ, ψ〉 =

∫
X
〈ϕ(x), ψ(x)〉dµ(x). For details, consult [28]. The following

was sketched in [14].

Lemma 3.8. Given a measurable H-valued range function J , we have VJ =
∫ ⊕
X
J(x)dµ(x).

In particular, the latter space does not depend on the choice of orthonormal basis for H.

Proof. Suppose that ϕ : X → H has the property that ϕ(x) ∈ J(x) for all x ∈ X. Then for
any j ∈ I and x ∈ X we have

〈ϕ(x), PJ(x)uj〉 = 〈PJ(x)ϕ(x), uj〉 = 〈ϕ(x), uj〉.

If ϕ ∈
∫ ⊕
X
J(x)dµ(x), it follows that for each v ∈ H, the mapping x 7→ 〈ϕ(x), v〉 is measur-

able on X. Using Pettis’s measurability theorem, we deduce that ϕ is measurable into H.
Consequently, ϕ ∈ VJ . The converse is proved similarly. �

Remark 3.9. Let R : J1 → J2 be a bounded, measurable range operator. From the perspec-
tive of Lemma 3.8, the operator we have called

∫ ⊕
X
R(x) dµ(x) is quite literally the direct

integral of the measurable field of operators given by R. In other words, what we have called
range operators are in one-to-one correspondence with what are usually called decomposable
operators in the von Neumann algebra literature, provided we identify range operators that
agree a.e. on X. For background on this and other matters of von Neumann algebras, we
refer the reader to [24].

Lemma 3.10 ( Proposition 2.2 of [14] ). If J is a measurable range function, then orthogonal

projection onto VJ is given by
∫ ⊕
X
PJ(x)dµ(x).

Finally, we require the following characterization of determining sets, one direction of
which was noted in [14].
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Lemma 3.11. A subset D ⊆ L∞(X) is a determining set for L1(X) if and only if its finite
linear span is weak-∗ dense in L∞(X) ∼= L1(X)∗.

Proof. Let N ⊆ L∞(X) = L1(X)∗ be the finite linear span of D. Its annihilator in L1(X) is

⊥N :=

{
f ∈ L1(X) :

∫
X

f(x)φ(x) dµ(x) = 0 for all φ ∈ N
}

=

{
f ∈ L1(X) :

∫
X

f(x)φ(x) dµ(x) = 0 for all φ ∈ D
}
.

To say that D is a determining set means precisely that ⊥N = {0}, or equivalently, that the
double annihilator

(⊥N)⊥ :=

{
φ ∈ L∞(X) :

∫
X

f(x)φ(x) dµ(x) = 0 for all f ∈ ⊥N
}

is all of L∞(X). But (⊥N)⊥ is the weak-∗ closure of N [52, Theorem 4.7]. Hence, ⊥N = {0}
if and only if N is dense in L∞(X) under the weak-∗ topology. �

Proof of Theorem 3.7. By replacing both H and H′ by H⊕H′ if necessary, we may assume
without loss of generality that H = H′.

To begin, extend T to a bounded linear operator T̄ on all of L2(X;H) by setting T̄ = 0
on the orthogonal complement of VJ . For this extended operator, we consider the analogous
statements of (i)—(iii), namely:

(i’) T̄ is an MI operator.
(ii’) For every φ ∈ D, T̄Mφ = MφT̄ .

(iii’) There is a bounded measurable range operator R̄ such that T̄ =
∫ ⊕
X
R̄(x) dµ(x).

We will show that (i’)—(iii’) are equivalent, and then we will show that each of (i)—(iii) is
equivalent to its primed version.

(i’) ⇐⇒ (ii’) ⇐⇒ (iii’). Let M : L∞(X) → B(L2(X;H)) be the embedding of L∞(X)
into B(L2(X;H)) as a von Neumann algebra of multiplication operators. Then (i’) says that
T̄ belongs to the commutant

M(L∞(X))′ = {S ∈ B(L2(X;H)) : SMφ = MφS for all φ ∈ L∞(X)},
(ii’) says that T̄ ∈ M(D)′, and (iii’) says that T̄ is decomposable. By Lemma 3.11, the
finite linear span of D is dense in L∞(X) under its weak-∗ topology, which is identical
to the weak operator topology on M(L∞(X)); see Lemma A.1 in the appendix. Hence,
M(D)′ = M(L∞(X))′, which is well known to be the algebra of decomposable operators [24,
Thm II.2.1]. In other words, (i’)—(iii’) are equivalent.

(ii’) =⇒ (ii). If (ii’) is true, then for any ϕ ∈ V1 and φ ∈ D we have

TMφϕ = T̄Mφϕ = MφT̄ϕ = MφTϕ.

(ii) =⇒ (ii’). Conversely, suppose (ii) holds. Given any ϕ ∈ L2(X;H), we can decompose
ϕ = ϕ′+ϕ′′ with ϕ′ ∈ VJ and ϕ′′ ∈ V ⊥J . The orthogonal complement of an MI space is again
MI by [14, Lemma 2.5]. Thus, for any φ ∈ D we have Mφϕ

′ ∈ VJ and Mφϕ
′′ ∈ V ⊥J , so that

T̄Mφϕ = T̄Mφϕ
′ + T̄Mφϕ

′′ = TMφϕ
′.

Applying (ii), we see that

T̄Mφϕ = TMφϕ
′ = MφTϕ

′ = MφT̄ϕ.
12



(i) ⇐⇒ (i’) follows from the above by taking D = L∞(X).
(iii) =⇒ (iii’). Suppose (iii) holds for a measurable range operator R : J → J ′. For

each x ∈ X, let R̄(x) = R(x)PJ(x) ∈ B(H). Then R̄ is measurable, and we claim that

T̄ =
∫ ⊕
X
R̄(x)dµ(x). To see this, let P =

∫ ⊕
X
PJ(x)dµ(x) be orthogonal projection onto VJ ,

as in Lemma 3.10. Then for any ϕ ∈ L2(X;H) and a.e. x ∈ X we have

(T̄ϕ)(x) = (TPϕ)(x) = R(x)(Pϕ)(x) = R(x)PJ(x)ϕ(x) = R̄(x)ϕ(x).

(iii’) =⇒ (iii). Conversely, assume (iii’). Since the image of T̄ is contained in VJ ′ , and
since orthogonal projection onto VJ ′ is given pointwise by projection onto J ′(x), we conclude
that R̄(x) takes its image in J ′(x) for a.e. x ∈ X. Hence we can define R(x) : J(x)→ J ′(x)
to be the restriction of R̄(x) for a.e. x ∈ X. The resulting range operator R : J → J ′ is easily
seen to be measurable, and for any ϕ ∈ VJ and a.e. x ∈ X we obtain

(Tϕ)(x) = (T̄ϕ)(x) = R̄(x)ϕ(x) = R(x)ϕ(x).

Thus, T =
∫ ⊕
X
R(x)dµ(x). This completes the proof that (i)—(iii) are equivalent.

Finally, for the uniqueness claim, suppose we have measurable range operators R,R′ : J →
J ′ such that R(x) 6= R′(x) on a set of positive measure. After choosing an orthonormal
basis {en}∞n=1 for H, a standard argument shows there must be a basis vector en with
[R(x)−R′(x)]en 6= 0 on a set E ⊆ X of finite, positive measure. Letting ϕ ∈ L2(X;H)
be given by

ϕ(x) =

{
en, if x ∈ E
0, otherwise,

we then have R(x)ϕ(x) 6= R′(x)ϕ(x) for all x ∈ E. Consequently,∫ ⊕
X

R(x)dµ(x) 6=
∫ ⊕
X

R′(x)dµ(x). �

Theorem 3.5 and Theorem 3.7 have a convenient formulation in terms of category theory.
For background, we refer the reader to [47].

Definition 3.12. We write X-MI for the category whose objects are MI subspaces of
L2(X;K) for various separable Hilbert spaces K, with MI operators as morphisms. We write
X-Ran for the category whose objects are equivalence classes of measurable range functions
J : X → {closed subspaces of K} for various separable Hilbert spaces K, and whose mor-
phisms are equivalence classes of measurable range operators. Here, range functions (resp.
operators) are considered equivalent when they agree a.e. on X.

Corollary 3.13. The functor F : X-Ran → X-MI given by F (J) = VJ and F (R) =∫ ⊕
X
R(x) dµ(x) is an isomorphism of categories.

4. Pointwise properties of multiplication-invariant operators

The purpose of Section 4 is to examine the isomorphism of categories from Corollary
3.13 in greater detail. The main result is Theorem 4.1, which shows that this isomorphism
preserves a lot of operator properties, in the sense that global properties of

∫ ⊕
X
R(x) dµ(x)

often reduce to pointwise a.e. properties for R(x). Next we prove results linking the global
spectrum of an MI operator with local spectra of range operators R(x). In particular, we
show that the set-valued map mapping x ∈ X to the spectrum σ(R(x)) of R(x) is measurable.
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To achieve this we employ results on measurability of set-valued functions and define the
notion of essential range. We conclude this section with results about functional calculus of
MI operators. Throughout Section 4 we retain Assumption 3.1.

Theorem 4.1. Let V ⊆ L2(X;H) and V ′ ⊆ L2(X;H′) be two MI spaces with range functions
J and J ′, resp. Let T : V → V ′ be an MI operator and R : J → J ′ be the corresponding
measurable range operator as in Theorem 3.7. Then, the following are true.

(i) ||T ||op = ess supx∈X ||R(x)||op.
(ii) T is bounded from below, i.e., there exists a constant C > 0 such that

(4.1) ||Tϕ|| ≥ C||ϕ|| for all ϕ ∈ V,
if and only if for a.e. x ∈ X,

(4.2) ||R(x)v|| ≥ C||v|| for all v ∈ J(x).

(iii) T is invertible if and only if R(x) is invertible for a.e. x ∈ X and

(4.3) ess supx∈X
∥∥R(x)−1

∥∥
op
<∞.

In this case, T−1 is also an MI operator and x 7→ R(x)−1 is its range operator.
(iv) the adjoint T ∗ : V ′ → V is an MI operator with the corresponding range operator

R∗ : J ′ → J given by R∗(x) = (R(x))∗ for a.e. x ∈ X.
(v) T is unitary if and only if R(x) is unitary for a.e. x ∈ X.

(vi) T is normal if and only if R(x) is normal for a.e. x ∈ X.
(vii) T is 1-to-1 if and only if R(x) is 1-to-1 for a.e. x ∈ X.

(viii) T is an isometry if and only if R(x) is an isometry for a.e. x ∈ X.
(ix) T is a partial isometry if and only if R(x) is a partial isometry for a.e. x ∈ X.

Proof. To prove (i), let ||R|| = ess supx∈X ||R(x)||op. Then for any ϕ ∈ V we have

||Tϕ||2 =

∫
X

||R(x)[ϕ(x)]||2H′dµ(x) ≤ ||R||2
∫
X

||ϕ(x)||2Hdµ(x) = ||R||2||ϕ||2.

Hence, ||T ||op ≤ ||R||. To prove the converse inequality, take any f ∈ L∞(X),∫
X

|f(x)|2||R(x)[ϕ(x)]||2H′dµ(x) = ||T (fϕ)||2 ≤ ||T ||2op
∫
X

|f(x)|2||ϕ(x)||2Hdµ(x).

Since f is arbitrary, we deduce that

(4.4) ||R(x)[ϕ(x)]|| ≤ ||T ||op||ϕ(x)|| for a.e. x ∈ X.
Now we take a collection of functions {ϕi}i∈N, which generates V . That is, {Mφϕi : φ ∈
L∞, i ∈ N} is dense in V . Define a countable sets A of finite linear combinations with
rational coefficients

(4.5) A =

{
ϕ =

∞∑
i=1

ciϕi : ci ∈ Q and ci = 0 for all but finitely many i ∈ N
}
.

By the identity (3.1) in Theorem 3.5 the set {ϕ(x) : ϕ ∈ A} is dense in J(x) for a.e. x ∈ X.
Applying (4.4) for all ϕ ∈ A yields ||R|| ≤ ||T ||op.

To prove (ii), suppose that (4.1) holds. An analogous argument as used in the proof of
(4.4) yields that for any ϕ ∈ V ,

||R(x)[ϕ(x)]|| ≥ C||ϕ(x)|| for a.e. x ∈ X.
14



Applying the above for all ϕ ∈ A yields (4.2). Conversely, if (4.2) holds, then for any ϕ ∈ V
we have

||Tϕ||2 =

∫
X

||R(x)[ϕ(x)]||2H′dµ(x) ≥ C2

∫
X

||ϕ(x)||2Hdµ(x) = C2||ϕ||2.

To prove (iii), suppose that T : V → V ′ is an invertible MI operator. Clearly, T−1 : V ′ → V
is also an MI operator. Let S : J ′ → J be a bounded measurable range operator such that
T−1 =

∫ ⊕
X
S(x)dµ(x) which is given by Theorem 3.7. Since T−1◦T and T◦T−1 are the identity

operators on V and V ′, by Corollary 3.13, the corresponding range operators S(x)◦R(x) and
R(x)◦S(x) are the identity operators on J(x) and J(x′), respectively, for a.e. x ∈ X. Hence,
x 7→ S(x) = R(x)−1 is a bounded measurable range operator by (i). Conversely, suppose
that R(x) is invertible for a.e. x ∈ X and (4.3) holds. By (ii), T : V → V ′ is bounded from
below. Hence, it suffices to show that T is onto. Since T (V ) is a closed MI subspace of
L2(X;H′), by Theorem 3.5 there exists a measurable range function J ′′ with values in closed
subspaces of H′ such that VJ ′′ = T (V ). Let {ϕi}i∈I be a sequence of generators of V . By
(3.1) we have for a.e. x ∈ X,

J ′′(x) = span{Tϕi(x) : i ∈ N} = span{R(x)[ϕi(x)] : i ∈ N} = R(x)[J(x)] = J ′(x).

Hence, T (V ) = V ′.
To prove (iv), take any ϕ ∈ V and ψ ∈ V ′. Then,

〈Tϕ, ψ〉 =

∫
X

〈R(x)[ϕ(x)], ψ(x)〉dµ(x) =

∫
X

〈ϕ(x), R∗(x)[ψ(x)]〉dµ(x) = 〈ϕ, T ∗ψ〉

This combined with the fact that R∗ : J ′ → J is a measurable range operator shows that
T ∗ψ(x) = R∗(x)[ψ(x)] for a.e. x ∈ X.

To prove (v) and (vi), observe that by Corollary 3.13 and part (iv) the range operator of
an MI operator T ∗T : V → V and TT ∗ : V ′ → V ′ is R∗R : J → J and RR∗ : J ′ → J ′,
respectively. Hence, (v) follows immediately.

The property (vii) follows immediately from the following lemma.

Lemma 4.2. Let V ⊆ L2(X;H) and V ′ ⊆ L2(X;H′) be two MI spaces with range functions
J and J ′, resp. Let T : V → V ′ be an MI operator and R : J → J ′ be the corresponding
measurable range operator as in Theorem 3.7. Then the following hold:

(i) The space V ′′ = T (V ) ⊆ L2(X;H′) is an MI space and its range function J ′′ satisfies

J ′′(x) = R(x)[J(x)] for a.e. x ∈ X.

(ii) The space kerT ⊆ L2(X;H) is an MI space and its range function K

K(x) = kerR(x) for a.e. x ∈ X.

Proof. To prove (i), let {ϕi}i∈N be a collection of functions which generates V . Clearly, T (V )
is an MI space, which is generated by {Tϕi}i∈N. Since Tϕi(x) = R(x)[ϕi(x)] for a.e. x ∈ X,
by Theorem 3.5 we have

J ′′(x) = span{R(x)[ϕi(x)] : i ∈ N} = R(x)[J(x)].

To prove (ii), we consider the adjoint T ∗ : V ′ → V . By Theorem 4.1(iv), T ∗ is an MI

operator with range operator R∗ : J ′ → J . By part (i), T ∗(V ′) is an MI space with the range
15



function J ′′ given by J ′′(x) = R(x)∗[J ′(x)] for a.e. x ∈ X. Consequently, by Theorem 3.5

T ∗(V ′)⊥ = L2(X;H)	 T ∗(V ′)
is also an MI space with a measurable range function (J ′′)⊥ given by

(J ′′)⊥(x) = (R(x)∗[J ′(x)])⊥ for a.e. x ∈ X.
Therefore, the intersection of two measurable range functions

K(x) = kerR(x) = J(x) ∩ (J ′′)⊥(x)

is a measurable range function corresponding to the intersection of the corresponding MI
spaces

kerT = V ∩ (T ∗(V ′))⊥.

This completes the proof of Lemma 4.2. �

To finish the proof of Theorem 4.1 it remains to show the last two properties. The property
(viii) is an immediate consequence of (i) and (ii). To prove (ix), suppose that T is partial
isometry. That is, the restriction of T to V ∩ (kerT )⊥ is an isometry. By Lemma 4.2, the
range function of an MI space V ∩ (kerT )⊥ is J ′′ given by J ′′(x) = J(x) ∩ (kerR(x))⊥.
Thus, the range operator of T restricted to this subspace is a mapping x 7→ R(x)|J ′′(x). By
(viii) R(x) is a partial isometry for a.e. x ∈ X. Reversing this argument shows the opposite
implication. Alternatively, one can use the characterization that T is partial isometry if and
only if (T ∗T )2 = T ∗T . This combined with Corollary 3.13 and part (iv) is equivalent to
(R∗(x)R(x))2 = R∗(x)R(x) for a.e. x ∈ X. This completes the proof of Theorem 4.1. �

Despite the fact that so many properties of MI operators are reflected by range operators,
not all properties are preserved.

Example 4.3. If an MI operator T is onto, then its range operator R(x) is onto for a.e. x ∈
X, but the converse implication is not true in general. A simple example is a multiplication
operator T : L2([0, 1];H)→ L2([0, 1];H) given by

Tϕ(x) = xϕ(x), for ϕ ∈ L2([0, 1];H), x ∈ [0, 1].

However, it is not difficult to show that the combined properties of T being onto and bounded
below is characterized by range operator R satisfying uniform bound from below (4.2) and
R(x) is onto for a.e. x ∈ X. We leave the details to the reader.

In the case when an MI operator T acts on the same space MI space V , we have additional
properties linking the spectrum of T with the spectra of its range operator.

Theorem 4.4. Let T : V → V be an MI operator and R : J → J be the corresponding
measurable range operator as in Theorem 3.7. Then, the following are true.

(i) Let A ≤ B be two real numbers. Then, T is self-adjoint with spectrum σ(T ) ⊆ [A,B]
⇐⇒ R(x) is self-adjoint with spectrum σ(R(x)) ⊆ [A,B] for a.e. x ∈ X,

(ii) Let K ⊆ C be a compact set. Then, T is normal with spectrum σ(T ) ⊆ K ⇐⇒ R(x)
is normal with spectrum σ(R(x)) ⊆ K for a.e. x ∈ X.

While part (i) can be deduced using similar techniques as used in the proof of Theorem
4.1, the proof of part (ii) requires a machinery of set-valued mappings. Hence, we need
to postpone the proof of Theorem 4.4 and instead review results about measurability of
set-valued maps.
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4.1. Measurability of set-valued maps. We will employ some rudimentary facts about
set-valued measurable maps from the book of Aubin and Frankowska [4, Chapter 8] and the
monograph of Castaing and Valadier [17, Chapter III]. The following definition resembles
most closely the classical notion of measurability. Recall that M denotes the underlying
σ-algebra for X.

Definition 4.5. Let Y be a topological space, and suppose F : X  Y is a set-valued map
with closed values. That is, F (x) is a closed subset of Y for each x ∈ X. We say that a
set-valued map F is measurable if for each open set O ⊆ Y , we have

(4.6) F−1(O) := {x ∈ X : F (x) ∩O 6= ∅} ∈ M

We have the following characterization of set-valued measurable functions with values in
closed subsets of a complete separable metric space, see [4, Theorem 8.1.4] and [17, Theorem
III.30]. The result below uses our assumption that X is a complete measure space.

Theorem 4.6. Let (Y, d) be a complete separable metric space, and suppose that F : X  Y
is a set-valued map with non-empty closed images. Then the following are equivalent:

(i) F is measurable,
(ii) the graph of F , given by

Graph(F ) = {(x, v) ∈ X × Y : v ∈ F (x)},
belongs to the product σ-algebra M⊗B, where B is the Borel σ-algebra on Y ,

(iii) F−1(B) ∈M for any Borel set B ⊆ Y ,
(iv) for all y ∈ Y , the distance map X 3 x 7→ d(y, F (x)) ∈ [0,∞) is measurable,
(v) there exists a sequence of measurable selections fk : X → Y , k ≥ 1, of F such that

(4.7) F (x) = {fk(x) : k ≥ 1} for all x ∈ X.

The last equivalence is especially useful and it is known as Castaign’s selection theorem.
When a set-valued map F : X  Y takes values in compact sets, there exists yet another
equivalent definition of measurability. The collection of nonempty compact sets of Y ,

Pc(Y ) = {K ⊆ Y : K 6= ∅ is compact}
equipped with the Hausdorff distance is a complete and separable metric space, see [17,
Theorem II.8]. Recall that the Hausdorff distance between two nonempty compact sets
K1, K2 ⊆ Y is defined as

(4.8) dH(K1, K2) = max{ sup
v∈K1

inf
w∈K2

d(v, w), sup
v∈K2

inf
w∈K1

d(v, w)}

Castaing and Valadier [17, Theorem III.2] have shown the following useful characterization
of measurability of compact-valued mappings. Note that Theorem 4.7 does not require any
of our standing assumptions on X.

Theorem 4.7. Let Y be a separable metric space, and suppose that F : X  Y is a set-
valued map with non-empty compact images. Then, F is measurable in the sense of Definition
4.5 if and only if F is measurable as a function into Pc(Y ) with the Hausdorff distance dH .
That is, for every open U ⊆ Pc(Y ), F−1(U) is measurable.

Finally, we shall prove that the measurability of range functions coincides with a more
general concept of measurability in Definition 4.5.
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Theorem 4.8. Let H be a separable Hilbert space. Suppose that J is a range function with
values in closed subspaces of H. Then J is measurable as a set-valued mapping X  H if
and only if J is measurable in the sense of Definition 3.4.

Proof. By Theorem 4.6(v), it suffices to show that J is measurable in the sense of Definition
3.4 if and only if there exists a sequence of measurable functions ϕk : X → H, k ≥ 1, such
that

(4.9) J(x) = {ϕk(x) : k ≥ 1} for all x ∈ X.

Suppose first that J is a measurable range function. Hence, the mapping PJ : X → B(H)
is weakly measurable, where PJ(x) is an orthogonal projection onto J(x) for all x ∈ X. Let
{vk : k ≥ 1} be a dense subset of H. Then, functions ϕk(x) = PJ(x)vk, k ≥ 1, satisfy (4.9).
Conversely, suppose that measurable functions ϕk : X → H, k ≥ 1, satisfy (4.9). For each
x ∈ X, we apply the Gram–Schmidt process to vectors {ϕk(x)}k≥1 to obtain a collection of
orthogonal vectors {ψk(x)}k≥1 with norms either 0 or 1 and such that

span{ϕk : 1 ≤ k ≤ n} = span{ψk : 1 ≤ k ≤ n} for all n ≥ 1.

The resulting functions ψk : X → H are measurable and

PJ(x)v =
∑
k≥1

〈v, ψk(x)〉v v ∈ H.

defines an orthogonal projection onto J(x). Consequently, the resulting projection-valued
mapping PJ is weakly measurable.

�

Remark 4.9. Theorem 4.8 does not require our standing assumption on a measure space
(X,µ) made in Section 3. Instead, it holds under a minimal assumption that X is a mea-
surable space. This is a consequence of the fact that the statements (i), (iv), and (v) in
Theorem 4.6 are all equivalent if X is merely a measurable space, see [17, Theorem III.9].

In a close analogy to complex-valued functions we introduce the concept of an essential
range for complex set-valued functions.

Definition 4.10. Suppose that a set-valued map F : X  C with closed values is measur-
able. Define the essential range of F as

ess ran(F ) := {z ∈ C : µ(F−1(D(z, ε))) > 0 for all ε > 0}.

Here, D(z, ε) = {w ∈ C : |w − z| < ε} denotes an open disk in C.

The following lemma shows basic properties of the essential range.

Lemma 4.11. Let F : X  C be a measurable set-valued map with closed images. Then,

(4.10) F (x) ⊆ ess ran(F ) for µ-a.e. x ∈ X.

Furthermore, ess ran(F ) is the smallest closed subset of C which contains F (x) for a.e.
x ∈ X. That is,

(4.11) ess ran(F ) =
⋂{⋃

x∈S

F (x) : S ⊆ X is measurable with µ(X \ S) = 0

}
.
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Proof. We first prove (4.10). For each z /∈ ess ran(F ), we can choose εz > 0 satisfying
µ(F−1(D(z, εz))) = 0. Then D(z, εz) ⊆ C \ ess ran(F ). Indeed, for any z′ ∈ D(z, εz)
there exists ε′ > 0 with D(z′, ε′) ⊆ D(z, εz), so that F−1(D(z′, ε′)) ⊆ F−1(D(z, εz)) and
µ(F−1(D(z′, ε′))) = 0. In other words, z′ /∈ ess ran(F ). Consequently,

C \ ess ran(F ) =
⋃{

D(z, εz) : z /∈ ess ran(F )
}
.

Since C is second countable, we can reduce this to a countable union C \ ess ran(F ) =⋃∞
n=1D(zn, εzn). Then

{x ∈ X : F (x) * ess ran(F )} = F−1(C \ ess ran(F )) =
∞⋃
n=1

F−1(D(zn, εzn))

is a set of measure zero. This proves (4.10).
A point z does not belong to the set on the right-hand side of (4.11) if and only if there

exists a measurable set S ⊆ X with µ(X\S) = 0 such that z 6∈
⋃
x∈S F (x). This is equivalent

with the existence of ε > 0 such that

(4.12) F (x) ∩D(z, ε) = ∅ for all x ∈ S.
Since µ(X \ S) = 0, this implies that µ(F−1(D(z, ε)) = 0, and hence z 6∈ ess ran(F ).

Conversely, suppose that z 6∈ ess ran(F ). Then, µ(F−1(D(z, ε))) = 0 for some ε > 0. Let
S = X \ F−1(D(z, ε)). Then µ(X \ S) = 0 and (4.12) holds. Thus, z does not belong to the
set on the right-had side of (4.11). �

4.2. Measurability of the spectrum of range operators. We are ready to show a result
about the spectrum of range operators. The results of Azoff [5, Theorem 3.5] and Chow [19,
Lemma 2.1], both of which were originally formulated in the language of decomposable
operators, are closely related to the following lemma.

Lemma 4.12. Suppose T : V → V is an MI operator and R : J → J be the corresponding
measurable range operator as in Theorem 3.7. Consider the set-valued map F : X  C given
by F (x) = σ(R(x)) for x ∈ X. Then, F is measurable and

(4.13) ess ran(F ) ⊆ σ(T ).

In addition, if the operator-valued resolvent function x 7→ (λI(x) − R(x))−1 is µ-essentially
bounded for every λ 6∈ ess ran(F ), then (4.13) is an equality. Here, I(x) is the identity on
J(x).

Proof. First, we must show that F : X  C is measurable. By Theorem 4.6(ii), it suffices
to show that the graph of F

Graph(F ) = {(x, λ) ∈ X × C : λ ∈ F (x) = σ(R(x))}
belongs to the product σ-algebra of measurable sets in X and Borel sets in C. Let D be a
dense countable subset of H. Let PJ(x) be the orthogonal projection of H onto J(x). For
any n ∈ N and v ∈ D, consider the set

Gn,v = {(x, λ) ∈ X × C : ||(λI(x)−R(x))(PJ(x)v)|| ≥ 1/n||PJ(x)v||},
where I(x) is the identity on J(x). Likewise, define

Hn,v = {(x, λ) ∈ X × C : ||(λI(x)−R∗(x))(PJ(x)v)|| ≥ 1/n||PJ(x)v||}.
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The sets Gn,v and Hn,v belong to the product σ-algebra on X × C.
We will employ the fact that S : H → H is invertible if and only if S and S∗ are bounded

from below. Hence, λ 6∈ σ(R(x)) if and only if both λI(x) − R(x) and λI(x) − R∗(x) are
bounded from below. Consequently,

(X × C) \Graph(F ) =
⋃
n∈N

⋂
v∈D

(Gn,v ∩Hn,v).

Hence, Graph(F ) belongs to the product σ-algebra on X×C, which shows the measurability
of F .

The remaining statements such as (4.13) might possibly be deduced from [19, Lemma 2.1]
using Lemma 4.11. However, this can be easily shown by the following direct argument.
Suppose that λ0 ∈ C \ σ(T ). Choose ε > 0 such that D(λ0, ε) ∩ σ(T ) = ∅. Let

C = sup
λ∈D(λ0,ε)

||(λI− T )−1|| <∞.

By Theorem 4.1(iii) for any λ ∈ D(λ0, ε), we have

(4.14) ||(λI(x)−R(x))−1|| ≤ C <∞ for a.e. x ∈ X.

Hence,

D(λ0, ε) ∩ σ(R(x)) = ∅ for a.e. x ∈ X.
Thus, λ0 6∈ ess ran(F ), which shows (4.13).

Finally, suppose that for every λ 6∈ ess ran(F ) there exists C > 0 such that (4.14) holds.
Take any λ 6∈ ess ran(F ). By Theorem 4.1(iii), λI − T is invertible. Hence, λ 6∈ σ(T ). This
proves the equality in (4.13). �

Combining Lemmas 4.11 and 4.12 yields the following result which is well-known for
decomposable operators, see [30, Proposition 1] and [46, Proposition 1.1].

Corollary 4.13. Suppose T : V → V is an MI operator and R is its corresponding range
operator satisfying T =

∫ ⊕
X
R(x)dµ(x). Then,

σ(R(x)) ⊆ σ(T ) for µ-a.e. x ∈ X.

The following simple example shows that the condition on essential boundedness of resol-
vent is necessary in Lemma 4.12.

Example 4.14. Let X = N be equipped with the counting measure and H = `2(N). Define
a range function

J(n) = {(vk)k∈N ∈ H : vk = 0 for all k ≥ n+ 1}.
Define a range operator R(n) : J(n)→ J(n) by its matrix representation

R(n) =


1 1

1 1
. . .

. . .

1

 .
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That is, R(n) is a Jordan block of size n for eigenvalue 1, and hence σ(R(n)) = {1}. Let
v ∈ J(n) be a vector

vi =

{
(−1)i/

√
n for 1 ≤ i ≤ n,

0 otherwise.

Then ||v|| = 1 and ||R(n)v|| = 1/
√
n. Hence the inverse operators R−1(n) are not uniformly

bounded. This shows that there exist a sequence ϕn ∈ L2(N; `2) such that ||ϕn|| = 1 and
||Tϕn|| → 0 as n→∞. Thus, 0 ∈ σ(T ), and we do not have equality in (4.13).

If T is a normal operator, i.e., TT ∗ = T ∗T , then we have the equality in (4.13).

Corollary 4.15. Suppose T : V → V is a normal MI operator of the form

T =

∫ ⊕
X

R(x)dµ(x).

Consider the set-valued map F : X  C given by F (x) = σ(R(x)). Then,

(4.15) σ(T ) = ess ran(F ).

Proof. By the spectral theorem for a normal operator T we have that

(4.16) ||(λI− T )−1|| = 1

dist(λ, σ(T ))
for λ 6∈ σ(T ).

Let J be the range function of a MI space V . By Theorem 4.1(vi), R(x) is normal for a.e.
x ∈ X, and hence we have

(4.17) ||(λI(x)−R(x))−1|| = 1

dist(λ, F (x))
for λ 6∈ F (x),

where I(x) is the identity on J(x). For any λ 6∈ ess ran(F ), there exists ε > 0 such that
µ(F−1(D(λ, ε))) = 0. By (4.17)

||(λI(x)−R(x))−1|| ≤ 1

ε
for a.e. x ∈ X.

Therefore, Lemma 4.12 yields (4.15). �

We are now ready to give the proof of Theorem 4.4.

Proof of Theorem 4.4. It suffices to show only part (ii) as it immediately implies (i) by taking
K = [A,B]. Suppose that T is a normal operator and σ(T ) ⊆ K for some compact K ⊆ C.
Then, by Theorem 4.1(vi), R(x) is normal for a.e. x ∈ X. Moreover, by (4.10) and Corollary
4.15

σ(R(x)) ⊆ σ(T ) ⊆ K for a.e. x ∈ X.

Conversely, if R(x) is normal for a.e. x, then by Theorem 4.1(vi) the operator T must be
normal as well. If σ(R(x)) ⊆ K for some compact K ⊆ C and a.e. x, then (4.11) implies
ess ran(x 7→ σ(R(x))) ⊆ K. By Corollary 4.15 we have σ(T ) ⊆ K. �
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4.3. Dimension function of MI spaces. Next we show the generalization of [12, Theorems
4.9 and 4.10] to the setting of MI spaces and MI operators.

Definition 4.16. Let V ⊆ L2(X,H) be an MI space with the corresponding range function
J . The dimension function of V is

dimV : X → N ∪ {0,∞}, dimV (x) = dim J(x), x ∈ X.

Theorem 4.17. Suppose that V ⊆ L2(X;H) is an MI space and T : V → L2(X;H) is an

MI operator. Then, V ′ = T (V ) is an MI space and

(4.18) dimV ′(x) ≤ dimV (x) for a.e. x ∈ X.

Proof. By Lemma 4.2(i) the range function of V ′ satisfies

J ′(x) = R(x)(J(x)) for a.e. x ∈ X.
This implies dim J ′(x) ≤ dim J(x), which yields (4.18).

�

Theorem 4.18. Suppose that V, V ′ ⊆ L2(X;H) are MI spaces. The following are equivalent:

(i) dimV (x) = dimV ′(x) for a.e. x ∈ X,
(ii) there exists an MI isometric isomorphism T : V → V ′,

(iii) there exists an MI isomorphism T : V → V ′.

Proof. The equivalence of (i) and (ii) is due to Helson [36, Theorem 1 in §1.4]. (ii) trivially
implies (iii). Finally, (iii) implies (i) by applying Theorem 4.17 for T and T−1. �

4.4. Functional calculus for MI operators. We conclude this section by observations
about functional calculus for MI operators. Our presentation extends and is influenced by
the results in [13, Section 6]. We start by recalling two basic forms of functional calculus for
operators on Banach and Hilbert spaces, respectively.

Definition 4.19. Suppose that T : B → B is a bounded operator acting on a Banach space
B. Let σ(T ) be the spectrum of T . Then, for any holomorphic function h defined on some
neighborhood Ω of σ(T ), define

(4.19) h(T ) =
1

2πi

∫
γ

h(λ)(λI− T )−1dλ,

where γ is any positively oriented contour that surrounds σ(T ) in Ω. It is known that this
definition does not depend on the choice of γ, see [52, Section 10.26].

Definition 4.20. Suppose that T is a normal operator acting on a Hilbert space H. Let
E be the spectral decomposition of T , see [52, Sec. 12.23]. Then, for any bounded Borel
function h on σ(T ), define

(4.20) h(T ) =

∫
σ(T )

h(λ)dE(λ).

These notations agree wherever they overlap, see [21, Theorem 2.6].

Theorem 4.21. Suppose that V ⊆ L2(X;H) is an MI space and T : V → V is an MI

operator. Let R be its corresponding range operator so that T =
∫ ⊕
X
R(x)dµ(x). Assume that

either:
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(i) h is a holomorphic function on some neighborhood of σ(T ), or
(ii) h is a bounded complex Borel function on σ(T ) and T is normal.

Then, h(T ) is also an MI operator and its corresponding range operator is x 7→ h(R(x)).

Proof. By Corollary 4.13 and Theorem 4.4, h(R(x)) is a well-defined operator for a.e. x in
both cases (i) and (ii). We need to show x 7→ h(R(x)) is a measurable range operator and

(4.21) h(T ) = h

(∫ ⊕
X

R(x) dµ(x)

)
=

∫ ⊕
X

h(R(x)) dµ(x).

If λ 6∈ σ(T ), then

(λI− T )−1 =

∫ ⊕
X

(λI(x)−R(x))−1dµ(x).

The integral in (4.19) is approximated by Riemann sums in the operator norm. Outside a set
of measure zero X0 ⊆ X, the mappings λ 7→ (λI(x)− R(x))−1, x ∈ X \X0, are continuous
at every point λ 6∈ σ(T ). Hence, the integrals

h(R(x)) =
1

2πi

∫
γ

h(λ)(λI(x)−R(x))−1dλ

are approximated uniformly a.e. by Riemann sums. This yields the required conclusion in
case (i).

To prove case (ii), observe that

p(T, T ∗) =

∫
σ(T )

p(λ, λ̄)dE(λ),

where p is any polynomial in two variables with complex coefficients and E is the spectral
measure of T . Clearly, the range operator of p(T, T ∗) is x 7→ p(R(x), R(x)∗). By the Stone-
Weierstrass theorem, functions λ 7→ p(λ, λ̄) are dense in C(σ(T )). Hence, by [52, Theorem
12.24], the conclusion (4.21) holds for continuous functions h. Finally, it suffices to use two
basic facts about functional calculus for Borel functions. First, if {hi} is a uniformly bounded
sequence of Borel functions converging pointwise to h on σ(T ), then {hi(T )} converges to
h(T ) in the strong operator topology. Second, the space of bounded Borel functions on a
compact set K ⊆ C is the smallest space X containing C(K) and closed under pointwise
limits of uniformly bounded sequences in X. In particular, (4.21) holds if h = χU , where
U ⊆ C is open. By Dunkin’s π-λ lemma (4.21) holds for h = χU , where U ⊆ C is Borel.
Consequently, the required conclusion holds for all bounded Borel functions h. �

As an immediate corollary of Theorem 4.21 we have a result which is very close to known
results for decomposable operators, see [19, Lemma 2.5] and [46, Proposition 1.4].

Corollary 4.22. Suppose T is a normal MI operator and R is its corresponding range
operator. Let E be the spectral measure of T , and Ex be the spectral measure of R(x). Then
for any Borel set U ⊆ C, E(U) is an MI operator and its corresponding range operator is
Ex(U).

Proof. It suffices to take h = χU in Theorem 4.21, where U ⊆ C is Borel. Indeed, χU(R(x))
is an orthogonal projection on J(x) and Ex given by Ex(U) = χU(R(x)) is the spectral

measure of R(x). By Theorem 4.21, we have E(U) =
∫ ⊕
X
Ex(U)dµ(x). �
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5. Bessel systems of multiplications

We continue to hold Assumption 3.1. In this section, we study Bessel systems generated by
multiplications in L2(X;H). Given a sequence of generators A = {ϕi}i∈I in L2(X;H) and a
suitable set of functions D = {gt}t∈Y in L∞(X), we study systems of the form {Mgtϕi}t∈Y,i∈I .
For example, this is the generic form of a Bessel system produced by the unitary action of a
locally compact abelian group G, by Theorem 2.6, with X = Ĝ and D equal to the characters
of Ĝ. When D is well behaved, the “global” system {Mgtϕi}t∈Y,i∈I is Bessel if and only if
the “pointwise” systems {ϕi(x)}i∈I are Bessel for a.e. x ∈ X, with uniform bound. As we
will see, the properties of these two types of systems are closely related.

The following measure-theoretic generalization of characters on an abelian group was
introduced in [40].

Definition 5.1. A Parseval determining set for L1(X) consists of another measure space
(Y, ν) and a family {gt}t∈Y in L∞(X) such that:

(i) For every f ∈ L1(X), the mapping t 7→
∫
X
fgt dµ is measurable on Y ; and

(ii) For every f ∈ L1(X),

(5.1)

∫
Y

∣∣∣∣∫
X

f(x)gt(x) dµ(x)

∣∣∣∣2 dν(t) =

∫
X

|f(x)|2dµ(x).

(Possibly both sides are infinite.)

Example 5.2. (a) [40, Lemma 5.2] When X = G is a locally compact abelian group, its

characters form a Parseval determining set for L1(G) when the dual Y = Ĝ is equipped
with Plancherel measure. In this case, (5.1) amounts to Plancherel’s Theorem.

(b) Let X and Y be countable sets endowed with counting measures. Then, a system {gt}t∈Y
in `2(X) ⊆ `∞(X) is a Parseval determining set for `1(X) if and only if it is a Parseval
frame for `2(X).

(c) Let G be a second countable locally compact group, and let K ⊆ G be a compact
subgroup for which (G,K) is a Gelfand pair [60]. Take X = K\G/K to be the space of
double cosets of K in G, with the quotient topology and Haar measure. Then the space
Y = P (G,K) of positive definite spherical functions, equipped with Plancherel measure,
forms a Parseval determining set for L1(K\G/K). When the right-hand side of (5.1) is
finite, this is just Plancherel’s Theorem for the spherical transform [60, Theorem 9.5.1].
When the left-hand side is finite, one can emulate the proof of [38, Theorem 31.31]. We
leave details to the reader.

The following is the measure-theoretic generalization of Definition 2.1.

Definition 5.3. Given a σ-finite measure space (M,m) and a separable Hilbert space K,
a system {us}s∈M is called Bessel with bound B > 0 (briefly, B-Bessel) when both of the
following hold:

(i) For every v ∈ K, the mapping s 7→ 〈v, us〉 is measurable on M; and
(ii) For every v ∈ K, ∫

M
|〈v, us〉|2 dm(s) ≤ B ‖v‖2 .
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It is a continuous frame with bounds A,B > 0 (briefly, an A,B-frame) if, in addition,

(5.2) A ‖v‖2 ≤
∫
M
|〈v, us〉|2 dm(s) ≤ B ‖v‖2

for every v ∈ K. When A = B, the frame is called tight ; when A = B = 1, it is Parseval.

These notions were introduced independently by Kaiser [42] and by Ali, Antoine, and
Gazeau [3]. The word “continuous” is best understood in relation to “discrete”. The usual
notions of (discrete) Bessel systems and frames can be obtained as special cases by tak-
ing m to be counting measure. We will use the terms “frame” and “continuous frame”
synonymously.

Continuous frames and Bessel systems behave similarly to their discrete counterparts; see
[3, 29, 42, 49]. In particular, every Bessel system {us}s∈M in K comes with an analysis
operator T : K → L2(M) given by (Tv)(s) = 〈v, us〉 for v ∈ K and s ∈M. Its adjoint is the
synthesis operator T ∗ : L2(M)→ K, defined weakly by the vector-valued integral

T ∗f =

∫
M
f(s)us dm(s) (f ∈ L2(M)).

Composing these in one direction gives the frame operator S = T ∗T : K → K,

Sv =

∫
M
〈v, us〉us dm(s) (v ∈ H).

Composing in the other direction gives the Gramian TT ∗ : L2(M)→ L2(M). When {us}s∈M
is a frame, S is automatically positive and invertible; moreover, {S−1/2us}s∈M is a Parseval
frame, called the canonical tight frame for {us}s∈M.

Assumption 5.4. For the remainder of Section 5 and all of Section 6 we fix a σ-finite
measure space (Y, ν) and a Parseval determining set D = {gt}t∈Y for L1(X).

Given a countable sequence A = {ϕi}i∈I in L2(X;H), we consider

E(A ) = {Mgtϕi}t∈Y, i∈I ,
the system of all multiplications of A by D. We write

S(A ) = span{Mgtϕi : t ∈ Y, i ∈ I}
for the MI space generated by A . According to Theorem 3.5 and Lemma 3.8, the associated
range function for which

S(A ) =

∫ ⊕
X

J(x) dµ(x)

is given by

(5.3) J(x) = span{ϕi(x) : i ∈ I} (a.e. x ∈ X).

In particular, every ϕi belongs to S(A ).

Theorem 5.5. Let A = {ϕi}i∈I be a countable sequence in L2(X;H). For constants A,B >
0, the following are equivalent:

(i) E(A ) is an A,B-frame for S(A ) (resp. B-Bessel).
(ii) For a.e. x ∈ X, {ϕi(x)}i∈I is an A,B-frame for J(x) (resp. B-Bessel).

Proof. This is Theorem 2.10 of [40]. A careful reading of the proof shows that the upper
frame bound can be handled separately. �

25



5.1. The Plancherel transform of a Parseval determining set. When E(A ) is Bessel,
Theorem 5.5 gives us two different kinds of analysis operators: the global analysis operator
T : S(A )→ L2(Y × I) of E(A ), and the field of pointwise analysis operators T̃ (x) : J(x)→
`2(I) associated with {ϕi(x)}i∈I for a.e. x ∈ X. Taken together, the latter describe a
decomposable operator T̃ : S(A ) → L2(X; `2(I)), by Lemma 5.8 below. Morally, one feels
that this should somehow be the “same” as the global analysis operator T . However, T and
T̃ map into completely different spaces, so they cannot literally be equal.

To resolve this discrepancy, we introduce a variant of the Fourier transform. Given f ∈
L1(X) ∩ L2(X), let Ff ∈ L2(Y ) be the function

(5.4) (Ff)(t) =

∫
X

f(x)gt(x) dµ(x) (a.e. t ∈ Y ).

According to (5.1), ‖Ff‖L2(Y ) = ‖f‖L2(X).

Definition 5.6. The Plancherel transform associated with D is the unique linear isometry
F : L2(X)→ L2(Y ) extending (5.4).

When D is the set of characters on a locally compact abelian group G, F reduces to the
Fourier transform L2(G) → L2(Ĝ), which is not only isometric, but unitary. On the other
hand, when X and Y are countable indexing sets with their counting measures, F becomes
the analysis operator for the Parseval frame D. Therefore, we cannot generally expect F to
be surjective.

In the general case, F provides a way to map L2(X; `2(I)) into L2(Y × I) as follows. Given
ϕ ∈ L2(X; `2(I)) and i ∈ I, we write ϕi ∈ L2(X) for the function given by ϕi(x) = ϕ(x, i).
If ϕ ∈ L2(X; `2(I)) is such that ϕi ∈ L1(X) ∩ L2(X) for every i ∈ I, then we define
FIϕ ∈ L2(Y × I) to be the function

(5.5) (FIϕ)(t, i) = (Fϕi)(t) =

∫
X

[ϕ(x)]i · gt(x) dµ(x) (a.e. t ∈ Y, i ∈ I).

Then ‖FIϕ‖2 =
∑

i ‖Fϕi‖
2 =

∑
i ‖ϕi‖

2 = ‖ϕ‖2. Such ϕ span a dense subspace of L2(X; `2(I)),
and so FI extends uniquely to a linear isometry FI : L2(X; `2(I)) → L2(Y × I). (Equiva-
lently, FI is the operator obtained by making the identifications L2(X; `2(I)) ∼= L2(X)⊕I

and L2(Y × I) ∼= L2(Y )⊕I , and applying F in every coordinate.)

5.2. Analysis and synthesis operators.

Theorem 5.7. Let A = {ϕi}i∈I be a sequence in L2(X;H) for which E(A ) is Bessel, and
let J be the range function (5.3). Then the analysis operator T : S(A )→ L2(Y ×I) of E(A )
maps into the image of the isometry FI : L2(X; `2(I))→ L2(Y × I), with

T = FI
∫ ⊕
X

T̃ (x) dµ(x).

Here, T̃ (x) : J(x)→ `2(I) is the analysis operator of {ϕi(x)}i∈I for a.e. x ∈ X.

The following lemma ensures that the operator
∫ ⊕
X
T̃ (x) dµ(x) is well defined.

Lemma 5.8. Let J ′ be the `2(I)-valued range function with J ′(x) = `2(I) for all x ∈ X.
With circumstances and notation as in Theorem 5.7, T̃ : J → J ′ is a bounded, measurable
range operator.
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Proof. Boundedness follows immediately from Theorem 5.5. For measurability, take any
u ∈ H and v = {vi}i∈I ∈ `2(I), and observe that

〈T̃ (x)PJ(x)u, v〉 =
∑
i∈I

〈PJ(x)u, ϕi(x)〉vi =
∑
i∈I

〈u, PJ(x)ϕi(x)〉vi =
∑
i∈I

〈u, ϕi(x)〉vi

for a.e. x ∈ X. Since each ϕi : X → H is measurable, Pettis’s Measurability Theorem
ensures that each mapping x 7→ 〈u, ϕi(x)〉vi is measurable on X. Taking the sum, we find
that x 7→ 〈T̃ (x)PJ(x)u, v〉 is measurable. �

Proof of Theorem 5.7. If ψ ∈ S(A ) and if (5.5) applies to ϕ :=
∫ ⊕
X
T̃ (x) dµ(x)ψ, then we

easily compute[
FI
∫ ⊕
X

T̃ (x) dµ(x)ψ
]
(t, i) =

∫
X

[
T̃ (x)ψ(x)

]
i
gt(x) dµ(x) =

∫
X

〈ψ(x), ϕi(x)〉gt(x) dµ(x)

= 〈ψ,Mgtϕi〉 = (Tψ)(t, i).

It remains to show that (5.5) applies for all ψ in a spanning set for a dense subspace.
To that end, take any u ∈ H and any measurable subset E ⊆ X with µ(E) < ∞, and

define ψ : X → H by ψ(x) = χE(x)PJ(x)u. It is straightforward to show that ψ ∈ L2(X;H),
and indeed, ψ ∈ S(A ). If B > 0 is a Bessel bound for E(A ), then {ϕi(x)}i∈I is B-Bessel
for a.e. x ∈ X, by Theorem 5.5. Consequently,∑

i∈I

∫
X

|〈ψ(x), ϕi(x)〉|2dµ(x) =

∫
X

χE(x)
∑
i∈I

|〈PJ(x)u, ϕi(x)〉|2dµ(x) ≤ µ(E)B ‖u‖2 <∞,

so that each of the mappings x 7→ 〈ψ(x), ϕi(x)〉 belongs to L2(X). A simple application of

Cauchy-Schwarz shows it is also in L1(X). Therefore, (5.5) applies to
∫ ⊕
X
T̃ (x) dµ(x)ψ, and

the above calculation shows that Tψ = FI
∫ ⊕
X
T̃ (x) dµ(x)ψ.

Finally, ψ is the projection onto S(A ) of the pure tensor χEu, by Lemma 3.10, and such

pure tensors span a dense subspace of L2(X;H) ∼= L2(X)⊗H. Hence, Tψ = FI
∫ ⊕
X
T̃ (x) dµ(x)ψ

for all ψ in a dense subspace of S(A ). By continuity, the same holds for all ψ ∈ S(A ). �

As a corollary, we obtain a measure-theoretic generalization of [12, Theorem 5.1].

Corollary 5.9. Under the circumstances of Theorem 5.7, the frame operator S : S(A ) →
S(A ) of E(A ) is multiplication invariant, with

S =

∫ ⊕
X

S(x) dµ(x).

Here, S(x) : J(x)→ J(x) is the frame operator of {ϕi(x)}i∈I for a.e. x ∈ X.

Proof. This is immediate from Theorem 5.7, Theorem 4.1(iv), and the fact that FI is an
isometry. �

Corollary 5.10. Under the circumstances of Theorem 5.7, the Gramian of E(A ) conjugates
to an MI operator on L2(X; `2(I)), with

(5.6) F∗I (TT ∗)FI =

∫ ⊕
X

T̃ (x)T̃ (x)∗ dµ(x).

Proof. This is immediate from Theorem 5.7 and Theorem 4.1(iv), since FI is an isometry
whose range contains that of T . �
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5.3. Other properties of Bessel systems. We now explore several other properties of a
Bessel system. For instance, the following relates to the “disjoint” or “orthogonal” frames
independently introduced by Balan [6] and by Han and Larson [34]. See [29] for a detailed
study of disjoint continuous frames. The following measure-theoretic result has many pre-
decessors in the setting of LCA groups, including [58, 45, 33].

Corollary 5.11. Let A = {ϕi}i∈I and A ′ = {ϕ′i}i∈I be sequences in L2(X;H) for which
E(A ) and E(A ′) are both Bessel. Then the following are equivalent:

(i) The analysis operators of E(A ) and E(A ′) have orthogonal ranges.
(ii) For a.e. x ∈ X, the analysis operators of {ϕi(x)}i∈I and {ϕ′i(x)}i∈I have orthogonal

ranges.

Proof. Let T : S(A )→ L2(Y × I) and T ′ : S(A ′)→ L2(Y × I) be the analysis operators of
E(A ) and E(A ′), respectively. Using notation as in Theorem 5.7, we have

(5.7) T ∗T ′ =

∫
X

T̃ (x)∗ dµ(x)F∗IFI
∫
X

T̃ ′(x) dµ(x) =

∫
X

T̃ (x)∗T̃ ′(x) dµ(x).

The operators T and T ′ have orthogonal range if and only if T ∗T ′ = 0. The equation above
shows that that happens if and only if T̃ (x)∗T̃ ′(x) = 0 for a.e. x ∈ X, if and only if T̃ (x)
and T̃ ′(x) have orthogonal ranges for a.e. x ∈ X. �

Definition 5.12. If (M,m) is a σ-finite measure space and K is a separable Hilbert space,
two Bessel systems {us}s∈M and {u′s}s∈M are called dual when their respective analysis
operators T, T ′ : K → L2(M,m) satisfy T ∗T ′ = I. In that case, both systems are frames.
The canonical dual of a frame {us}s∈M with frame operator S is {S−1us}s∈M.

Corollary 5.13. Let A = {ϕi}i∈I and A ′ = {ϕ′i}i∈I be sequences in L2(X;H) with S(A ) =
S(A ′), and suppose that E(A ) and E(A ′) are both frames for S(A ). Then the following
are equivalent:

(i) E(A ) and E(A ′) are dual frames.
(ii) For a.e. x ∈ X, {ϕi(x)}x∈X and {ϕ′i(x)}x∈X are dual frames.

Proof. This follows immediately from (5.7). �

Corollary 5.14. Let A = {ϕi}i∈I be a sequence in L2(X;H), and assume that E(A ) is a
frame for S(A ). Let J be the range function associated with S(A ), and let S(x) : J(x) →
J(x) be the frame operator of {ϕi(x)}i∈I a.e. x ∈ X. Then:

(i) The canonical dual frame for E(A ) is E(A ′), where A ′ = {S−1ϕi}i∈I is given by

(5.8) (S−1ϕi)(x) = S(x)−1ϕi(x) (a.e. x ∈ X).

(ii) The canonical tight frame for E(A ) is E(A ′′), where A ′′ = {S−1/2ϕi}i∈I is given by

(5.9) (S−1/2ϕi)(x) = S(x)−1/2ϕi(x) (a.e. x ∈ X).

Part (i) generalizes [12, Theorem 5.2] to the measure-theoretic setting.

Proof. We prove (ii), the proof of (i) being similar. Combining Corollary 5.9 and Theo-
rem 4.21, we see that S−1/2 is the MI operator

S−1/2 =

∫ ⊕
X

S(x)−1/2 dµ(x).
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For each t ∈ Y and i ∈ I, we have S−1/2(Mgtϕi) = Mgt(S
−1/2ϕi), so the canonical tight

frame of E(A ) is S−1/2E(A ) = E(A ′′), where A ′′ = {S−1/2ϕi}i∈I is as in (5.9). �

6. Classification for Bessel systems of multiplications

We continue to follow Assumptions 3.1 and 5.4. The goal of this section is to classify Bessel
systems E({ϕi}i∈I) in L2(X;H) up to unitary equivalence (defined below). The main result
is Theorem 6.6, which classifies such Bessel systems in terms of certain range operators.
We also identify the range operators that correspond with frames, and specialize to classify
Parseval frames E({ϕi}i∈I) in terms of range functions.

Definition 6.1. LetM be a σ-finite measure space, and let K and K′ be separable Hilbert
spaces. Bessel systems {us}s∈M and {u′s}s∈M, in K and K′ respectively, are called unitarily
equivalent if there is a unitary

U : span{us : s ∈M} → span{u′s : s ∈M}
such that Uus = u′s for every s ∈M.

Theorem 6.2. Let A = {ϕi}i∈I and A ′ = {ϕ′i}i∈I be sequences in L2(X;H) indexed by I,
and let U : S(A )→ S(A ′) be a bounded operator. Then the following are equivalent:

(i) U(Mgtϕi) = Mgtϕ
′
i for every t ∈ Y and every i ∈ I.

(ii) U is an MI operator

U =

∫ ⊕
X

U(x) dµ(x)

whose fibers satisfy U(x)ϕi(x) = ϕ′i(x) a.e. on X.

Proof. We prove (i) =⇒ (ii), the converse being trivial. Fix i ∈ I and ψ ∈ S(A ′). Given
any W =

∑n
j=1 cjMgtj

in span{Mg : g ∈ D}, we compute

〈Wϕi, U
∗ψ〉 = 〈UWϕi, ψ〉 =

〈 n∑
j=1

cjUMgtj
ϕi, ψ

〉
=
〈 n∑
j=1

cjMgtj
ϕ′i, ψ

〉
= 〈Wϕ′i, ψ〉.

Given any f ∈ L∞(X), Lemma 3.11 and Lemma A.1 provide a sequence {Wn}∞n=1 in
span{Mg : g ∈ D} with Wn → Mf in the weak operator topology of L2(X;H). Taking
limits in the equation 〈Wnϕi, U

∗ψ〉 = 〈Wnϕ
′
i, ψ〉 then produces 〈UMfϕi, ψ〉 = 〈Mfϕ

′
i, ψ〉. As

ψ ∈ S(A ′) was arbitrary, we conclude that UMfϕi = Mfϕ
′
i for every f ∈ L∞(X). Setting

f = 1 shows that Uϕi = ϕ′i. Moreover, for any f, g ∈ L∞(X) we have

MfUMgϕi = MfMgϕ
′
i = Mfgϕ

′
i = UMfgϕi = UMfMgϕi.

Since functions of the form Mgϕi span a dense subspace of S(A ), we conclude that MfU =
UMf for every f ∈ L∞(X). The remainder of (ii) follows from Theorem 3.7 and the fact
that Uϕi = ϕ′i. �

Corollary 6.3. Let A = {ϕi}i∈I and A ′ = {ϕ′i}i∈I be sequences in L2(X;H) indexed by I,
and suppose that E(A ) and E(A ′) are both Bessel. Then the following are equivalent:

(i) E(A ) is unitarily equivalent to E(A ′).
(ii) For a.e. x ∈ X, {ϕi(x)}i∈I is unitarily equivalent to {ϕ′i(x)}i∈I .

(iii) For a.e. x ∈ X, {ϕi(x)}i∈I and {ϕ′i(x)}i∈I have the same Gramian.
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Proof. (i) =⇒ (ii). Given x ∈ X, we denote J(x) = span{ϕi(x) : i ∈ I} and J ′(x) =
span{ϕ′i(x) : i ∈ I}. If there is a unitary U : S(A )→ S(A ′) such that UMgtϕi = Mgtϕ

′
i for

every t ∈ Y, i ∈ I, then Theorem 6.2 implies that U =
∫ ⊕
X
U(x) dµ(x) with U(x)ϕi(x) = ϕ′i(x)

a.e. on X. By Theorem 4.1(v), U(x) : J(x)→ J ′(x) is unitary for a.e. x ∈ X.
(ii) =⇒ (iii) is obvious.
(iii) =⇒ (i). Generally speaking, whenever K and K′ are two Hilbert spaces with total

collections of vectors {ui}i∈A and {u′i}i∈A, respectively, it is easy to show that there is a
unitary U : K → K′ mapping U(ui) = u′i for every i ∈ A if and only if 〈ui, uj〉 = 〈u′i, u′j〉 for
every i, j ∈ A. In the present case, when (iii) holds it is easy to show that

〈Mgtϕi,Mgsϕj〉 = 〈Mgtϕ
′
i,Mgsϕ

′
j〉

for every s, t ∈ Y and i, j ∈ I, so there is a unitary U : S(A )→ S(A ′) mapping U(Mgtϕi) =
Mgtϕ

′
i for every t ∈ Y and i ∈ I, as desired. �

In the discrete setting, unitary equivalence classes of Bessel sequences indexed by I are
in one-to-one correspondence with positive operators on `2(I), which are their Gramians.
Corollary 6.3 indicates that, in our MI setting, we should consider bounded, measurable
fields {Gr(x)}x∈X of positive operators on `2(I). However, when µ(X) =∞, not every such
field will correspond to a Bessel system E(A ), since the square norm of a vector in A can
be found by integrating a diagonal entry of {Gr(x)}x∈X .

Definition 6.4. We call a positive MI operator∫ ⊕
X

Gr(x) dµ(x) : L2(X; `2(I))→ L2(X; `2(I))

integrable if ∫
X

〈Gr(x)δi, δi〉 dµ(x) <∞ for every i ∈ I.

Here, δi ∈ `2(I) is the canonical basis element corresponding to i ∈ I.

Remark 6.5. When
∫ ⊕
X

Gr(x) dµ(x) is a positive, integrable MI operator on L2(X; `2(I)),
the off-diagonal entries of {Gr(x)}x∈X also lie in L1(X). Indeed, Gr(x) ≥ 0 a.e. x ∈ X by
Theorem 4.4(i), and successive applications of Cauchy–Schwarz show that∫

X

|〈Gr(x)δj, δi〉| dµ(x) =

∫
X

|〈Gr(x)1/2δj,Gr(x)1/2δi〉| dµ(x)

≤
{∫

X

〈Gr(x)δj, δj〉 dµ(x)

}1/2{∫
X

〈Gr(x)δi, δi〉 dµ(x)

}1/2

<∞.

When I is finite, it follows that a positive MI operator
∫ ⊕
X

Gr(x) dµ(x) is integrable if and
only if ∫

X

|〈Gr(x)u, v〉| dµ(x) <∞ for every u, v ∈ `2(I).

However, that is not the case when I is infinite. For a counterexample, take X = I = N, and
let Gr(n) be orthogonal projection onto span{δk : k ≥ n}. The corresponding MI operator
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is integrable, but if we take u =
{

(k−1 − (k + 1)−1)1/2
}∞
k=1
∈ `2(N), then

∞∑
n=1

〈Gr(n)u, u〉 =
∞∑
n=1

∞∑
k=n

[1

k
− 1

k + 1

]
=
∞∑
n=1

1

n
=∞.

Theorem 6.6. Unitary equivalence classes of Bessel systems E({ϕi}i∈I) in L2(X;H) are in
one-to-one correspondence with positive, integrable MI operators∫ ⊕

X

Gr(x) dµ(x) : L2(X; `2(I))→ L2(X; `2(I))

having rank Gr(x) ≤ dimH a.e. x ∈ X. In this correspondence, Gr(x) is the Gramian of
{ϕi(x)}i∈I a.e. x ∈ X.

Proof. Let A = {ϕi}i∈I be a sequence in L2(X;H) for which E(A ) is Bessel, and let
Gr(x) : `2(I) → `2(I) be the Gramian of {ϕi(x)}i∈I a.e. x ∈ X. Then x 7→ Gr(x) is a

bounded, measurable range function, by Lemma 5.8, and Gr =
∫ ⊕
X

Gr(x) dµ(x) is an MI
operator. Moreover, Gr ≥ 0 by Theorem 4.4(i), and

rank Gr(x) = dim span{ϕi(x) : i ∈ I} ≤ dimH (a.e. x ∈ X).

Since 〈Gr(x)δi, δi〉 = ‖ϕi(x)‖2, we have∫
X

〈Gr(x)δi, δi〉dµ(x) =

∫
X

‖ϕi(x)‖2 dµ(x) = ‖ϕi‖2 <∞

for every i ∈ I. In other words, Gr is integrable. Finally, let A ′ = {ϕ′i}i∈I be an-
other sequence in L2(X;H) for which E(A ′) is Bessel, with corresponding MI operator
Gr′ : L2(X; `2(I))→ L2(X; `2(I)). Then Gr = Gr′ if and only if E(A ) is unitarily equivalent
to E(A ′), by Corollary 6.3. Overall, E(A ) 7→ Gr induces a well-defined, one-to-one map-
ping from unitary equivalence classes of Bessel systems E({ϕi}i∈I) to positive, integrable MI

operators Gr =
∫ ⊕
X

Gr(x) dµ(x) with rank Gr(x) ≤ dimH a.e. x ∈ X. It remains to prove
that this mapping is onto.

To that end, let Gr be a positive, integrable MI operator on L2(X; `2(I)) corresponding to
the measurable range operator x 7→ Gr(x), and assume that rank Gr(x) ≤ dimH a.e. x ∈ X.
Then Gr(x) ≥ 0 a.e. x ∈ X, by Theorem 4.4(i). Given i ∈ I, we define ψi(x) = Gr(x)1/2δi.
As above, ψi ∈ L2(X; `2(I)) since Gr is integrable. Moreover, 〈ψj(x), ψi(x)〉 = 〈Gr(x)δj, δi〉,
so {ψi(x)}i∈I has Gramian Gr(x) a.e. x ∈ X. To complete the proof, we need only transport
{ψi}i∈I to a corresponding sequence {ϕi}i∈I in L2(X;H).

By Lemma 4.2, J(x) := Gr(x)`2(I) is a measurable range function, and we clearly have

ψi ∈ VJ for each i ∈ I. Fix an orthonormal basis {en}|I|n=1 for `2(I), and define

J ′(x) = span{en : 1 ≤ n ≤ rank Gr(x)} (a.e. x ∈ X).

Each of the sets En := {x ∈ X : rank Gr(x) ≤ n} = {x ∈ X : dim J(x) ≤ n} is measurable,
so for any u, v ∈ `2(I) the mapping

x 7→ 〈PJ ′(x)u, v〉 =
〈rank Gr(x)∑

n=1

〈u, en〉en, v
〉

=

|I|∑
n=1

χEn(x)〈u, en〉〈en, v〉

is measurable on X. Therefore J ′ is also measurable, and Theorem 4.18 provides an MI
unitary T : VJ → VJ ′ .

31



Next, define d = ess supx∈X rank Gr(x) and let M = span{en : 1 ≤ n ≤ d}, so that J ′(x) ⊆
M a.e. x ∈ X. We have d ≤ dimH by assumption, so there is a partial isometry `2(I)→ H
with initial space M . This gives rise to an MI partial isometry U : L2(X; `2(I))→ L2(X;H)
whose initial subspace contains VJ ′ . The composition UT is thus an MI operator that maps
VJ isometrically into L2(X;H). Setting ϕi = UTψi, we have 〈ϕj(x), ϕi(x)〉 = 〈ψj(x), ψi(x)〉,
so {ϕi(x)}i∈I again has Gramian Gr(x) a.e. x ∈ X. In particular, E({ϕi}i∈I) is Bessel by
Theorem 5.5. This completes the proof. �

Definition 6.7. Given a Hilbert space K, a positive operator T ∈ B(K) is called locally
invertible if there exists δ > 0 such that σ(T ) ⊆ {0} ∪ [δ,∞).

Corollary 6.8. Unitary equivalence classes of systems E({ϕi}i∈I) in L2(X;H) that are
frames for S({ϕi}i∈I) are in one-to-one correspondence with locally invertible, integrable MI
operators ∫ ⊕

X

Gr(x) dµ(x) : L2(X; `2(I))→ L2(X; `2(I))

having rank Gr(x) ≤ dimH a.e. x ∈ X. In this correspondence, Gr(x) is the Gramian of
{ϕi(x)}i∈I a.e. x ∈ X.

Proof. Let A = {ϕi(x)}i∈I be a sequence in L2(X;H) for which E(A ) is B-Bessel, and let
Gr(x) be the Gramian of {ϕi(x)}i∈I a.e. x ∈ X. By Theorem 5.5, E(A ) is a frame for S(A )
if and only there exists A > 0 such that σ(Gr(x)) ⊆ {0} ∪ [A,B] a.e. x ∈ X. The latter is
equivalent to local invertibility of Gr by Theorem 4.4(ii). In light of Theorem 6.6, the proof
is complete. �

Definition 6.9. A measurable range function

J : X → {closed subspaces of `2(I)}

is integrable if the projection
∫ ⊕
X
PJ(x) dµ(x) onto VJ is integrable as an MI operator. Equiv-

alently, J is integrable if∫
X

〈PJ(x)δi, δi〉 dµ(x) <∞ for every i ∈ I.

Remark 6.10. Given a measurable range function J : X → {closed subspaces of `2(I)}, no-
tice that ∑

i∈I

∫
X

〈PJ(x)δi, δi〉 dµ(x) =

∫
X

dim J(x) dµ(x).

When I is finite, it follows that J is integrable if and only if its supporting set

supp J := {x ∈ X : J(x) 6= {0}}
has finite measure. This is not the case when I is infinite, however, as shown by the coun-
terexample X = I = N, J(n) = span{δk : k ≥ n} (as in Remark 6.5). Here, J is integrable
and yet supp J = N.

Corollary 6.11. Unitary equivalence classes of systems E({ϕi}i∈I) in L2(X;H) that are
Parseval frames for S({ϕi}i∈I) are in one-to-one correspondence with integrable range func-
tions

J : X → {closed subspaces of `2(I)}
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having dim J(x) ≤ dimH a.e. x ∈ X. In this correspondence, the Gramian of {ϕi(x)}i∈I is
orthogonal projection onto J(x) a.e. x ∈ X.

Proof. Let A = {ϕi(x)}i∈I be a sequence in L2(X;H) for which E(A ) is B-Bessel, and
let Gr(x) be the Gramian of {ϕi(x)}i∈I a.e. x ∈ X. The argument given in the proof of
Corollary 6.8 shows that E(A ) is a Parseval frame for S(A ) if and only if σ(Gr(x)) ⊆ {0, 1}
a.e. x ∈ X, if and only if Gr(x) is an orthogonal projection a.e. x ∈ X. This completes the
proof with J(x) equal to the range of Gr(x) a.e. x ∈ X, by Theorem 6.6. �

7. Applications for admissible representations of abelian groups

In this section we interpret the measure-theoretic results of the previous sections for the
special case of LCA groups. After describing a suitable notion of admissible representations,
we proceed to characterize invariant subspaces, intertwining operators, and Bessel systems
(of various strengths) obtained as orbits. We also study analysis and synthesis operators
of such orbits, and characterize several properties of interest (such as dual and orthogonal
frames). The section culminates in a classification of Bessel systems and (Parseval) frames
generated by the action of a given LCA group.

Throughout this section, we fix a locally compact abelian group G, which we assume to be
second countable. As usual, Ĝ denotes the Pontryagin dual group. Haar measures on G and
Ĝ are simply denoted dx and dα, and scaling is assumed to satisfy the Plancherel theorem.
Our goal is to interpret the results of the previous sections in the special case where:

• X = Ĝ with dµ(α) = dα,
• Y = G with dν(x) = dx, and

• D = {x̂}x∈G, where x̂ : Ĝ→ T is given by x̂(α) = α(x).

By Pontryagin duality, D is the set of characters on Ĝ. It is a Parseval determining set for
L1(Ĝ) by Lemma 5.2 in [40]. The corresponding Plancherel transform is the inverse Fourier

transform F : L2(Ĝ)→ L2(G), Ff = f̌ .

Definition 7.1. A representation π : G → U(H) is called admissible if there is a sequence
{ui}i∈I in H for which {π(x)ui}x∈G, i∈I is a complete Bessel system in H.

This usage appears in [55] for discrete G. A related condition, “square integrable” [50],
was shown in [59] to be equivalent to the above. In [59], the term “σ-admissible” is used
instead of the above, with “admissible” reserved for the case where |I| = 1.

Given an admissible representation π : G → U(H), Theorem 2.6 provides the existence

of a separable Hilbert space K and a linear isometry U : H → L2(Ĝ;K) intertwining π
with modulation. Since modulation is simply multiplication by D, Theorem 3.5 furnishes a
measurable range function J : Ĝ→ {closed subspaces of K} such that U(H) = VJ . We take
this as a jumping-off point for the following applications.

7.1. Characterizations of admissibility.

Definition 7.2. Let π : G → U(H) be a representation, where H is a separable Hilbert
space. A direct integral decomposition of π consists of the following data:

• a Borel measure µ on Ĝ,
• a separable Hilbert space K,
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• a measurable range function J : Ĝ→ {closed subspaces of K} satisfying J(α) 6= {0}
µ-a.e. α ∈ Ĝ, and
• a unitary U : H → VJ ⊆ L2(Ĝ, µ;K) intertwining π with modulation.

We call µ a decomposing measure for π, while m(α) := dim J(α) is the multiplicity function.

Intuitively, this data determines a unitary equivalence π ∼=
∫ ⊕
Ĝ
α(m(α)) dµ(α), where α is

viewed as a one-dimensional representation of G, and α(m(α)) is the direct sum of m(α) copies
of α. Every representation of G on a separable Hilbert space admits such a decomposition.
Moreover, two representations are unitarily equivalent if and only if their decomposing mea-
sures are mutually absolutely continuous and their multiplicity functions agree a.e. (with
respect to either measure) [28, 36].

When G is discrete, the equivalence of (i) and (iv) below is essentially contained in [55].

Theorem 7.3. The following are equivalent for every representation π : G→ U(H) with H
separable:

(i) π is admissible.
(ii) A decomposing measure of π is absolutely continuous with respect to Haar measure on

Ĝ.
(iii) There is a separable Hilbert space K and a linear isometry U : H → L2(Ĝ;K) that

intertwines π with modulation.
(iv) There is a sequence A in H such that E(A ) is a Parseval frame for H.

Proof. (i) =⇒ (ii) follows from Theorem 2.6 and Theorem 3.5.
(ii) =⇒ (iii). Assume (ii) holds. We claim there is a measurable range function

J : Ĝ→ {closed subspaces of `2(Z)}

and a unitary U : H → VJ ⊆ L2(Ĝ; `2(Z)) intertwining π with modulation.
Let µ be a decomposing measure for π, absolutely continuous with respect to Haar measure

on Ĝ. Then there is a separable Hilbert space K′, a measurable range function

J ′ : Ĝ→ {closed subspaces of K′},

and a unitary U ′ : H → VJ ′ ⊆ L2(Ĝ, µ;K′) that intertwines π with modulation. Fix a linear
isometry W : K′ → `2(Z), and define

J : Ĝ→ {closed subspaces of `2(Z)}

by J(α) = WJ ′(α). Then dim J(α) = dim J ′(α) for every α ∈ Ĝ.

Since Ĝ is second countable, its Haar measure is σ-finite, while µ is σ-finite by Lemma A.2.
Therefore, there exists a Radon-Nikodym derivative f : Ĝ→ [0,∞) to write dµ(α) = f(α)dα.
Setting

E := {α ∈ Ĝ : f(α) 6= 0},
one easily shows that dµ(α) and χE(α)dα are mutually absolutely continuous. By [36,
Thm. 1, p. 10], there is a unitary U ′′ : VJ ′ → VJ that intertwines modulations. Defining
U = U ′′U ′ proves the claim.

(iii) =⇒ (iv). If (iii) holds, then Theorem 3.5 provides the existence of a measurable range

function J : Ĝ→ {closed subspaces of K} such that U(H) = VJ . According to Theorem 2.6

of [14], there is a sequence {ϕi}∞i=1 in L∞(Ĝ;K) such that ϕn(α) ∈ J(α) a.e. α ∈ Ĝ, and
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such that {ϕn(α)}∞n=1 forms a Parseval frame for J(α) a.e. α ∈ Ĝ. Write Ĝ as a disjoint

union Ĝ =
⋃∞
m=1 Em of sets with finite measure, and then define ϕm,n = χEmϕn. Then

ϕm,n ∈ VJ ⊆ L2(Ĝ;K), and {ϕm,n(α)}∞m,n=1 is a Parseval frame for J(α) a.e. α ∈ Ĝ. Finally,

define A = {U−1ϕm,n}∞m,n=1. Then (iv) follows from Theorem 5.5.
(iv) =⇒ (i) is trivial. �

Remark 7.4. Every admissible representation admits a Parseval G-frame, but the same can-
not be said for equal norm Parseval G-frames, as the following example shows.

Let J : Ĝ → {closed subspaces of K} be a measurable range function, and consider the

modulation representation on VJ ⊆ L2(Ĝ;K). Suppose that E(A ) is a complete B-Bessel
system in VJ for some A = {ϕi}i∈I . Using Theorem 5.5, one easily shows that∑

i∈I

‖ϕi(α)‖2 ≤ B · dim J(α) (a.e. α ∈ Ĝ),

and therefore ∑
i∈I

‖ϕi‖2 ≤ B

∫
Ĝ

dim J(α) dα.

On the other hand, since {ϕi(α)}i∈I is complete in J(α) a.e. α ∈ Ĝ, we must have

ess sup
α∈Ĝ

dim J(α) ≤ |I|.

When the dimension function is both integrable and essentially unbounded, we conclude
that the generators cannot have equal norms. Such representations exist even for G = Z.

7.2. Characterizations of invariant subspaces and intertwining operators. The re-
mainder of this section is devoted to interpreting results from the MI setting for admissible
representations of LCA groups. In each case, the “interpreter” is an isometry of the form
U : H → L2(Ĝ;K) intertwining an admissible representation with modulation. Its existence
was established by Theorem 2.6. All of our results follow immediately from corresponding
statements in the MI setting.

The following are the LCA versions of Theorems 3.5 and 3.7, respectively.

Corollary 7.5. Let π : G → U(H) be an admissible representation. Choose any linear

isometry U : H → L2(Ĝ;K) intertwining π with modulation, where K is a separable Hilbert

space, and let J : Ĝ → {closed subspaces of K} be the measurable range function for which
U(H) = VJ . Then invariant subspaces of H are in one-to-one correspondence with equiv-

alence classes of measurable range functions J ′ : Ĝ → {closed subspaces of K} satisfying

J ′(α) ⊆ J(α) a.e. α ∈ Ĝ. The invariant subspace corresponding to J ′ is U−1(VJ ′).

Corollary 7.6. Let π : G → U(H) and π′ : G → U(H′) be admissible representations.

Choose linear isometries U : H → L2(Ĝ;K) and U ′ : H′ → L2(Ĝ;K) intertwining π and
π′ with modulation, where K is a separable Hilbert space, and let J and J ′ be the measurable
range functions for which U(H) = VJ and U ′(H′) = VJ ′. Then bounded operators H → H′
that intertwine π and π′ are in one-to-one correspondence with equivalence classes of range
operators R : J → J ′. The intertwining operator corresponding to R is (U ′)∗[

∫ ⊕
Ĝ
R(α) dα]U .
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Example 7.7. Take G = Zn acting on H = L2(Rn) by integer shifts π(k)f = f(· − k). We

can identify Ĝ = [0, 1)n as a measure space. Then the fiberization operator T : L2(Rn) →
L2([0, 1)n; `2(Zn)) given by

(T f)(x) =
{
f̂(x− k)

}
k∈Zn

(f ∈ L2(Rn), x ∈ [0, 1)n)

is a linear isometry that intertwines π with modulation. Choosing U = T in Corollary 7.5,
we recover the usual range-function characterization of shift-invariant spaces [12, 35, 53].

Similarly, if H,H′ ⊆ L2(Rn) are shift-invariant subspaces on which G = Zn acts by integer
shifts π, π′, then we can take U = T |H and U ′ = T |H′ in Corollary 7.6 to recover the
characterization of shift-preserving operators in Theorem 4.5 of [12].

7.3. Characterizations of G-systems. The pedigree of the following corollary stretches to
the seminal work of Benedetto and Li [10], as demonstrated by Example 7.10 below. Similar
results have been widely reported in the setting of translation-invariant spaces on abelian
groups [8, 10, 12, 14, 15, 40, 43, 51], as well as for representations of finite groups [56, 57],
discrete groups [7, 55], and compact groups [41]. We have the LCA version of Theorem 5.5:

Corollary 7.8. Fix an admissible representation π : G → U(H). Given a sequence A =
{ui}i∈I in H, put S(A ) = span{π(x)ui : x ∈ G, i ∈ I}. Choose any linear isometry

U : H → L2(Ĝ;K) intertwining π with modulation, where K is a separable Hilbert space,
and let J be a measurable range function for which VJ = US(A ). Then the following are
equivalent, for any A,B > 0:

(i) The orbit {π(x)ui}x∈G, i∈I is an A,B-frame (resp. B-Bessel system) for S(A ).
(ii) The system {(Uui)(α)}i∈I is an A,B-frame (resp. B-Bessel system) for J(α) a.e. α ∈

Ĝ.

As a special case of Corollary 7.8 we obtain a generalization of [10, Theorem 3].

Corollary 7.9. Fix an admissible representation π : G→ U(H). Given a vector u ∈ H, put

S(u) = span{π(x)u : x ∈ G}. Choose any linear isometry U : H → L2(Ĝ;K) intertwining
π with modulation, where K is a separable Hilbert space. Then the following are equivalent,
for any A,B > 0:

(i) The orbit {π(x)u}x∈G is a frame for S(u) with bounds A,B.

(ii) For a.e. α ∈ Ĝ, ‖(Uu)(α)‖2 ∈ {0} ∪ [A,B].

Example 7.10. Let G = Zn, acting on H = L2(Rn) by integer shifts, as in Example 7.7.

For any f ∈ L2(Rn) and x ∈ [0, 1)n we have ‖(T f)(x)‖2 =
∑

k∈Zn |f̂(x+k)|2. Taking U = T
and u = f in Corollary 7.9, we see that {f(· − k)}k∈Z is an A,B-frame for its closed linear

span if and only if
∑

k∈Zn |f̂(x+ k)|2 ∈ {0} ∪ [A,B] a.e. x ∈ [0, 1)n. This is [10, Theorem 3].

Definition 7.11. If K is a separable Hilbert space, then a Riesz basis for K is a sequence
{ui}i∈I for which there are bounds A,B > 0 such that, for any sequence {ci}i∈I ∈ `2(I)
having finite support,

A
∑
i∈I

|ci|2 ≤

∥∥∥∥∥∑
i∈I

ciui

∥∥∥∥∥
2

≤ B
∑
i∈I

|ci|2.

Riesz bases in the MI setting were studied by the second author in [40]. The following
result interprets [40, Theorem 2.3] for LCA groups.
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Corollary 7.12. In addition to the standing assumptions, assume that G is discrete and that
Haar measure is normalized as counting measure. With the same notation and hypotheses
of Corollary 7.8, the following are equivalent for any A,B > 0:

(i) The orbit {π(x)ui}x∈G, i∈I is a Riesz basis for S(A ) with bounds A,B.

(ii) The system {(Uui)(α)}i∈I is a Riesz basis for J(α) with bounds A,B a.e. α ∈ Ĝ.

7.4. Analysis and synthesis operators. For Bessel systems generated by LCA groups,
the analysis operator and its corollaries can be represented by direct integrals. The following
are the LCA versions of Theorem 5.7, Corollary 5.9, and Corollary 5.10, respectively.

Corollary 7.13. Fix an admissible representation π : G → U(H). Given a sequence A =
{ui}i∈I in H, put S(A ) = span{π(x)ui : x ∈ G, i ∈ I}. Choose any linear isometry

U : H → L2(Ĝ;K) intertwining π with modulation, where K is a separable Hilbert space, and
let J be a measurable range function for which VJ = US(A ). If the orbit E(A ) = {π(x)ui}i∈I
is Bessel, then its analysis operator T : S(A )→ L2(G× I) is given by

T = FI
[∫ ⊕

Ĝ

T̃ (α) dα

]
U |S(A ) .

Here, T̃ (α) : J(α)→ `2(I) is the analysis operator of {(Uui)(α)}i∈I for a.e. α ∈ Ĝ.

Corollary 7.14. Under the circumstances of Corollary 7.13, the frame operator S : S(A )→
S(A ) of E(A ) is the conjugate of an MI operator, with

S =
(
U |S(A )

)∗ [∫ ⊕
Ĝ

S(α) dα

]
U |S(A ) .

Here, S(α) : J(α)→ J(α) is the frame operator of {(Uui)(α)}i∈I for a.e. α ∈ Ĝ.

Corollary 7.15. Under the circumstances of Corollary 7.13, the Gramian of E(A ) conju-

gates to an MI operator on L2(Ĝ; `2(I)), with

F∗I (TT ∗)FI =

∫ ⊕
Ĝ

T̃ (α)T̃ (α)∗ dα.

7.5. Other properties of G-systems. Other properties of Bessel systems, such as orthog-
onality and duality, can also be studied from the fibers. The proof of the following is similar
to that of Corollary 5.11. We leave details to the reader.

Corollary 7.16. Let π : G → U(H) and π′ : G → U(H′) be admissible representations.
Fix sequences A = {ui}i∈I and A ′ = {u′i}i∈I in H and H′, respectively, whose orbits
E(A ) = {π(x)ui}x∈G, i∈I and E(A ′) = {π′(x)u′i}x∈G, i∈I are both Bessel. Then the following

are equivalent, for any choice of linear isometries U : H → L2(Ĝ;K) and U ′ : H′ → L2(Ĝ;K′)
intertwining π and π′ with modulation, respectively, where K and K′ are separable Hilbert
spaces:

(i) The analysis operators of E(A ) and E(A ′) have orthogonal ranges.

(ii) For a.e. α ∈ Ĝ, the analysis operators of {(Uui)(α)}i∈I and {(U ′u′i)(α)}i∈I have or-
thogonal ranges.

We also have LCA versions of Corollaries 5.13 and 5.14, respectively.
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Corollary 7.17. Let π : G → U(H) be an admissible representation. Fix sequences A =
{ui}i∈I and A ′ = {u′i}i∈I in H generating the same invariant subspace

S(A ) = span{π(x)ui : x ∈ G, i ∈ I} = span{π(x)u′i : x ∈ G, i ∈ I} = S(A ′),

such that E(A ) = {π(x)ui}x∈G, i∈I and E(A ′) = {π(x)u′i}x∈G, i∈I are both frames for S(A ).

Then the following are equivalent, for any choice of linear isometry U : H → L2(Ĝ;K)
intertwining π with modulation, where K is a separable Hilbert space:

(i) E(A ) and E(A ′) are dual frames.

(ii) For a.e. α ∈ Ĝ, {(Uui)(α)}i∈I and {(Uu′i)(α)}i∈I are dual frames.

Corollary 7.18. Let π : G → U(H) be an admissible representation. Given a sequence
A = {ui}i∈I , denote E(A ) = {π(x)ui}i∈I and S(A ) = span{π(x)ui : x ∈ G, i ∈ I}.
Assume that E(A ) is a frame for S(A ), with frame operator S. Then:

(i) The canonical dual frame for E(A ) is E(A ′), where A ′ = {S−1ui}i∈I .
(ii) The canonical tight frame for E(A ) is E(A ′′), where A ′′ = {S−1/2ui}i∈I .

7.6. Classifications of G-systems. Finally, we interpret the results of Section 6 to clas-
sify Bessel systems generated by LCA groups. When N ∈ {1, 2, . . . }, we denote `2

N :=
`2({1, . . . , N}). Similarly, `2

∞ := `2({1, 2, . . . }). The following is the LCA version of Theo-
rem 6.6 (resp. Corollary 6.8).

Corollary 7.19. For N ∈ {1, 2, . . . ,∞}, unitary equivalence classes of Bessel G-systems
(resp. G-frames) having N generators are in one-to-one correspondence with positive (resp.

locally invertible), integrable MI operators on L2(Ĝ; `2
N).

For Parseval frames, Corollary 6.11 says the following in the LCA setting.

Corollary 7.20. For N ∈ {1, 2, . . . ,∞}, unitary equivalence classes of Parseval G-frames
having N generators are in one-to-one correspondence with integrable range functions

J : Ĝ→ {closed subspaces of `2
N}.

Remark 7.21. We summarize the classifications above for the reader primarily interested
in G-systems. As in Theorem 6.6, the correspondences in Corollaries 7.19 and 7.20 pass
through Gramians. Specifically, let π : G → U(H) be an admissible representation, and let
A = {ui}i∈I be a sequence in H whose orbit E(A ) = {π(x)ui}x∈G, i∈I is a complete Bessel
G-system. If N = |I|, then we can assume without loss of generality that I = {1, 2, . . . , N}
(if N < ∞) or I = {1, 2, . . . } (if N = ∞). Choose any linear isometry U : H → L2(Ĝ; `2

N)

intertwining π with modulation. For a.e. α ∈ Ĝ, let Gr(α) : `2
N → `2

N be the Gramian of

the Bessel system {(Uui)(α)}i∈I . Then Gr :=
∫ ⊕
Ĝ

Gr(α) dα is the corresponding MI operator
from Corollary 7.19. If E(A ) is a Parseval frame, then Gr(α) is orthogonal projection onto

a subspace J(α) ⊆ `2
N for a.e. α ∈ Ĝ. This defines the corresponding range function in

Corollary 7.20.
Conversely, for every positive, integrable MI operator Gr =

∫ ⊕
Ĝ

Gr(α) dα on L2(Ĝ; `2
N),

there exists a sequence A = {ϕi}Ni=1 in L2(Ĝ; `2
N) such that {ϕi(α)}Ni=1 is Bessel with Gramian

Gr(α) for a.e. α ∈ Ĝ. Then the orbit of A under the modulation representation is a Bessel
G-system corresponding to Gr.

38



In particular, consider an integrable range function J : Ĝ→ {closed subspaces of `2
N}. For

a.e. α ∈ Ĝ, let P (α) : `2
N → `2

N be orthogonal projection onto J(α). Define A = {ϕi}Ni=1 to

be the sequence in L2(Ĝ; `2
N) given by ϕi(α) = P (α)δi, where δi is a canonical basis element

of `2
N . Then the orbit of A under the modulation representation is a Parseval frame for VJ ,

and J is the corresponding range function in Corollary 7.20.

Example 7.22. We interpret the classification for Parseval G-frames with a single generator
as follows. When N = 1, we can identify `2

N with C, so that L2(Ĝ; `2
1) = L2(Ĝ). A measurable

range function J : Ĝ→ {closed subspaces of C} amounts to a measurable subset

E = {α ∈ Ĝ : J(α) 6= {0}} ⊆ Ĝ,

and J is integrable if and only if |E| <∞. Overall, equivalence classes of Parseval G-frames

with a single generator are in one-to-one correspondence with measurable subsets E ⊆ Ĝ
(modulo null sets) satisfying |E| <∞.

Given such an E, the construction in Remark 7.21 produces the single generator ϕ = χE.
For each x ∈ G, let x̂ : Ĝ→ T be the character x̂(α) = α(x). Then the orbit of ϕ under the
modulation representation is ΦE := {x̂ · χE}x∈G. It is a Parseval frame for L2(E).

In the case where G is finite, let F ∈ CĜ×G be the discrete Fourier transform (DFT) matrix

F =
[
α(x)

]
α∈Ĝ, x∈G

. As a short, fat matrix, ΦE is obtained by extracting the rows labeled

by E from F , and then scaling to account for the normalized Haar measure on Ĝ. Explicitly,

ΦE = |G|−1/2
[
α(x)

]
α∈E, x∈G

∈ CE×G. The harmonic frames obtained in this way have been

broadly studied and applied [16, 25, 31, 32, 39, 54]. We have recovered the identification of
Parseval G-frames with harmonic frames from [56]. See [18] for a classification of harmonic
frames under a broader notion of unitary equivalence that is independent of group structure.

Remark 7.23. Suppose that G is a finite abelian group. Since there are only finitely many
subsets E ⊆ Ĝ, there are only finitely many unitarily inequivalent Parseval G-frames having
a single generator [56]. On the other hand, when N > 1 there are uncountably many

integrable range functions J : Ĝ → {closed subspaces of `2
N}. Hence there are uncountably

many unitarily inequivalent Parseval G-frames having N generators, for each N > 1.

8. Applications for shift-invariant spaces

In this section we give applications of MI operators in the study of shift-invariant (SI)
spaces and SI operators acting on these spaces. This provides a unifying way of obtaining
results on SI spaces and SI operators which was initiated in [14]. We shall focus on the
setting of SI spaces invariant under translations by an abelian group, which were studied in
[40].

Suppose that G is a second countable locally compact group and G ⊆ G is an abelian
subgroup. Given a function f : G → C and y ∈ G, we will write Lyf : G → C for the left
translation given by

(Lyf)(x) = f(y−1x) x ∈ G.

We equip G with a left invariant Haar measure.
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Definition 8.1. A closed subspace M ⊆ L2(G) is called G-translation-invariant, or G-TI, if
Ly(M) = M for all y ∈ G. We say that an operator T : M → M ′ between two G-TI spaces
M and M ′ is translation-invariant if

TLy = LyT for all y ∈ G.

In the classical setting of G = Rn and G = Zn these are known as shift-invariant subspaces
of L2(Rn), whose study was pioneered by de Boor, DeVore, and Ron [22, 23] and the first
author [12]. When G is a discrete co-compact subgroup of a second countable locally compact
abelian (LCA) group G, shift-invariant spaces were studied by Cabrelli and Paternostro [15].
The assumptions on G can be further relaxed to G being merely co-compact [14] or an
arbitrary subgroup of a second countable LCA group [40]. Finally, the second author has
extended results on TI spaces to the setting when G is an abelian subgroup of a second
countable locally compact group G, which is not necessarily abelian. The study of translation
invariant spaces can be reduced to the study of MI spaces using either fiberization operator or
a generalized Zak transform which converts left translation operators Ly into multiplication
operators acting on appropriate vector-valued MI spaces L2(X;H). The following two results
make this process possible.

Theorem 8.2 establishes the existence of a fiberization mapping in the setting of TI spaces.
It was shown in various degree of generality by several authors [14, 15, 43]. The setting of
an arbitrary subgroup of an LCA group is due to the second author [40, Proposition 4.3].

Theorem 8.2. Let G be a second countable locally compact abelian group and let G ⊆ G be
its subgroup. Let µG and µĜ be Haar measures on G and Ĝ such that the Plancherel formula

holds. Let µG∗ be a Haar measure on an annihilator G∗ of G in Ĝ, which is given by

G∗ = {γ ∈ Ĝ : γ(x) = 1 for all x ∈ G}.
For a fixed Borel section Ω ⊆ Ĝ of Ĝ/G∗, such that a bijection Ĝ/G∗ → Ω sends compact

sets to precompact sets, let µΩ be the unique regular Borel measure on Ω satisfying the Weil
identity ∫

Ĝ
fdµĜ =

∫
Ω

∫
G∗
f(αγ)dµG∗(γ)dµΩ(α) for all f ∈ L1(Ĝ, µĜ).

For any x ∈ G, define x̂ : Ω→ T as an evaluation mapping x̂(α) = α(x) for α ∈ Ω ⊆ Ĝ.
Then the following hold:

(i) There is a unitary map

T : L2(G, µG)→ L2(Ω, µΩ;L2(G∗, µG∗))

given by
(T f)(α)(γ) = f̂(αγ) γ ∈ G∗, α ∈ Ω, f ∈ L2(G, µG).

(ii) The set {x̂}x∈G is a Parseval determining set for L1(Ω, µΩ).
(iii) For any x ∈ G we have

(8.1) (T Lxf)(α) = x̂(α)T f(α) for a.e. α ∈ Ω.

Proof. The existence of a Borel section is a classical result [26] and so is the Weil formula
[28, Theorem 2.49]. Parts (i) and (iii) were shown in [40, Proposition 4.3]. Indeed, (8.1)

follows from the identification of Ω with Ĝ/G∗, which in turn is isomorphic with Ĝ. For any

x ∈ G, define x̂′ : Ĝ→ T as an evaluation mapping x̂(α) = α(x) for α ∈ Ĝ. It was observed
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in Section 7 that the collection {x̂′}x∈G is a Parseval determining set for L1(Ĝ). Since x̂ and
x̂′ can be identified, (ii) follows. �

In the case when G is a co-compact subgroup of G, the annihilator G∗ is a discrete subgroup
of Ĝ. Then, it is customary to take µG∗ to be a counting measure and hence L2(G∗, µG∗)
is identified with `2(G∗). Hence, in this case Theorem 8.2 reduces to [14, Lemma 3.5 and
Proposition 3.7].

Theorem 8.3 establishes the existence of the Zak transform in the setting of an arbitrary
abelian subgroup of a second countable locally compact group which is due to the second
author [40, Theorem 4.3].

Theorem 8.3. Let G be a second countable locally compact group and let G ⊆ G be its
abelian subgroup. Let µG be a left Haar measure on G. Let µG and µĜ be Haar measures

on G and Ĝ such that the Plancherel formula holds.
For a fixed Borel section ∆ ⊆ G of G\G, such that a bijection G\G → ∆ sends compact

sets to precompact sets, let µ∆ be the unique regular Borel measure on ∆ satisfying the Weil
identity

(8.2)

∫
G
fdµG =

∫
∆

∫
G

f(xy)dµG(x)dµ∆(y) for all f ∈ L1(G, µG).

For any x ∈ G, define x̂ : Ĝ → T as an evaluation mapping x̂(α) = α(x) for α ∈ Ĝ. Then
the following holds:

(i) There is a unitary map

Z : L2(G, µG)→ L2(Ĝ, µĜ;L2(∆, µ∆))

given by

(8.3) (Zf)(α)(y) = f̂(·y)(α) y ∈ ∆, α ∈ Ĝ, f ∈ L2(G, µG).
(ii) The set {x̂}x∈G is a Parseval determining set of L1(Ĝ, µĜ).

(iii) For any x ∈ G we have

(8.4) (ZLxf)(α) = x̂(α)T f(α) for a.e. α ∈ Ĝ.
Proof. The existence of a Borel section again follows from the classical result [26]. However,
the Weil formula involving right cosets G\G is a non-trivial fact which was shown in [40,
Theorem 3.4]. It is implicitly understood in (8.2) that x 7→ f(xy) belongs to L1(G) for
µ∆-a.e. y ∈ ∆, and the function y 7→

∫
G
f(xy)dµG(x) is in L1(∆). In particular, the Fourier

transform of x 7→ f(xy) is well-defined and denoted by f̂(·y) in (8.3). Parts (i) and (iii) were
shown in [40, Theorem 4.1]. Finally, we have already seen that the collection {x̂}x∈G is a

Parseval determining set for L1(Ĝ). �

Theorem 8.2 and 8.3 enable us to reduce the study of G-TI subspaces of L2(G) to the
framework of MI spaces where Theorem 3.5 is readily available. Hence, we have the following
result [40, Theorem 5.1], which unifies a number of earlier results on the structure of SI spaces
[12, 14, 23, 43].

Theorem 8.4. Let G be a second countable locally compact group and let G ⊆ G be its
abelian subgroup. Let M ⊆ L2(G) be a G-TI space. Equip X = Ĝ with Haar measure and
let ∆ be a Borel section of G\G as in Theorem 8.3.
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(i) There exists a measurable range function J : X → {closed subspaces of L2(∆)}, such
that

(8.5) M = {f ∈ L2(X) : Zf(α) ∈ J(α) for a.e. α ∈ X}.

(ii) Conversely, for any measurable range function J as in (i), the space M given by (8.5)
is G-TI, and this correspondence is one-to-one provided we identify range functions
that agree a.e.

(iii) If {fi}i∈I ⊆M is a countable family of generators of M indexed by I,

M = span{Lyfi : y ∈ G, i ∈ I},

then

J(α) = span{Zf(α) : i ∈ I} for a.e. α ∈ X.
(iv) Let 0 < A ≤ B <∞. A collection

EG({fi}i∈I) = {Lyfi : y ∈ G, i ∈ I}

is a A,B-frame of M if and only if {Zfi(α) : i ∈ I} is A,B-frame for a.e. α ∈ X.
(v) Let {fi}i∈I and {f ′i}i∈I be two countable families of functions in M such that EG({fi}i∈I)

and EG({f ′i}i∈I) are Bessel sequences. The systems EG({fi}i∈I) and EG({f ′i}i∈I) are
dual frames in M if and only if {Zfi(α) : I ∈ I} and {Zf ′i(α) : I ∈ I} are dual frames
in J(α) for a.e. α ∈ X.

(vi) The above characterization also holds for canonical dual frames.

In addition, if G is abelian, then all of the preceding results hold when X = Ω is a Borel
section of Ĝ/G∗ as in Theorem 8.2, ∆ = G∗, and the Zak transform Z is replaced by the
fiberization transform T .

Proof. Parts (i), (ii), and (iii) follow by combining Theorems 3.5 and 8.3. Indeed, by The-
orem 8.3 there is one-to-one correspondence between multiplication-invariant spaces V of
L2(X;L2(∆)) with respect to {x̂}x∈G and G-TI subspaces M of L2(G) given by V = Z(M).
Hence, Theorem 3.5 can be applied to ∆ to yield a range function characterization of V .
Parts (iv), (v), and (vi) then follow by Theorem 5.5, Corollary 5.13, and Corollary 5.14,
resp. �

Theorem 8.4 enables us to define the dimension function for a G-TI space M as

(8.6) dimG
M : X → N ∪ {0,∞}, dimG

M(α) = dim J(α), α ∈ X.

Here, X = Ĝ or in the case of abelian G we can take for X a Borel section Ω of Ĝ/G∗, which

is isomorphic with Ĝ. Note that the dimension functions defined via fiberization transform
T or the Zak transform Z coincide regardless whether we take T or Z in Theorem 8.4. This
follows by the relation between T and Z shown by the second author, see the calculation after
[40, Proposition 4.3]. The superscript G in (8.6) indicates the dependence of the dimension
function on a subgroup G ⊆ G. Indeed, every G-TI space is obviously also G′-TI for any
subgroup G′ ⊆ G. However, when not necessary we shall drop this dependence by writing
dimM .

In parallel to Theorem 8.4, the study of TI operators can be reduced to the framework of
MI operators where Theorem 3.7 becomes very useful.
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Theorem 8.5. Let G, G ⊆ G, X and ∆ be as in Theorem 8.4. Let M,M ′ ⊆ L2(G) be two
G-TI space with the corresponding range functions J, J ′ : X → {closed subspaces of L2(∆)}.
Let T : M →M ′ be G-TI operator.

(i) There exists a bounded measurable range operator R : J → J ′ such that

(8.7) Z ◦ T ◦ Z−1 =

∫ ⊕
X

R(α)dµ(α),

where µ is a Haar measure on X = Ĝ.
(ii) Conversely, for any measurable range operator R : J → J ′, an operator T : M → M ′

given by (8.7) is G-TI, and this correspondence is one-to-one provided we identify range
operators that agree a.e.

(iii) Any of the properties of G-TI operator T , which are listed in Theorem 4.1, is reflected
by the corresponding properties of a range operator R.

(iv) The spectra of range operator R satisfy

σ(R(α)) ⊆ σ(T ) for µ-a.e. α ∈ X.

(v) The relation (4.21) for a functional calculus between T and R holds when either h is a
holomorphic function on some neighborhood of σ(T ) or h is a bounded complex Borel
function on σ(T ) and T is normal.

In addition, if G is abelian, then all of the preceding results hold when X is a Borel section
of Ĝ/G∗, ∆ = G∗, and (8.7) replaced by

(8.8) T ◦ T ◦ T −1 =

∫ ⊕
X

R(α)dµ(α),

Proof. Parts (i) and (ii) follow by combing Theorems 3.7, 8.3, and 8.4(i)(ii). Parts (iii), (iv),
and (v) then follow by Theorem 4.1, Corollary 4.13, and Theorem 4.21, resp. �

We conclude with the following result which is a generalization of [12, Theorems 4.9 and
4.10] to the setting of TI spaces. Theorem 8.6 is an immediate consequence of Theorems
4.18 and 8.5.

Theorem 8.6. Suppose that M,M ′ ⊆ L2(G) are two G-TI spaces. The following are equiv-
alent:

(i) dimM(α) = dimM ′(α) for a.e. α ∈ X,
(ii) there exists a G-TI isometric isomorphism T : M →M ′,

(iii) there exists a G-TI isomorphism T : M →M ′.

Appendix A

We have not been able to locate references for the results below, so we supply our own
proofs.

Lemma A.1. The weak operator topology on L∞(X), viewed as an algebra of multiplication
operators on L2(X;H), is identical to the weak-∗ topology it receives as the dual of L1(X),
provided that H 6= {0}.
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Proof. Let {φn}∞n=1 be a sequence in L∞(X), and let φ ∈ L∞(X). If φn → φ in the weak-∗
topology, then for any ϕ, ψ ∈ L2(X;H), we obviously have

〈Mφnϕ, ψ〉 =

∫
X

〈(Mφnϕ)(x), ψ(x)〉dµ(x) =

∫
X

〈ϕ(x), ψ(x)〉φn(x) dµ(x)

→
∫
X

〈ϕ(x), ψ(x)〉φ(x) dµ(x) = 〈Mφϕ, ψ〉,

so φn → φ in the weak operator topology.
Conversely, when φn → φ in the weak operator topology and f ∈ L1(X) is arbitrary, we

can find a measurable unimodular function h : X → T such that f(x) = h(x)|f(x)| for a.e.
x ∈ X. Fix a unit vector u ∈ H, and define ϕ, ψ : X → H by ϕ(x) = h(x)|f(x)|1/2u and
ψ(x) = |f(x)|1/2u for a.e. x ∈ X. Then∫

X

‖ϕ(x)‖2 dµ(x) =

∫
X

‖ψ(x)‖2 dµ(x) =

∫
X

|f(x)| dµ(x) <∞,

and

〈Mφnϕ, ψ〉 =

∫
X

〈φn(x) · h(x)|f(x)|1/2u, |f(x)|1/2u〉dµ(x) =

∫
X

φn(x)f(x) dµ(x)

converges to

〈Mφϕ, ψ〉 =

∫
X

φ(x)f(x) dµ(x),

so φn → φ in the weak-∗ topology. �

Lemma A.2. If G is a locally compact abelian group and H is a separable Hilbert space,
then the decomposing measure of every representation π : G→ U(H) is σ-finite.

Proof. Let µ be a decomposing measure for π. By definition there exists a separable Hilbert
space K, a measurable range function

J : Ĝ→ {closed subspaces of K}

with J(α) 6= {0} µ-a.e. α ∈ Ĝ, and a unitary U : H → VJ ⊆ L2(Ĝ, µ;K) intertwining π with
modulation.

Since VJ ∼= H is separable, it has a countable orthonormal basis {ϕi}Ni=1. By Theorem 3.5,
the range function J satisfies

J(α) = span{ϕi(α) : 1 ≤ i ≤ N} (α ∈ Ĝ)

Since J(α) 6= {0} µ-a.e. α ∈ Ĝ, we have

µ(E0) := µ({α ∈ Ĝ : ϕi(α) = 0 for all i}) = 0.

Finally, Ĝ is the union of E0 and the sets

Ei,n := {α ∈ Ĝ : ‖ϕi(α)‖2 > 1/n},

each of which satisfies µ(Ei,n) ≤ n ‖ϕi‖2 <∞. �
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