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Abstract. We explore the regularity theory of optimal transport maps for costs
satisfying a Ma-Trudinger-Wang condition, by viewing the graphs of the trans-
port maps as maximal Lagrangian surfaces with respect to an appropriate pseudo-
Riemannian metric on the product space. We recover the local regularity theory
in two-dimensional manifolds.

1. Introduction

When giving an alternate formulation of the Ma-Trudinger-Wang regularity the-
ory, Kim and McCann [KM10] defined pseudo-Riemmanian metrics with signature
(n, n) on the product space M × M̄. This was followed [KMW10] by the obser-
vation that the graph of the optimal transportation map is a volume maximizing
n-dimensional submanifold (of codimension n), with respect to a conformal mod-
ification of the metric in [KM10]. In this note, we explore the idea that one can
directly derive regularity theory purely from the property of being maximal. If
the metric is of Kim-McCann type, a calibrated Lagrangian submanifold is either
the graph of a solution to an optimal transportation problem, or, if the manifold has
topology, could be the graph of a Lie solution to the optimal transportation problem
[War11]. Here, to keep things simple, we restrict our attention to the case when
n = 2.

Recall the setting of Kim-McCann [KM10] where metrics on the product space
M × M̄ are locally given by

(1.1) h =
(

0 hi j̄ (x, x̄)
hT

i j̄
(x, x̄) 0

)
where

(1.2) hi j̄(x, x̄) = −
1
2
∂ j̄∂ic(x, x̄)

for some cost function c : M × M̄ → R. We assume here and in the sequel that
c is twice differentiable and satisfies the (A2) condition on N ⊂ M × M̄\C where
C is a measure zero set which we call the ’cut locus’. In particular, hi j̄ (x, x̄) is
non-degenerate on N , where h defines an (n, n) signature metric.

1
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The underlying optimal transportation problem is to find the map between the
measures defined by bounded mass densities ρ, ρ̄ that minimizes the total cost:∫

M
c(x,T (x))ρ(x)dx

over the space of maps T satisfying

T#ρ(x)dx = ρ̄(x̄)dx̄.

In [KMW10] it was illustrated that when taking the conformal metric

(1.3) h̃ =

 ρ(x)ρ̄ (x̄)

det
(
−∂ j̄∂ic(x, x̄)

) 1/n (
0 hi j̄ (x, x̄)

hT
i j̄

(x, x̄) 0

)
graphs of optimal transportion plans T are calibrated maximal submanifolds with
respect to this metric [KMW10, Theorem 1.1]. The conformal modification of the
Kim-Mcann metric can sometimes lead to technical computational issues. So here
we point out that a weighted approach can be convenient: Consider instead the
weighted manifold

(1.4)

M × M̄, h,

 ρ(x)ρ̄(x̄)

det
(
−∂ j̄∂ic(x, x̄)

)1/2 .
One can check that the volume of an n-submanifold with this weight is the same as
the volume of the n-submanifold in the conformal setting defined by (1.3). Thus
the minimal surfaces are the same in either setting. However, instead of the min-
imal surface equation occuring in the setting (1.3), in the latter setting (1.4), the
manifolds will be locally defined by the weighted minimal surface equation

(1.5) H + (∇ f )N = 0

where

e− f =

 ρ(x)ρ̄(x̄)

det
(
−∂ j̄∂ic(x, x̄)

)1/2

.

Here we offer a proof-of-concept that the regularity theory can be derived geo-
metrically, obtaining yet another approach for the Ma-Trudinger-Wang regularity
theory. The original paper [MTW05] presents a maximum principle argument ap-
plied to the Monge-Ampère equation, while the approach by Loeper [Loe09] is a
careful analysis of the cost function which requires less a priori regularity. The
setting of Kim-McCann offers a solid pseudo-Riemannian geometric formulation
of the approach offered by Loeper, where they identify the MTW condition as a
cross-curvature condition on the metric h, namely

Rmh(ei, e j̄, e j̄, ei) > 0

whenever ei ∈ TpM, e j̄ ∈ T p̄M̄ and h(ei, e j̄) = 0. The cross-curvature positivity
is preserved under conformal changes [KMW10, Remark 4.2] so if it is present in
the Kim-McCann metric (1.1) it will also be present in the metric (1.3).
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To significantly simplify the computation we restrict to the case of compact
ambient manifolds of the form M × M̄ with metric of the form (1.1) where both
manifolds have dimension n = 2. While we focus on the case where the metric is
of the Kim-McCann form (1.2), it should be possible to loosen this to more gen-
eral pseudo-Riemmanian submanifolds satisfying suitable curvature conditions.
Indeed, our approach is motivated by the paper [LS11] where general regularity
results follow from curvature conditions.

Recently Brendle-Léger-McCann-Rankin [BLMR23] have proven regularity for
maximal surfaces in pseudo-Riemannian metrics with positive cross-curvature in
general dimensions via a generalized method which applies to maximal surfaces
in manifolds of general codimension. The method is similar but slightly different:
here our strategy is to bound the Hodge dual of an alternating two form (following
[LS11]), whereas the approach in [BLMR23] is to bound the maximum eigenvalue
of a symmetric (0, 2) tensor field restricted to the submanifold. Naturally, both
approaches rely on covariantly differentiating the (0, 2) tensor twice and using the
positive curvature terms that arise via the Codazzi formula, together with the min-
imal surface equation. 1

2. Prelimaries

We consider the graph

Γ = {(x,T (x) : x ∈ M} ⊂ M × M̄

for some function
T : M → M̄.

Assume that the graph Γ lies in a compact subset N ⊂ M × M̄\C where C is the
cut locus where c might not be smooth. Here we chooseN to be a compact subset
staying clear of the cut locus. (An important aspect of regularity theory for optimal
transport maps is the “stay-away” property, that is, there is an a priori lower bound
on the distance of the graph to the cut locus. This is typically argued in the process
of a regularity argument - but as we are focusing on an alternative approach to the
local regularity, we may steer clear of these arguments by assuming the graph stays
within a compact set avoiding the cut locus.)

Recall that Γ is a Lagrangian submanifold with respect to the symplectic form
given by ([KM10, 5.3])

hi j̄dxi ∧ dx̄ j,

and that there is a relation between this symplectic form and the metric given by

(2.1) h(V,W) = hi j̄dxi ∧ dx̄ j(KV,W)

where
K : T(p,p̄)

(
M × M̄

)
→ T(p,p̄)

(
M × M̄

)
1An early version of this paper was posted on the author’s website, and set aside during the

pandemic. In the meantime, the authors of [BLMR23] developed their much more general approach.
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is the map represented as

Kp,p̄ = ITp M ⊕ (−I)T p̄ M̄

that is, K acts as the identity on T M while performing a sign change on T M̄. Since
Γ is a Lagrangian submanifold, where (2.1) holds, K maps the tangent space to the
normal space along Γ.

Claim 2.1. K is parallel.

Proof. Identifying K via musical isomorphism with the symplectic form, we can
check that the symplectic form is parallel:

∇̄Xh(KV,W) = Xh(KV,W) − h(K∇̄XV,W) − h(KV, ∇̄XW).

First assume that V,W are in TpM. In this case, by [KM10, Lemma 4.1] the con-
nection maps TpM to TpM, so all terms above vanish. Similarly if both V,W are
in T p̄M̄. Now consider the case that V ∈ TpM,W ∈ T p̄M̄.

∇̄Xh(KV,W) = Xh(V,W) − h(∇̄XV,W) − h(V, ∇̄XW).

which is just the fact that h is parallel with respect to itself. On the other hand if
roles are reversed

∇̄Xh(KV,W) = Xh(−V,W) − h(−∇̄XV,W) − h(−V, ∇̄XW).

Thus K♭ is parallel. □

Given a frame for the submanifold Γ, we may define the components of the
second fundamental form

bi jk = h(∇̄∂i∂ j,K∂k).

Claim 2.2. The expression for bi jk is symmetric in all three indices.

Proof. Because K is parallel, K2 = I and h(K·,K·) = −h(·, ·)

0 = ∂ih(∂ j,K∂k)

= h(∇̄∂i∂ j,K∂k) + h(∂ j,K∇̄∂i∂k)

= h(∇̄∂i∂ j,K∂k) − h(K∂ j, ∇̄∂i∂k)
= bi jk − bik j.

This establishes symmetry in the last two. Symmetry in the first two is well-known
for the second fundamental form. □

The following is the Ma-Trudinger-Wang curvature condition as uncovered by
Kim and McCann in the product manifold setting [KM10, Def. 2.3].

Definition 2.3. The metric h is strictly regular, if whenever (x, x̄) ∈ N and

0 , ∂i ∈ TxM

0 , ∂ j̄ ∈ T x̄M̄
h(x,x̄)(∂i, ∂ j̄) = 0
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then the curvature of the metric h satisfies

Rmh
(
∂i, ∂ j̄, ∂ j̄, ∂i

)
> 0.

Note that the metric h̃ will also satisfy this property [KMW10, Remark 4.2].

3. Special coordinate charts at a point

We start by fixing arbitrary Riemannian metrics g1, g2 on M, M̄.
Let (p, p̄) ∈ M × M̄. Given {e1, e2} an oriented g1-orthonormal basis for TpM,

we may take exponential coordinates (w.r.t g1) near p for a neighborhood of M,
and then do similarly for an oriented orthonormal basis for T p̄M̄, giving us a local
product neighborhood U × Ū. In this U × Ū, we have

h =
(

0 hi j̄ (x, x̄)
hT

i j̄
(x, x̄) 0

)
.

Now take a local change of coordinates

φ : Ũ → Ū

so that

φ(0) = p̄(3.1)

Dφ = hi j̄ (p, p̄)−1(3.2)

as hi j is nondegenerate. After this coordinate change, the metric at the point (p, p̄)
with respect to the basis on U × Ũ becomes

(3.3) h =
(

0 I
I 0

)
.

Now forgetting the old vertical basis vectors here, consider the new ones {ē1, ē2}

that occur after transformation Dφ. These are not expected to be orthonormal with
respect to g2 but satisfy

h(ei, ē j) = δi j

and

(3.4)
1

C1
≤ ∥ēi∥g2 ≤ C1

for some universal constant C1 depending on bounds on hi j̄ (p, p̄)−1 and our choice
of g2.

Now given a g1-orthonormal {e1, e2} basis at p and a graphical manifold Γ, let g
be the induced metric from h on Γ, that is

g11 = h(e1, e1) etc.

This can be diagonalized by an orthogonal rotation of {e1, e2} so we may assume
that the expression of the metric g is diagonal for our choice of {e1, e2}: There will
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be positive λ1, λ2 such that

∥ei∥
2
g = λ

2
i , i = 1, 2.(3.5)

⟨e1, e2⟩g = 0
⟨ei, e j⟩g1 = δi j

and WLOG λ1 ≥ λ2. (Here we use ei in two senses, identifying ei first as an abstract
tangent vector on the manifold M, which is measured by g1, but also as a tangent
vector to the submanifold Γ, which is measured by h, restricting to the metric g,
which is positive definite on Γ as the submanifold Γ is spacelike).

It will be convenient to use the orthonormal basis with respect to g :

∂1 =
1
λ1

e1

∂2 =
1
λ2

e2

so that

∥∂1∥g = ∥∂2∥g = 1.

Using (3.5) and (3.3)

∂1 = (
1
λ1
, 0, λ1, ∗)

∂2 = (0,
1
λ2
, ∗, λ2)

and then (3.3) with the fact that Γ is Lagrangian gives us (still only at the point)

∂1 = (
1
λ1
, 0, λ1, 0)(3.6)

∂2 = (0,
1
λ2
, 0, λ2).

At the point (p, p̄), consider also the orthonormal basis for the normal space

n1 = (
1
λ1
, 0,−λ1, 0)(3.7)

n2 = (0,
1
λ2
, 0,−λ2)

which can be extended to a normal frame via

ni := K∂i.

Now with respect to the Euclidean systems on U × Ũ we have the representation

(3.8) DT =
(
λ2

1 0
0 λ2

2

)
.
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4. Setup before the covariant differentiation

Our goal is to prove the following theorem, which is a special case of general
work by Ma-Trudinger-Wang and Loeper.

Theorem 4.1. Suppose that T is a smooth optimal transport plan from an oriented
compact two-dimensional manifold M to an oriented compact two-dimensional
manifold M̄ with respect to a cost function c which satisfies a positive cross-
curvature condition (Definition 2.3), and measures ρ and ρ̄. Assume that the den-
sities of ρ, ρ̄ are smooth and bounded away from zero, and that the graph of T lies
in an a priori determined compact set N on which c is smooth. Then with respect
to any given metrics g1 and g2 on M and M̄, the derivative DT satisfies an a priori
bound:

∥DT∥ ≤ C(g1, g2, c, ρ, ρ̄,N)
where

∥DT∥ = max
{
∥DT (V)∥g2 | V ∈ TxM, ∥V∥g1 = 1

}
.

Choose g1, g2 to be arbitrary Riemannian metrics on M, M̄. These metrics will
be fixed and will serve as a gauge against which to obtain estimates. We assume
that M is oriented, so on any neighborhood U we can take an oriented orthonormal
(w.r.t g1) frame {e1, e2} for U. Now define

(4.1) Ω =
[
g1 (e1, ·) + h1(e1, ·)

]
∧

[
g1 (e2, ·) + h1(e2, ·)

]
to be a two-form on U × M̄. One can check that this does not depend on the choice
of oriented orthonormal frame {e1, e2} so using a partition of unity, we may extend
Ω to a well-defined form everywhere where h is defined on M × M̄. Our goal is to
show that the maximum value of the Hodge dual of this two-form restricted to Γ is
a priori bounded.

4.1. Jacobian condition. Given charts, the objects ρ, ρ̄ can be represented by
measure densities, so when we write down the Jacobian equation satisfied by an
optimal map (or more generally, a map whose graph is calibrated as in [KMW10]):

det DT (x)ρ̄(T (x)) = ρ(x)

we are implictly using coordinate systems on both sides to define det DT (x) and
each of the densities. Given a choice of metric g1 we can define ρ (x) to be a
well-defined density by letting

ρ(x) =
dρ

dVg1

and similar for ρ̄. Fixing these metrics, if

0 <
1
µ1
≤ ρ ≤ µ1

0 <
1
µ2
≤ ρ̄ ≤ µ2
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we may conclude that

(4.2)
1
Λ
≤ det DT ≤ Λ

in any coordinates with dVg1(x) = dVg2 (T (x)) = 1. By (4.2) it follows that there
exists Λ (h, g1, g2, ρ, ρ̄) (maybe slightly different from previous Λ) such that

(4.3)
1
Λ
≤ λ1λ2 ≤ Λ

provided the measure densities are continuous and bounded away from 0 and M, M̄
are compact.

4.2. Maximum Principle argument. With the metric g on Γ, we may consider
the scalar function

w := ∗Ω|Γ

that is, the ratio

w =
Ω|Γ (∂1, ∂2)
dVg (∂1, ∂2)

for any tangent frame ∂1, ∂2. This function attains a maximum value at some point
(xmax,T (xmax)) ∈ Γ.

Claim 4.2. Theorem 4.1 follows from an a priori bound on the function w.

Proof. Suppose w(x) ≤ C̄. Then for any x, choosing special coordinates (3.5)
(3.6), (3.7) (3.8) we get (see Claim 6.2)

w(x) =
Ω(∂1, ∂2)

1

=
1
λ1λ2

(
1 + λ2

1

)
(1 + λ2

2) ≤ C̄.

From (3.8) and (3.4) we have

∥DT (ei)∥g2 =
∥∥∥λ2

i ēi
∥∥∥

g2
≤ λ2

i C1

thus

max
{
∥DT (V)∥g2 | V ∈ TxM, ∥V∥g1 = 1

}
≤ ΛC̄C1.

□

Theorem 4.1 will be proved as follows: Go to (xmax,T (xmax)) and apply the
maximum principle. This requires an expression for the covariant derivative of Ω
computed in the next section.
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5. The covariant differentiation

Lemma 5.1. Suppose that Γ = (x,T (x)) is a submanifold with mean curvature
vector H⃗ and Ω is as described in (4.1). At (xmax, x̄max) ∈ Γ, with frames defined
by (3.6) and (3.7) we have∑

k

∇∂k∇∂kΩ(∂1, ∂2)−
∑

k

∇̄∂k ∇̄∂kΩ(∂1, ∂2)

= ∥B∥2Ω(∂1, ∂2) + 2
∑

k

Ω(B(∂k, ∂1), B(∂k, ∂2))

+ 2
∑

k

{
∇̄∂kΩ(B(∂k, ∂1), ∂2) + ∇̄∂kΩ(∂1, B(∂k, ∂2))

}
+ ∇̄H⃗Ω(∂1, ∂2)

−
∑

p

{
Rmh

(
∂2, ∂1, ∂2, np

)
Ω(np, ∂2) + Rmh

(
∂1, ∂2, ∂1, np

)
Ω(∂1,np)

}
−

∑
s

{(
∇̄∂1 H⃗ · np

)
Ω(np, ∂2) +

(
∇̄∂2 H⃗ · np

)
Ω(∂1, np)

}
.

Here, ∥B∥2 is the positive norm of the second fundamental form B for the subman-
ifold Γ, and, Rmh is the curvature tensor of h.

Proof. To begin, extend tangent vectors {∂1, ∂2} by taking these to be the coordi-
nate derivatives with respect to normal coordinates on g. Then we differentiate
covariantly with respect to g :

∇∂kΩ(∂1, ∂2) = ∂kΩ(∂1, ∂2) −Ω(∇∂k∂1, ∂2) −Ω(∂1,∇∂k∂2)

and again

∇∂k∇∂kΩ(∂1, ∂2) = ∂k
{
∂kΩ(∂1, ∂2) −Ω(∇∂k∂1, ∂2) −Ω(∂1,∇∂k∂2)

}
−


∇∂k∂kΩ(∂1, ∂2) −Ω(∇∇∂k∂k∂1, ∂2) −Ω(∂1,∇∇∂k∂k∂2)
∂kΩ(∇∂k∂1, ∂2) −Ω(∇∂k∇∂k∂1, ∂2) −Ω(∇∂k∂1,∇∂k∂2)
∂kΩ(∂1,∇∂k∂2) −Ω(∇∂k∂1,∇∂k∂2) −Ω(∂1,∇∂k∇∂k∂2)


= ∂k

{
∂kΩ(∂1, ∂2) −Ω(∇∂k∂1, ∂2) −Ω(∂1,∇∂k∂2)

}
−

{
∂kΩ(∇∂k∂1, ∂2) −Ω(∇̄∂k

(
∇∂k∂1

)T , ∂2)
∂kΩ(∂1,∇∂k∂2) −Ω(∂1,

(
∇∂k

(
∇∂k∂2

))T )

}
.

discarding terms that vanish when taking normal coordinates. (Implicity Ω is iden-
tified with its restriction to Γ; normal covariant differentiation is via the connection
on normal bundle.) Now repeat with respect to the ambient connection:

∇̄∂k ∇̄∂kΩ(∂1, ∂2) = ∂k
{
∂kΩ(∂1, ∂2) −Ω(∇̄∂k∂1, ∂2) −Ω(∂1, ∇̄∂k∂2)

}
−


∇̄∂k∂kΩ(∂1, ∂2) −Ω(∇̄∇̄∂k∂k

∂1, ∂2) −Ω(∂1, ∇̄∇̄∂k∂k
∂2)

∂kΩ(∇̄∂k∂1, ∂2) −Ω(∇̄∂k ∇̄∂k∂1, ∂2) −Ω(∇̄∂k∂1, ∇̄∂k∂2)
∂kΩ(∂1, ∇̄∂k∂2) −Ω(∇̄∂k∂1, ∇̄∂k∂2) −Ω(∂1, ∇̄∂k ∇̄∂k∂2)


Computing the difference, using definition of second fundamental form

B(∂k, ∂ j) = ∇̄∂k∂ j − ∇∂k∂ j
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we get

∇∂k∇∂kΩ(∂1, ∂2) − ∇̄∂k ∇̄∂kΩ(∂1, ∂2) = 2∂k {Ω(B(∂k, ∂1), ∂2) + Ω(∂1, B(∂k, ∂2))}
(5.1)

+ Ω(∇̄∂k

(
∇∂k∂1

)T
− ∇̄∂k ∇̄∂k∂1 − ∇̄∇̄∂k∂k

∂1, ∂2)

+ Ω(∂1,
(
∇∂k

(
∇∂k∂2

))T
− ∇̄∂k ∇̄∂k∂2 − ∇̄∇̄∂k∂k

∂2)

− 2Ω (B(∂k, ∂1), B(∂k, ∂2)) + B(∂k, ∂k)Ω(∂1, ∂2).

Summing over k, recalling that we have chosen an orthonormal basis at the point

H⃗ = B(∂k, ∂k).

Noting also that in normal coordinates (introducing Bk1 := B(∂k, ∂1) etc., as short-
hand)

∇̄∂k ∇̄∂k∂1 − ∇∂k∇∂k∂1 = ∇̄∂k

{
∇∂k∂1 + Bk1

}
− ∇∂k∇∂k∂1

= ∇̄∂k

{
Γl

k1∂l + Bk1
}
− ∇∂k

(
Γl

k1∂l
)

=
{
∂kΓ

l
k1∂l + Γ

l
k1

(
∇∂k∂l + B(k, l)

)
+ ∇̄∂k Bk1

}
−

(
∂kΓ

l
k1∂l + Γ

l
k1∇k∂l

)
= ∇̄∂k Bk1.(5.2)

Now in the first line of (5.1) we may use

∂kΩ(Bk1, ∂2) = ∇̄∂kΩ(Bk1, ∂2) + Ω
(
∇̄∂k Bk1, ∂2

)
+ Ω

(
Bk1, ∇̄∂k∂2

)
together with (5.2) to get

∇∂k∇∂kΩ(∂1, ∂2) − ∇̄∂k ∇̄∂kΩ(∂1, ∂2) = 2∇̄∂kΩ(Bk1, ∂2) + 2∇̄∂kΩ(∂1, Bk2)(5.3)

+ ∇̄HΩ(∂1, ∂2) + 2Ω
(
Bk1, ∇̄∂k∂2

)
+ Ω

(
∇̄∂k Bk1, ∂2

)
+ Ω(∂1, ∇̄∂k Bk2).

Now using the alternating nature of Ω and tangential and normal decomposition,
we have

Ω(∇̄∂k Bk1, ∂2) = Ω
((
∇̄∂k Bk1

)T
+

(
∇̄∂k Bk1

)N
, ∂2

)
= Ω

(((
∇̄∂k Bk1

)
· ∂1

)
∂1, ∂2

)
+ Ω

((
∇̄∂k Bk1

)N
, ∂2

)
= −Bk1 · Bk1Ω(∂1, ∂2) + Ω

((
∇̄∂k Bk1

)N
, ∂2

)
.

Here we have used

0 = ∇̄∂k

(
Bk1 · ∂ j

)
= ∇̄∂k Bk1 · ∂ j +

(
Bk1 · ∇̄∂k∂ j

)
= ∇̄∂k Bk1 · ∂ j + Bk1 · Bk j.

Now let
∥B∥2 = − (Bk1 · Bk1 + Bk2 · Bk2)
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where the positive sign is appropriate as Bk j are time-like vectors, and (5.3) be-
comes

2∇̄∂kΩ(Bk1, ∂2) + 2∇̄∂kΩ(∂1, Bk2) + ∇̄HΩ(∂1, ∂2) + 2Ω
(
Bk1, ∇̄∂k∂2

)
(5.4)

+ ∥B∥2Ω(∂1, ∂2) + Ω
((
∇̄∂k Bk1

)N
, ∂2

)
+ Ω

((
∇̄∂k Bk1

)N
, ∂2

)
.

The Codazzi equation holds in pseudo-Riemannian manifolds: If X,Y,Z are vec-
tors on Γ and and η a normal vector, then

∇̄X (B(Y,Z)) · η − ∇̄Y (B(X,Z)) · η = Rmh (X,Y,Z, η) .

In our case, this gives at (xmax, x̄max)(
∇̄∂k B1k

)
· η =

(
∇̄∂1 Bkk

)
· η + Rmh (∂k, ∂1, ∂k, η)

thus (
∇̄∂k B1k

)N
=

(
∇̄∂1 H · np + Rmh

(
∂2, ∂1, ∂2, np

))
npqnq

where we are using the negative definite npq := np · nq (which is just
(
−δpq

)
at

(xmax, x̄max)). So now we have

(5.5) Ω

((
∇̄kBk1

)N
, ∂2

)
= Ω

((
∇̄∂1 H · np + Rmh

(
∂2, ∂1, ∂2, np

))
npqnq, ∂2

)
.

Substituting this into (5.4), using the fact that npq is negative definite provides the
expression in the statement of the Lemma. □

6. Curvature and other computations with eigenvalues

First we need:

Claim 6.1. At (xmax, x̄max) ∈ Γ, with frames defined by (3.6) and (3.7) we have

Rmh(∂2, ∂1, ∂2, n1) = −Rmh(∂1, ∂2, ∂1, n2)

= R1̄221̄

(
λ1

λ2

)2

− R12̄2̄1

(
λ2

λ1

)2

where

R1̄221̄ = Rmh(E1̄, E2, E2, E1̄), etc.

for Ei ∈ TpM and E j̄ ∈ TpM̄.

Proof. Note that in the Kim-McCann metric [KM10, Lemma 4.1], these computa-
tions become massively simplified by the fact that the only curvature terms that do
not vanish are those with two barred and two unbarred indices, so there will be at
most six nontrivial terms in the expression for Rm(∂2, ∂1, ∂2, n1). Straightforward
computations using the symmetries of the curvature tensor and (3.6), (3.7) yield
the result. □
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Claim 6.2. At the point (xmax, x̄max) we have

Ω (∂1, n1) = 0

Ω (∂1, n2) =
1
λ1λ2

(
1 + λ2

1

)
(1 − λ2

2)

Ω (∂2, n1) = −
1
λ1λ2

(
1 − λ2

1

)
(1 + λ2

2)

Ω (∂2, n2) = 0

Ω (∂1, ∂2) =
1
λ1λ2

(
1 + λ2

1

)
(1 + λ2

2)(6.1)

Ω (n1, n2) =
1
λ1λ2

(
1 − λ2

1

)
(1 − λ2

2).

Proof. Straightforward calculation noting that at the point(
dxi + dyi

)
∂ j =

1
λi
δi j

(
1 + λ2

i

)
(
dxi + dyi

)
n j =

1
λi
δi j

(
1 − λ2

i

)
.

□

Now combing the above two lemmas, we get

Corollary 6.3. As above,

Ω(Rmh(∂2, ∂1, ∂2, np)np, ∂2) + Ω(∂1,Rmh(∂1, ∂2, ∂1, np)np)

= 2
1
λ1λ2

(
λ2

2 − λ
2
1

) R1̄221̄

(
λ1

λ2

)2

− R12̄2̄1

(
λ2

λ1

)2
 .

Proof. As Ω (∂i, ni) = 0 we have

Ω
(
Rmh(∂2, ∂1, ∂2, np)np, ∂2

)
+ Ω

(
∂1,Rmh(∂1, ∂2, ∂1, np)np

)
= Rmh(∂2, ∂1, ∂2, n1)

1
λ1λ2

(
1 − λ2

1

)
(1 + λ2

2)

+ Rmh(∂1, ∂2, ∂1, n2)
1
λ1λ2

(
1 + λ2

1

)
(1 − λ2

2).

From Claim 6.1 the expression becomes

=
1
λ1λ2

R1̄221̄

(
λ1

λ2

)2

− R12̄2̄1

(
λ2

λ1

)2


(
1 − λ2

1

)
(1 + λ2

2)
−

(
1 + λ2

1

)
(1 − λ2

2)


= 2

1
λ1λ2

(
λ2

2 − λ
2
1

) R1̄221̄

(
λ1

λ2

)2

− R12̄2̄1

(
λ2

λ1

)2
 .

□
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Claim 6.4. Suppose that λ2 ≤ 1. Then for some constant C2 depending on
∥D f ∥g1×g2

, g1, g2 and Λ

2Ω (B(∂k, ∂1), B(∂k, ∂2)) ≥ −
∥B∥2

3
(1 + λ2

1)(1 + λ2
1)

λ1λ2
−C2(1 + λ4

1)

Proof. The minimal surface equation

H⃗ = − (∇ f )N

can be expressed in normal coordinates as the following

b111 + b221 = −∇ f · n1

b112 + b222 = −∇ f · n2,

By Claim 2.2 we then have

bk22 = −∇ f · nk − bk11.

Now

2Ω (B(∂k, ∂1), B(∂k, ∂2)) =
∑
k,s,p

2bk1sbk2pΩ(ns, np)

=
∑

k

2bk11bk22Ω(n1, n2) +
∑

k

2bk12bk21Ω(n2, n1)

=
∑

k

2 (bk11bk22 − bk12bk21)
1
λ1λ2

(λ2
1 − 1)(λ2

2 − 1)

=
∑

k

2
(
bk11 (−∇ f · nk − bk11) − b2

k12

) 1
λ1λ2

(λ2
1 − 1)(λ2

2 − 1)

= 2
∑

k

bk11 (−∇ f ) · nk
1
λ1λ2

(λ2
1 − 1)(λ2

2 − 1)

− 2
∑

k

(
b2

k11 + b2
k12

) 1
λ1λ2

(λ2
1 − 1)(λ2

2 − 1)

≥ −

1
β

∑
k

∥B∥2 |∇ f · nk|
2 +
β

4

 . 1
λ1λ2

(λ2
1 + 1)(λ2

2 + 1)(6.2)

Where we may drop the term in the second-to-last line using (λ2
1 − 1) < 0.

Next, recalling that in our product system coordinates (with respect to Eulidean
metric)

∥∂k∥g1×g2 = ∥nk∥g1×g2 ≤

√
1
λ2

k

+C2
1λ

2
k

we may use (4.3) to conclude that

|∂1| , |n1| ≤

√
Λ +C2

1λ
2
1

|∂2| , |n2| ≤

√
Λλ2

1 +C2
1Λ.
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or

(6.3) |∂k| ≤ C0

√
1 + λ2

1.

Then evaluating

∇ f · nk = D f (nk) ≤ C0

√
1 + λ2

1 ∥D f ∥g1×g2
≤ C′2(1 + λ2

1)1/2

for some C′2 that depends on ∥D f ∥g1×g2
, C0 andΛ. Thus letting β = 3

(
C′2

)2
(1+λ2

1)
in (6.2) gives the result. □

Claim 6.5. For some constants C3,C4 depending on
∥∥∥D2Ω

∥∥∥
g1×g2

and Λ.

2
(
∇̄∂kΩ(Bk1, ∂2) + ∇̄∂kΩ(∂1, Bk2)

)
≥ −
∥B∥2

3
(1 + λ2

1)(1 + λ2
2)

λ1λ2
−C3

(
1 + λ4

1

)
and ∑

k

∇̄∂k ∇̄∂kΩ(∂1, ∂2) ≥ −C4(1 + λ4
1).

Proof. Recalling (6.3)∣∣∣∇̄∂kΩ(Bk1, ∂2)
∣∣∣ ≤ ∥DΩ∥g1×g2 ∥∂k∥g1×g2 |bk1s| ∥ns∥g1×g2 ∥∂2∥g1×g2

≤ ∥DΩ∥g1×g2

∑
k,s

|bk1s|

(
C0

(
1 + λ2

1

)1/2
)3

≤
∥B∥2

12

(
1 + λ2

1

)
(1 + λ2

2)

λ1λ2
+ 48 ∥DΩ∥2g1×g2

C6
0
λ1λ2

(1 + λ2
2)

(
1 + λ2

1

)2
.

Noting that λ1λ2
(1+λ2

2)
is controlled, and repeating the same computation for

∣∣∣∇̄∂kΩ(∂1, Bk2)
∣∣∣

gives the first inequality.
For the next inequality we may directly compute∣∣∣∣∣∣∣∑k

∇̄∂k ∇̄∂kΩ(∂1, ∂2)

∣∣∣∣∣∣∣ ≤ 2
∥∥∥D2Ω

∥∥∥
g1×g2

[
C0

√
1 + λ2

1

]4
.

□

Finally, we bound terms involving the mean curvature

Claim 6.6. For some constants C5,C6

∇H⃗Ω(∂1, ∂2) ≥ −C5
(
1 + λ4

1

)
−

∑
s

{(
∇̄∂1 H⃗ · n1

)
Ω(n1, ∂2) +

(
∇̄∂2 H⃗ · n2

)
Ω(∂1, n2)

}
≥ −
∥B∥2

3
(1 + λ2

1)(1 + λ2
2)

λ1λ2
−C6

(
1 + λ4

1

)
.

Proof. Note that

(∇ f )N = ((∇ f ) · ns) nspnp

= (d f (ns)) nspnp,
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thus we have (recall (6.3))∥∥∥∥H⃗
∥∥∥∥

g1×g2
=

∥∥∥(∇ f )N
∥∥∥

g1×g2

≤ |d f (ns)|
∥∥∥np

∥∥∥
g1×g2

≤ ∥D f ∥g1×g2
C2

0

(
1 + λ2

1

)
.

Then ∣∣∣∇H⃗Ω(∂1, ∂2)
∣∣∣ ≤ ∥D f ∥g1×g2

∥DΩ∥g1×g2 C4
0

(
1 + λ2

1

)2
.

Next, note that(
∇̄∂1 H⃗ · n1

)
= ∇̄∂1

(
∇̄ f

)N
· n1

=

(
∇̄∂1

(
∇̄ f

)
− ∇̄∂1

(
∇̄ f

)T
)
· n1

= ∇̄2 f (∂1, n1) −
∑

k

(∂k f ) b1k1

≥ −
∥∥∥D2 f

∥∥∥
g1×g2

C2
0

(
1 + λ2

1

)
−
∥B∥2

6
− 2 ∥D f ∥2g1×g2

C2
0

(
1 + λ2

1

)
.

The inequality follows from adding the terms and using

|Ω (∂1, n2)| , |Ω (n1, ∂2)| ≤
1
λ1λ2

(
1 + λ2

1

)
(1 + λ2

2).

□

7. Finish It

We return to the maximum principle argument.

Proof of Theorem 4.1. Pick an xmax in Γ where the function w is maximized. The
scalar function w = Ω

dVg
is simply the Hodge dual of Ω|Γ. Covariant differentiation

commutes with the Hodge operator, so

∇∂k∇∂kΩ (∂1, ∂2)
dVg (∂1, ∂2)

=

(
Ω

dVg

)
kk
≤ 0.

Assume that λ2 ≤ 1; If not, then λ1 ≤ Λ and we immediately have a bound on w.
Applying Lemma 5.1, and all the claims in the previous section, we have

0 ≥
(
Ω

dVg

)
kk
≥ − (C2 +C3 +C4 +C5 +C6) (1 + λ4

1)

+ 2
1
λ1λ2

(
λ2

1 − λ
2
2

) R1̄221̄

(
λ1

λ2

)2

− R12̄2̄1

(
λ2

λ1

)2


≥ −C10
(
1 + λ4

1

)
+ 2

1
Λ

(
λ2

1 − Λ
) R1̄221̄

λ2
1

Λ

2

− R12̄2̄1

 .
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Now the components R1̄221̄ are with respect to the vectors that are uniformly bounded
and bounded away from zero in our gauge metrics, so R1̄221̄ has a known lower
bound. We may conclude that

λ1 ≤ C20

and thus

w(xmax) =

(
1 + λ2

1

) (
1 + λ2

2

)
λ1λ2

≤ C̄ = 2Λ(1 +C2
20).

Considering Claim 4.2, Theorem 4.1 is proved. □
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