INTERIOR SCHAUDER ESTIMATES FOR THE FOURTH ORDER HAMILTONIAN STATIONARY EQUATION IN TWO DIMENSIONS

ARUNIMA BHATTACHARYA AND MICAH WARREN

Abstract. We consider the Hamiltonian stationary equation for all phases in dimension two. We show that solutions that are $C^{1,1}$ will be smooth and we also derive a $C^{2,\alpha}$ estimate for it.

1. Introduction

In this paper, we study the regularity of the Lagrangian Hamiltonian stationary equation, which is a fourth order nonlinear PDE. Consider the function $u : B_1 \to \mathbb{R}$ where B_1 is the unit ball in \mathbb{R}^2. The gradient graph of u, given by $\{(x, Du(x))| x \in B_1\}$ is a Lagrangian submanifold of the complex Euclidean space. The function θ is called the Lagrangian phase for the gradient graph and is defined by

$$\theta = F(D^2 u) = \text{Im} \log \det(I + iD^2 u)$$

or equivalently,

$$\theta = \sum_i \arctan(\lambda_i)$$

(1.1)

where λ_i represents the eigenvalues of the Hessian.

The non-homogeneous special Lagrangian equation is given by the following second order nonlinear equation

$$F(D^2 u) = f(x).$$

(1.2)

The Hamiltonian stationary equation is given by the following fourth order nonlinear PDE

$$\Delta_g \theta = 0$$

(1.3)

where Δ_g is the Laplace-Beltrami operator, given by:

$$\Delta_g = \sum_{i,j=1}^2 \frac{\partial_i(\sqrt{\det g}g^{ij}\partial_j)}{\sqrt{\det g}}$$
and g is the induced Riemannian metric from the Euclidean metric on \mathbb{R}^4, which can be written as

$$g = I + (D^2 u)^2.$$

Recently, Chen and Warren [CW19] proved that in any dimension, a $C^{1,1}$ solution of the Hamiltonian stationary equation will be smooth with uniform estimates of all orders if the phase $\theta \geq \delta + (n - 2)\pi/2$, or, if the bound on the Hessian is small. In the two dimensional case, using [CW19]'s result, we get uniform estimates for u when $|\theta| \geq \delta > 0$ (by symmetry). In this paper, we consider the Hamiltonian stationary equation for all phases in dimension two without imposing a smallness condition on the Hessian or on the range of θ, and we derive uniform estimates for u, in terms of the $C^{1,1}$ bound which we denote by Λ. We write $||u||_{C^{1,1}(B_1)} = ||Du||_{C^0,1(B_1)} = \Lambda$. Our main results are the following:

Theorem 1.1. Suppose that $u \in C^{1,1}(B_1)$ and satisfies (1.3) on $B_1 \subset \mathbb{R}^2$ where $\theta \in W^{1,2}(B_1)$. Then u is a smooth function with interior Hölder estimates of all orders, based on the $C^{1,1}$ bound of u.

Theorem 1.2. Suppose that $u \in C^{1,1}(B_1)$ and satisfies (1.2) on $B_1 \subset \mathbb{R}^2$. If $f \in C^{\alpha}(B_1)$, then there exists $R = R(2, \Lambda, \alpha) < 1$ such that $u \in C^{2,\alpha}(B_R)$ and satisfies the following estimate

$$|D^2 u|_{C^{\alpha}(B_R)} \leq C_1(||u||_{L^\infty(B_1)}, \Lambda, |f|_{C^{\alpha}(B_1)}).$$

To be clear, for any given function u we denote

$$\theta(x) = F(D^2 u(x))$$

so that for solutions of (1.2) we always have

$$\theta(x) \equiv f(x).$$

Our proof of Theorem 1.1 goes as follows: We start by applying the De Giorgi-Nash theorem to the uniformly elliptic Hamiltonian stationary equation (1.3) on B_1 to prove that $\theta \in C^\alpha(B_{1/2})$. Next we consider the non-homogeneous special Lagrangian equation (1.2) where $\theta \in C^\alpha(B_{1/2})$. Using a rotation of Yuan [Yua02] we rotate the gradient graph so that the new phase $\bar{\theta}$ of the rotated gradient graph satisfies $|\bar{\theta}| \geq \delta > 0$. Now we apply [CC03] to the new potential \bar{u} of the rotated graph to obtain a $C^{2,\alpha}$ interior estimate for it. On rotating back the rotated gradient graph to our original gradient graph, we see that our potential u turns out to be $C^{2,\alpha}$ as well. A computation involving change of co-ordinates gives us the corresponding $C^{2,\alpha}$ estimate, shown in (1.4). Once we have a $C^{2,\alpha}$ solution of (1.3), smoothness follows by [CW19, Corollary 5.1].
In two dimensions, solutions to the second order special Lagrangian equation
\[F(D^2u) = C \]
enjoy full regularity estimates in terms of the potential \(u \) [WY09]. For higher dimensions, such estimates fail [WY13] for \(\theta = C \) with \(|C| < (n-2)\pi/2 \).

2. Proof of theorems:

We first prove Theorem 1.2, followed by the proof of Theorem 1.1. We prove Theorem 1.2 using the following lemma. Recalling (1.5, 1.6) we state the following lemma:

Lemma 2.1. Suppose that \(u \in C^{1,1}(B_1) \) satisfies (1.2) on \(B_1 \subset \mathbb{R}^2 \). Suppose
\[0 \leq \theta(0) < (\pi/2 - \arctan \Lambda)/4. \]
If \(\theta \in C^\alpha(B_1) \), then there exists \(0 < \alpha < \bar{\alpha} \) and \(C_0 \) such that
\[|D^2u(x) - D^2u(0)| \leq C_0(||u||_{L^\infty(B_1)}, \Lambda, |\theta|_{C^\alpha(B_1)}) \ast |x|^{\alpha}. \]

Proof. Consider the gradient graph \(\{(x, Du(x))| x \in B_1 \} \) where \(u \) has the following Hessian bound
\[-\Lambda I_n \leq D^2u \leq \Lambda I_n \]
a.e. where it exists.

Define \(\delta \) as
\[\delta = (\pi/2 - \arctan \Lambda)/2 > 0. \]
Since by (2.1) we have \(0 \leq \theta(0) < \delta/2 \), there exists \(R'(\delta, |\theta|_{C^\alpha}) > 0 \) such that
\[|\theta(x) - \theta(0)| < \delta/2 \]
for all \(x \in B_{R'} \subseteq B_1 \). This implies for every \(x \) in \(B_{R'} \) for which \(D^2u \) exists, we have
\[\delta > \theta > \theta(0) - \delta/2. \]
So now we rotate the gradient graph \(\{(x, Du(x))| x \in B_{R'} \} \) downward by an angle of \(\delta \).

Let the new rotated co-ordinate system be denoted by \((\bar{x}, \bar{y})\) where
\[\bar{x} = \cos(\delta)x + \sin(\delta)Du(x) \]
(2.3)
\[\bar{y} = -\sin(\delta)x + \cos(\delta)Du(x). \]

On differentiating \(\bar{x} \) (2.3) with respect to \(x \) we see that
\[\frac{d\bar{x}}{dx} = \cos(\delta)I_n + \sin(\delta)D^2u(x) \leq \cos(\delta)I_n + \Lambda \sin(\delta)I_n \]
Thus
\[
\cos(\delta)I_n - \Lambda \sin(\delta)I_n \leq \frac{d\bar{x}}{dx} \leq \cos(\delta)I_n + \Lambda \sin(\delta)I_n.
\]
To obtain Lipschitz constants so that
\[
\left(2.5\right) \frac{1}{L_2} I_n \leq \frac{d\bar{x}}{dx} \leq L_1 I_n
\]
let
\[
L_1 = \cos(\delta) + \Lambda \sin(\delta)
\]
\[
L_2 = \max\left\{\left|\frac{1}{\cos(\sigma)I_n + D^2u(x)\sin(\sigma)}\right| \mid x \in B_{R'}\right\}.
\]
To find the value of \(L_2\), we see that in \(B_{R'}\) we have the following:
let \(\min\{\theta_1, \theta_2\} \geq -A\) where \(A = \arctan \Lambda\).
\[
\cos(\delta)I_n + \sin(\delta)D^2u(x) \geq \cos(\delta) - \sin(\delta)\tan(A)
\]
\[
= \cos(\delta)(1 - \tan(\delta)\tan(A))
\]
\[
= \cos(\delta)\frac{\tan(\delta) + \tan(A)}{\tan(\delta + A)}
\]
\[
= \cos(\delta)\frac{\tan(\delta) + \tan(A)}{\tan(\pi/2 - A + A)}
\]
\[
= \cos(\delta)\frac{\tan(\delta) + \tan(A)}{\tan(\pi/2 - \delta)}.
\]
This shows that
\[
\frac{1}{L_2} = \cos(\delta)\frac{\tan(\delta) + \tan(A)}{\tan(\pi/2 - \delta)}.
\]
Clearly \(1/L_2\) is positive.

Now, by [CW19, Prop 4.1] we see that there exists a function \(\bar{u}\) such that
\[
\bar{y} = D_x \bar{u}(\bar{x})
\]
where
\[
(2.6) \quad \bar{u}(x) = u(x) + \sin \delta \cos \delta \frac{|Du(x)|^2 - |x|^2}{2} - \sin^2(\delta)Du(x) \cdot x
\]
defines \(\bar{u}\) implicitly in terms of \(\bar{x}\) (since \(\bar{x}\) is invertible). Here \(\bar{x}\) refers to the rotation map (2.3).

Note that
\[
\bar{\theta}(\bar{x}) - \bar{\theta}(\bar{y}) = \theta(x) - \theta(y)
\]
which implies that \(\bar{\theta} \) is also a \(C^{\bar{\alpha}} \) function

\[
\frac{|\bar{\theta}(\bar{x}_1) - \bar{\theta}(\bar{x}_2)|}{|\bar{x}_1 - \bar{x}_2|^{\bar{\alpha}}} = \frac{|\theta(x_1) - \theta(x_2)|}{|x_1 - x_2|^{\bar{\alpha}}} \ast \frac{|x_1 - x_2|^{\bar{\alpha}}}{|\bar{x}_1 - \bar{x}_2|^{\bar{\alpha}}}
\]

thus,

\[
|\bar{\theta}|_{C^{\bar{\alpha}}(B_{r_0})} \leq L_{\bar{\alpha}} \bar{\theta}|_{C^{\bar{\alpha}}(B_{r'})}.
\]

Let \(\Omega = \bar{x}(B_{r'}) \). Note that \(B_{r_0} \subset \Omega \) where \(r_0 = R'/2L_2 \). So our new gradient graph is \(\{(\bar{x}, D_2 \bar{u}(\bar{x}))|\bar{x} \in \Omega\} \). The function \(\bar{u} \) satisfies the equation

\[
F(D^2 \bar{u}) = \bar{\theta}(\bar{x})
\]

in \(B_{r_0} \) where \(\bar{\theta} \in C^{\bar{\alpha}}(B_{r_0}) \). Observe that on \(B_{r_0} \) we have

\[
\bar{\theta} = \theta - 2\delta < \delta - 2\delta = -\delta < 0
\]
as \(\theta < \delta \) on \(B_{r'} \).

Claim 2.2. : If \(|\bar{\theta}| > \delta \), then \(F(D^2 \bar{u}) = \bar{\theta} \) is a solution to a uniformly elliptic concave equation.

Proof. The proof follows from [CPW17, lemma 2.2] and also from [CW19, pg 24]. \(\square \)

Now using [CC03, Corollary 1.3] we get interior Schauder estimates for \(\bar{u} \):

\[
|D^2 \bar{u}(\bar{x}) - D^2 \bar{u}(0)| \leq C(||\bar{u}||_{L^\infty(B_{r_0/2})} + |\bar{\theta}|_{C^{\bar{\alpha}}(B_{r_0/2})})
\]

for all \(\bar{x} \) in \(B_{r_0/2} \) where \(C = C(\Lambda, \alpha) \). This is our \(C^{2,\alpha} \) estimate for \(\bar{u} \).

Next, in order to show the same Schauder type inequality as (2.7) for \(u \) in place of \(\bar{u} \), we establish relations between the following pairs:

(i) oscillations of the Hessian of \(D^2 u \) and \(D^2 \bar{u} \)
(ii) oscillations of \(\theta \) and \(\bar{\theta} \)
(iii) the supremum norms of \(u \) and \(\bar{u} \).

We rotate back to our original gradient graph by rotating up by an angle of \(\delta \) and consider again the domain \(B_{r'}(0) \). This gives us the following relations:

\[
x = \cos(\delta)x - \sin(\delta)D_2 \bar{u}(\bar{x})
\]

(2.8)

\[
y = \sin(\delta)x + \cos(\delta)D_2 \bar{u}(\bar{x}).
\]

This gives us:

\[
\frac{dx}{d\bar{x}} = \cos(\delta)I_n - \sin(\delta)D_2^2 \bar{u}(\bar{x})
\]

\[
D_2y = \sin(\delta)I_n + \cos(\delta)D_2^2 \bar{u}(\bar{x}).
\]
So we have
\[D_x^2 u(x) = D_x y \frac{d \bar{x}}{dx} = \left[\sin(\delta)I_n + \cos(\delta) D_x^2 \bar{u}(\bar{x}) \right] \left[\cos(\delta)I_n - \sin(\delta) D_x^2 \bar{u}(\bar{x}) \right]^{-1}. \]
The above expression is well defined everywhere because \(D_x^2 \bar{u}(\bar{x}) < \cot(\delta)I_n \) for all \(\bar{x} \in B_{r_0} \).

Note that we have
\[\cos(\delta)I_n - D_x^2 \bar{u}(\bar{x}) \sin(\delta) \geq \frac{1}{L_1}, \]
by (2.5).

Next,
\[D_x^2 u(x) - D_x^2 u(0) = \left[\sin(\delta)I_n + \cos(\delta) D_x^2 \bar{u}(\bar{x}) \right] \left[\cos(\delta)I_n - \sin(\delta) D_x^2 \bar{u}(\bar{x}) \right]^{-1} \]
\begin{equation}
(2.9)
\end{equation}
\[- \left[\sin(\delta)I_n + \cos(\delta) D_x^2 \bar{u}(0) \right] \left[\cos(\delta)I_n - \sin(\delta) D_x^2 \bar{u}(0) \right]^{-1}. \]

For simplification of notation we write
\[D_x^2 \bar{u}(\bar{x}) = A \]
\[D_x^2 \bar{u}(0) = B \]
\[\cos(\delta) = c, \sin(\delta) = s. \]

Noting that \([sI_n + cA]\) and \([cI_n - sA]^{-1}\) commute with each other we can write (2.9) as the following equation
\[D_x^2 u(x) - D_x^2 u(0) = \]
\[[cI_n - sB]^{-1}[cI_n - sB][sI_n + cA][cI_n - sA]^{-1} - \]
\[[cI_n - sB]^{-1}[sI_n + cB][cI_n - sA][cI_n - sA]^{-1}. \]

Again we see that
\[[cI_n - sB][sI_n + cA] - [sI_n + cB][cI_n - sA] = A - B. \]
This means
\[D_x^2 u(x) - D_x^2 u(0) = [cI_n - sB]^{-1}[A - B][cI_n - sA]^{-1}. \]
We have already shown that
\[|cI_n - sA| \geq \frac{1}{L_1} \]
which implies
\[|cI_n - sA|^{-1} \leq L_1. \]
Thus we get
\[
|D_x^2 u(x) - D_x^2 u(0)| \leq L_2^2 |D_x^2 \bar{u}(\bar{x}) - D_x^2 \bar{u}(0)|.
\]
(2.10)
\[
\leq C L_1^2 \left(||\bar{u}||_{L^\infty(B_{r_0/2})} + |\theta|_{C^\alpha(B_{r_0/2})} |\bar{x}|^\alpha \right)
\]
where \(L_1 \) is the Lipschitz constant of the co-ordinate change map. This implies
\[
\frac{1}{L_1^{\alpha+2}} |D_x^2 u(x)|_{C^\alpha(B_R)} \leq |D_x^2 u(\bar{x})|_{C^\alpha(B_{r_0/2})}.
\]
(2.11)
Recall from (2.6) that
\[
\bar{u}(x) = u(x) + v(x).
\]
This shows
\[
||\bar{u}(\bar{x})||_{L^\infty(B_{r_0/2})} = ||\bar{u}(x)||_{L^\infty(B^{-1}_{r_0/2})} \leq ||\bar{u}(x)||_{L^\infty(B_{r'})}
\]
(2.12)
\[
\leq ||u(x)||_{L^\infty(B_{r'})} + ||v||_{L^\infty(B_{r'})}.
\]
Note that
\[
||v||_{L^\infty(B_R)} \leq R ||Du||_{L^\infty(B_{r'})} + \frac{1}{2} R^2 + ||Du||_{L^\infty(B_{r'})}^2
\]
(2.13)
and combining (2.11), (2.12), (2.13) with (2.10) we get
\[
|D_x^2 u(x) - D_x^2 u(0)| \leq C L_1^{\alpha+2} \left\{ \frac{1}{2} R^2 + ||Du||_{L^\infty(B_{r'})}^2 + L_0^2 |\theta|_{C^\alpha(B_{r'})} \right\} |x|^{\alpha}.
\]
This proves the Lemma.

Proof of Theorem 1.2. First note that the lemma provides a bound for the Hölder norm of the Hessian on any interior ball, so by a rescaling of the form
\[
u_\rho(x) = \frac{u(\rho x)}{\rho^2}
\]
for values of \(\rho > 0 \) and translation of any point to the origin. Consider the gradient graph \((x, Du(x)) | x \in B_1\) where \(u \) satisfies
\[F(D^2 u) = \theta\]
on \(B_1 \) and \(\theta \in C^\alpha(B_1)\). Then there exists a ball of radius \(r \) inside \(B_1 \) on which \(\text{osc} \theta < \delta/4 \) where \(\delta \) is as defined in (2.2).
Now this means that either we have \(\theta(x) < \delta/2 \) in which case, by the above lemma we see that \(u \in C^{2,\alpha}(B_r) \) satisfying the given estimates; or we have \(\theta(x) > \delta/4 \) in which case \(u \in C^{2,\alpha}(B_r) \) with uniform estimates, by claim (2.2) and [CC03, Corollary 1.3].
Proof of Theorem 1.1. Since $u \in C^{1,1}(B_1)$ and $\theta \in W^{1,2}(B_1)$ satisfies the uniformly elliptic equation

$$\Delta g \theta = 0,$$

by the De Giorgi-Nash Theorem we have that $\theta \in C^\alpha(B_{1/2}).$ This means that u satisfies

$$F(D^2 u) = \theta.$$

By Theorem 1.2 we see that $u \in C^{2,\alpha}(B_r)$ where $r < 1/2$. Smoothness follows by [CW19, Corollary 5.1].

References

