A GEOMETRIC FLOW TOWARDS HAMILTONIAN STATIONARY
SUBMANIFOLDS
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ABsTRACT. In this paper, we introduce a geometric flow for Lagrangian subman-
ifolds in a Kihler manifold that stays in its initial Hamiltonian isotopy class
and is a gradient flow for volume. The stationary solutions are the Hamiltonian
stationary Lagrangian submanifolds. The flow is not strictly parabolic but it cor-
responds to a fourth order strictly parabolic scalar equation in the cotangent bun-
dle of the submanifold via Weinstein’s Lagrangian neighborhood theorem. For
any compact initial Lagrangian immersion, we establish short-time existence,
uniqueness, and higher order estimates when the second fundamental forms are
uniformly bounded up to time 7.

1. INTRODUCTION

The objective of this paper is to introduce a fourth order flow of Lagrangian
submanifolds in a Kdhler manifold as a gradient flow of volume within a Hamil-
tonian isotopy class and establish basic properties such as short-time existence,
uniqueness, and extendibility with bounded second fundamental form.

Our setting includes a Kihler manifold (M>", h, w, J) with symplectic form w
and compatible Kdhler metric 4 satisfying hA(JV, W) = w(V, W) where J is a com-
plex structure, and a given compact Lagrangian immersion ¢ : L" — M*'. We
propose to find F : L x [0, T) — M?" satisfying

(1.1) ‘;—f = JVdiv(JH)
(1.2) F(0)=1()

where H is the mean curvature vector of L, = F(-,¢) in M and V, div are along L,
in the induced metric from .

The stationary solutions of the above evolution equation are the so-called Hamil-
tonian stationary submanifolds, which are fourth order generalizations of special
Lagrangians, and exist in more abundance. Within a Hamiltonian isotopy class it
is possible for a compact Lagrangian submanifold of C" to minimize volume (for
example, a Clifford torus). Meanwhile, compact special Lagrangian submanifolds
of C" do not exist. Recall that two manifolds are Hamiltonian isotopic if they can
be joined by the flow generated by a vector field of the form JV f for a function f.

We will show that the initial value problem (1.1) - (1.2):
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(1) stays within the Hamiltonian isotopy class - that is, the flow is generated
by a vector field of the form JV f,

(2) is the gradient flow of volume with respect to an appropriate metric, so
decreases volume along the flow,

(3) enjoys short time existence given smooth initial conditions, and

(4) continues to exist as long as a second fundamental form bound is satisfied.

The flow (1.1) is degenerate parabolic but not strictly parabolic. Our proof of ex-
istence and uniqueness involves constructing global solutions (locally in time) us-
ing Weinstein’s Lagrangian neighbourhood theorem, which results in a nice fourth
order parabolic scalar equation. This equation has a good structure, satisfying con-
ditions required in [MM12] so we can conclude uniqueness and existence within
a given Lagrangian neighbourhood. We then argue that the flows described by so-
lutions to the scalar fourth order equations are in correspondence with the normal
flows of the form (1.1) leading to uniqueness and extendability provided the flow
remains smooth.

After proving existence and uniqueness using Weinstein neighborhoods, we turn
to local Darboux charts to prove higher regularity from second fundamental form
bounds. It’s not immediately clear how to extract regularity from arbitrary Wein-
stein neighbourhoods as the submanifolds move, but using a description of Dar-
boux charts in [JLS11] we can fix a finite set of charts and perform the regularity
theory in these charts. Unlike mean curvature flow, there is no maximum principle
for fourth order equations. We deliver a regularity theory using Sobolev spaces.
Smoczyk [?, Theorem 1.9] has shown the basic fact that mean curvature flow pre-
serves the Lagrangian property, by a maximum principle argument, while our flow
evolves within a Hamiltonian class.

The newly introduced flow already exhibits nice properties in special cases:

(1) For Calabi-Yau manifolds, Harvey and Lawson [HL82] showed that, for a La-
grangian submanifold, the Lagrangian angle 8 generates the mean curvature via

H = JVe.
In this case (1.1) becomes
dF
— = -JVAG,
dt
while 6 satisfies the pleasant fourth order parabolic equation
do
— =-A0
dt &

where g is the induced metric on L.

(2) The case n = 1 involves curves in C. Hamiltonian isotopy classes bound a
common signed area. Higher order curvature flows have been studied and are called
polyharmonic heat flow or curve diffusion flow (cf. [PW16], [EI05], [May01]),
dealing with evolution in the form y* = (=1)?"!x,, where k2, is the 2p-th order
derivative of the curvature « of a plane curve y with respect to the arclength s. For
p = 0itis the standard curve shortening flow. The flow discussed here corresponds
top=1.
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The case n = 1 arises in material science [Mul99]. For more work on the pure
side, see [Whel3] and the many references therein. In [Whel3] it is shown that
curves near a circle have flows which exist forever and converge to a round circle,
as well as a short-time existence theorem that requires only L? initial curvature. It
is not difficult to argue that for immersed figure 8 type curves singularities must
develop in finite time. It is curious to know whether there exist embedded curves
which develop singularities in finite time (cf. [EIOS], [PW16], [MayO1]).

2. GrADIENT FLow

We begin by setting up the equation as a formal gradient flow over an L? metric
space. Given an embedded Lagrangian submanifold L ¢ M?", we can consider
Hamiltonian deformations of L, these will be flows of vector fields JV f for scalar
functions f on M. At x € L, the normal component of JV f is given by JV f where
V. f is the gradient of f as a function restricted to L; conversely, given any smooth
function f on an embedded L, we can extend f to a function on M so that V f is
not changed and is independent of the extension of f (see section 2.1 below).

In other words, given a family of C! functions f (-, 7) along L, one can construct
a family of embeddings

2.1 F:Lx(-¢8 —->M
satisfying

d
(2.2) EF(X’ 1 =JVf(x1)

and conversely, given any path (2.1) within a Hamiltonian isotopy class, there will
be a function f so that (possibly after a diffeomorphism to ensure the deformation
vector is normal) the condition (2.2) is satisfied.

Let 1, be the set of smooth manifolds that are Hamiltonian isotopic to Ly. The
(smooth) tangent space at any L € Jp, is parameterized via

(2.3) Ti 1= {f e C™(): fdeg = O}.
L
We use the L? metric on TiZlp,:ForJX;=VfieT Iy,i=12

(2.4) (X1,Xp) = j;fledVg-

With volume function given by

Vol(L) = f dV,
L

the classical first variation formula gives

dVol(L)(W) = —f{W, H)dV,
L
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where W is the deformation vector field and H is the mean curvature vector. In the
situation where allowable deformation vectors are of the form W = JV f, we get

dVol(L)(f) = —f(JVf, H)dV,
L
:f<Vf,JH>dVg
L

= - f fdiv(JH)dV,
L

using the fact that J is orthogonal, then integrating by parts. Note that — div (JH)
belongs to 777, since it integrates to O on L. Therefore, it is the gradient of the
volume function with respect to the metric. Thus a (volume decreasing) gradient
flow for volume would be a path satisfying
(2.5) ar = JVdiv(JH).

dt
Remark 2.1. The metric (2.3) is not the usual L? metric for deformations of a sub-
manifold, which would measure the length of the tangent vector by f |V f? dv,.
It is better suited than the standard metric on vector fields. Suppose instead we take
the “standard” L? metric on deformation fields:

dVol(L)(JVf) = — f (JVf, H)dV,
L

The gradient with respect to this metric would be JVn for some n € C*(L) such
that

- f (JVf, H) = f IV, JVD).
L L

While the Lagrangian angle 6 (in the Calabi-Yau case) does produce this gradient
locally, typically 8 is not globally defined on L. So instead, we must find a function
n solving the equation

Ay = —div(JH)

which one can solve uniquely up to additive constants since L is compact and
Vn = —JH + X (divergence free vector field on L). A gradient flow would be
dF/dt = H — JX but there is no canonical way to determine X.

It is also worth noting that gradient flow with respect to the L? metric (sometimes
called H~') is not new: It has been used for example in mechanics to describe the
flow of curves [Fif00].

2.1. Related definitions of Hamiltonian deformations. Traditionally, Hamilton-
ian isotopies are defined as flows of the entire manifold along the direction of a
time-dependent vector field JVf for some f a smooth function on M. Two sub-
manifolds are Hamiltonian isotopic if the one submanifold is transported to the
other via the isotopy. In order to use the description (2.3), we note the following
standard result:
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Lemma 2.2. For a smooth flow of embedded Lagrangian submanifolds satisfying

dF

(2.6) o JVF(, 1)
for some function f defined on L for each t, there exists a function f on M x [0, 1]
that defines a Hamiltonian isotopy on M and determines the same Hamiltonian
isotopy of the submanifolds.

Conversely, given a global Hamiltonian isotopy determined by f, the function f
restricted to L, determines a flow of the form (2.6), possibly up to reparameteriza-
tion by diffeomorphisms of L.

Proof. The function f is defined on a smooth compact submanifold of M x [0, 1].
We can use the Whitney extension theorem to extend a smooth function off this set
in which the normal derivatives vanish. Thus along the Lagrangian submanifolds,
JVf=JVf.

Conversely, given any function f its gradient decomposes into the normal and
tangential parts on the Lagrangian submanifold. By the Lagrangian condition,
JVT fis normal and JV+ f is tangential with the latter component describing merely
a reparameterization of L. So the flow is completely determined by the component
JVT f which is determined by the restriction to L. O

2.2. Immersed Lagrangian submanifolds and their Hamiltonian deformations.
Along the evolution equation (1.1), it is feasible that a submanifold which is ini-
tially embedded will become merely immersed. Thus we would like the equation
to behave well even when the submanifold is immersed.

Weinstein’s Lagrangian neighborhood Theorem for immersed Lagrangian sub-
manifolds [EMO02, Theorem 9.3.2] states that any Lagrangian immersion Fy : L —
M extends to an immersion ¥ from a neighborhood of the 0-section in 7*L to M
with Y wy = wean.

Sections of the cotangent bundle 7L are clearly embedded as graphs over the
0-section of 7L which is identified with L, so by factoring the immersion through
T*L, we get immersed submanifolds in M, in particular, immersed Lagrangian
submanifolds in M for sections defined by closed 1-forms on L.

Even though the deformation of an immersed manifold is not properly Hamil-
tonian (that is, velocity vector JV f determined by a global function f on M) one
can define deformations by using a function f defined on the submanifold, and JV f
makes sense within 7*L as pullback by the immersion. For example, the figure 8
is not problematic because the two components of a neighborhood of the crossing
point can have different velocity vectors; these are separated within the cotangent
bundle.

2.3. The evolution equation in terms of 6. By [HL82], for a Lagrangian sub-
manifold L in a Calabi-Yau manifold (M", w, J, Q) with a covariant constant holo-
morphic n-form €, the mean curvature of L satisfies H = JV6 where

Q| = €%d Vol, .
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Now (2.5) leads to

F
(Z—t = JVdiv(JH) = JVdiv(JJVO) = —JVAG.

Differentiating the left-hand side (cf. [W0020, Prop 3.2.1]):

d d
—Ql=—(FQ)=F:L_ Q
= 13 dt( TQ) = FoL_jvae

= Fod (1-yvao) = d (Fg (-yvroQ)
= d (F§i (tvarQ))
= d(ie“dVol (YA, . ...."))
= —d (ie" » dA)
= (¢« dAg — ie"d (+dAf)).
Then differentiating the right hand side:
d%e”d Vol = el’@%d Vol +iei9§d Vol .

Comparing the imaginary parts (after multiplying by ¢~") of the above two gives

do 5
2.7) — = ~Ag.

3. EX1STENCE AND UNIQUENESS VIA A SCALAR EQUATION ON A LAGRANGIAN
NEIGHBORHOOD

The system of equations (1.1) is not strictly parabolic as given. Our approach is
to make good use of the Lagrangian property, in particular, by setting up the equa-
tion as a scalar, uniformly parabolic equation via Weinstein’s Lagrangian neigh-
borhood theorem. For the convenience of using common terminologies, we make
our discussion for embeddings but the conclusions hold for immersions in view of
subsection 2.2.

3.1. Accompanying flow of scalar functions. Let L be an embedded compact La-
grangian submanifold in a symplectic manifold (M, w). By Weinstein’s Lagrangian
neighborhood [Wei71, Corollary 6.2] theorem, there is a diffeomorphism ¥ from
a neighborhood U C T*L of the 0-section (identified with L) to a neighborhood
V C M of L such that Y*w = dA.4, and ¥ restricts to the identity map on L.

Let ¢(x, f) be a smooth function on L X [0, ) with ¢(-,0) = 0. Then dyp is a ¢-
family of exact (hence closed) 1-forms on L hence a family of sections of 7*L and
each is a graph over the O-section. The symplectomorphism ¥ yields a ¢-family of
Lagrangian submanifolds L; in M near L:

(3.1) F = ¥(x,do(x, 1)) = ‘P(x, a—‘idx").
Ox
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Proposition 3.1. Suppose that do(x,t) is an exact section describing an evolution
of Lagrangian submanifolds which satisfy the equation

dF\*
(3.2) (—) = JVdiv(JH).
dt
Then there is a function G (depending on ¥) such that ¢ satisfies
Oy P d*e 2 M
— =- S —o—ooa—+ G(x, Dp, D", D" p).
o = 8 8 grgxiowow T PR D DY)

The coordinate free expression is
0
5—9: = div JA,¥(x, dp).

Proof. Taking (x, v) for coordinates of 7*L, let y* be coordinates in M, a = 1, ..., 2n.
This gives a frame

_OF _9¥* 4 0¥ d¢ sik 0

— . .57k
3-3) €= oxi  dxi W * MWk dxidxi dyr Wit 16" Wicen
where
oY o
Yii= DY = oxi By
oY o
le+n = Dv_j\P = Wﬁ

Letting also
_ OPe  HP¢ 5290 6jk

a .
ki ox ovk Oxiox/
we have
e = :1 aaa .
Y
Now suppose
h = hapdy*dy?

is the Riemannian metric on M. We are also assuming w(V, W) = h(JV, W). We
compute the induced metric g from the immersion:

(3.4)

gij = MO;F,0,F)
Ov? oY AV VP 0’ AV IVE 9
= -—F + Z - - + - -
Oxi Ox/ —\ 0x Ovk Oxioxk — Ox/ Ovk Oxioxk
=h(¥; + i ¥isn, ¥j + ©j1¥1n)

=h(¥;,¥)) + Z (‘Pikh(‘Pk+ne V) + @jh(¥i, ‘Pk+n)) + Z @ik jth(Pisn, Yin).
% kil

N Z v , OVF

o i o O [ ap.

k.l
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Since ¥ : T*L — M is a symplectomorphism with W*w = dx A dv, we have

(3.5) Sij = dx A dv(8]dx',0/0v)) = P w (9]0, 0/0v7)
= h(J¥.(0/0x'), ¥.(8/v))) = h(J¥i, ¥ j1n)-

Similarly
(3.6) h(J¥isn, ¥ jin) = W(FD/V), ¥o(8/0V)) = 0
Now as F describes a Lagrangian manifold, (summing repeated indices below)

(3.7)
0 = wlej, ej) = h(JY; + OkpidYisn, ¥ + 010;¥11n)
= h(J¥;,¥)) + 019 (¥, Y 1in) + Okpi(J¥iin, V') + 0k0i010 i (T Y ki, W)
= h(J¥;,¥)) — o xh(¥Yi, J¥iin) + Qikh(J¥rin, ¥ ) + 0k jth(J¥ ki, Pign)
= h(J¥i, Y)) + ik jih(J¥ ks, Yian) by (3.5)
= h(J¥;,¥)).

Now, {¥;,J¥; : 1 < i, j < n}is a basis for the ambient tangent space at a point in
the image of F. Sois {¥;, ¥, : 1 <1, j < n} (as ¥ is a local diffeomorphism). We
represent the latter vectors by

(3.8) Yirn = a’¥; + bIJY;,

Computing the pairing & (J‘P.,-, ‘I’,-+n) using (3.5) on the left and (3.8) on the right
yields b/ = K/ as the inverse of the positive definite matrix 4; ;= h(¥;,¥;). Now
recalling (3.1)

OF _ (9 9¢) 0¥
ot~ \aroxk) ok’

project onto the normal space:

[5) -5

ot Ix kh(lyk+n, Jep)-]qupq

0
= S, ) + i W) g8

a kh(\Pkﬂu J‘Pp)Jqupq
a%
a k
8g0,

5 9.k (Jeq )

—0kpleqgg” by (3.5)
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Let H = H™Je,, for the Lagrangian L. As JH is tangential its divergence on L is

3.9 div(JH) = —div(H"ep,)

—gh(V,, (H"en) , ep)

9
= —g%n ( o H"e, + H'Th e, €1

= —g® o H" g g H™T],.80
P
=~ H'-H'T,

where the Christoffel symbols are for the induced metric g. The components of H
are given by

O*FF

a _ ap _ ij (l Y ap
(3.10) H* = h(H,Je,)g —h(g (axia - lFJl—’fW)aﬁ,Jep)g .
Now differentiate components of (3.3)
FF oY Fo OV o PV
Oxiox/  OxJoxt 8xJ8x’8xk ovl  oxioxk” oxiovl’
Plug in (3.3) to get
h —62Fﬁ i Je,|=wle —62Fﬂ i
Axidxi oyB” " T P> oxidxi dyB
_w((?_‘P‘Si &% 5‘1’5 o oY 9 Py kla‘{’ﬁi & «l o>y i
T\ 9xp 9yd axpéxq V" 8y dxidxi OyP | Oxioxidxk vl OyP  Oxioxk Axiovl OyB
Po L (¥ 9 IV I\ Py Po . (¥ 0 IV 9
=0 w —, — |+ m _—— §%w —, —
OxJHx1Ox* OxP 9y0" ovl 0yB | OxPAx?  Ox/OxiOxk " 9y vt 9yP
OV Py, WP
Fol—— + ——— 0 — F
P (ﬁx-/ax‘ 0xiaxk . xiov ) o ©
Py Xl a 0 ¢ Py a 0
=T _§* —_—, qmn — (Skl\P* —_—,
awoxion.  \ox o) " awroxt® Gwigxark.  C\avm ol
VB & s
Fol ——— gk F
P (axfaxl oxiaxk’ oxiov ) B ©
Py Mg, + FO o Py g PV
Ixidxi Ok axidx  gxioxk gxigl ) P °
Now also
P 0\
)l e s

|
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Combining (3.10) and the above

j P Pp PP
a _ _ij_ap kl 0 kl
H=ss (5x18x"8x"6 o+ (axfaxi i 8xi6xk6 axiov ) % °F
+ gngapF?ijﬁngwéﬁ oF.

Thus using the expression we derived in (3.9)

G.11)
oy 9 , .. Py
div(JH) = g g ————— — | — (878"’ )| ——7—
IV( ) g g 6xaaxjaxlaxp (axa ( g )) axjaxlaxp
a .. oY’ o gy PV 3
) o\ o i pa—y _ pgmya
o (8727) [(axfaxi * ovod’ axfav’)JrFi i Fﬁy] e £ o

Now recalling (3.4), we see the metric components g, involve second order deriva-
tives in terms of ¢, thus Ff.‘j are third order. So each term above after the first term
is at most third order. O

3.2. Short time existence.

Proposition 3.2. Given an initial smooth immersion of a compact L — M, there
exists a solution to (1.1,1.2) for some short time.

Proof. Choose a Weinstein neighborhood containing L. Now suppose we have ¢
which satisfies the fourth order equation

84g0

— + G ,D,D2 ,D3 — div(JH
Ax9xIx'HxP (x, Do, D"p, D”¢) = div(JH)

(3.12) ¢ =—g"g"
@(-,0) = 0.

Then the immersions F generated from ¢(x, t) satisfy

IF\"
(E) = JVy, = JVdiv(JH).
As the normal component satisfies the appropriate equation, we may compose with
diffeomorphisms to get a flow (see Claim 3.3 below) such that

oF
(3.13) — = JVdiv(JH).

ot
Now the equation (3.12) is precisely of the form of 2p order quasilinear parabolic
equation studied in [MM12]. By [MM12, Theorem 1.1] we have short time ex-
istence for the solution to (3.12), thus we have short-time existence for the flow
(3.13). O
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3.3. Uniqueness. We start with a standard observation.

Claim 3.3. Suppose that F : L X [0,T) — M is a family of immersions satisfying

OF \*
(E) = N(x, 1)

for some vector field N(x, t) which is normal to the immersed submanifold F (-, t)(L).
There exists a unique family of diffeomorphisms y; : L — L such that

0
7 0.0 = N, 1) and xo = Id.

Proof. Given the flow exists, the given velocity field will decompose orthogonally
into normal and tangential components:

oF
o =N, )+ T (x,1).

Consider the time-dependent vector field on L
V(x, 1) = =DLF (e, 07'T (x,1)

By the Fundamental Theorem on Flows, (cf. [Leel3, Theorem 9.48]) there is a
unique flow on L starting at the identity and satisfying

0
a_t)(t(x) = V(x«(x), ).
Composing this flow with the original flow F yields the result. O

Theorem 3.4. The solution to the initial value problem (1.1) - (1.2) is unique. More
precisely, if F1 and F, are two solutions of (1.1) such that Fi(x, ty) = Fa(x, t('))for
some ty, t(’) and all x € L, then

Fi(x,t0+ 1) = Fo(x, 1) + 7)
for all T in an open neighborhood of 0 where both sides above are defined.

Proof. Without loss of generality, we take 7o = #, = 0. Let L = F(;,0) = F2(-,0)
and¥: U cT*L — V Cc M be a Lagrangian neighborhood mapping.

First, we show that the normal flow of F;(-, ) is given in the neighborhood ¥ by
the graph of an exact section dy;(:, ) where ¢; solves a problem of the form (3.12).
To this end, note that for 7 in the domain, the path {F;(:, ), € [0, 7] } is a Hamilton-
ian isotopy between F;(:,0) and F;(-, 7). Being a Hamiltonian isotopy is invariant
under the symplectomorphism P, so the sections ¥ (Fi(-,0)) and ¥~ (Fi(-, 7))
are Hamiltonian isotopic. By [Wei71, Corollary 6.2], Lagrangian submanifolds
that are near to the O-section are given as graphs of closed sections of the cotangent
bundle. As the flow is smooth, for small times the Lagrangian submanifolds are
near enough to be described by closed sections. According to [MS17, Proposition
9.4.2], these sections are exact, that is

ylo Fi(.,v)(L) ={dy; (x,T) : x € L}.

In other words,
Y({dyi (x,7) : x € L}) = Fi(-, 1) (L)
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meaning that for each 7
Yodp;: L->T'L—>M

is a Lagrangian immersion, which may have reparameterized the base. In particu-
lar, the flow F; determines a flow of scalar functions ¢;, which recovers the same
family of submanifolds at F; (up to reparameterization) as do ¥ o dy; (-,f). By
Proposition 3.1, the scalar equation (3.12) holds on ¢; as does the initial condition
dy; = 0. It follows that ¢; and ¢, both satisfy the same equation (3.12) and have
the same initial condition, so ¢; = ¢, + C for some constant C. Thus the flows F;
and F, are the same. O

Theorem 3.4 allows for seamless extension of the flow: While the Weinstein’s
Lagrangian neighborhood may only exist around L, if another Lagrangian neigh-
borhood of Ly extends the flow, the two flows patch together smoothly.

4. HIGHER ORDER ESTIMATES BASED ON CURVATURE BOUNDS

The goal of this section is to show that a solution with uniformly bounded second
fundamental form over [0, T') enjoy estimates of all orders and can be extended.

Theorem 4.1. Suppose that the flow (1.1) exists on [0, T) and the second funda-
mental form has a uniform bound on [0, T). Then the flow converges smoothly as
t — T so can be extended to [0, T + &) for some € > 0.

To prove this theorem, it is essential in our approach to establish a-priori esti-
mates from the integral estimates derived from the following differential inequality:

Proposition 4.2. Suppose that F is a solution to (1.1) on [0,T) for a compact
Lagrangian submanifold L inside a compact M. Suppose the second fundamental

form has a uniform bound K. There exists C depending on K, the ambient geometry
of M and Vol(Ly) such that for all k > 2

k=2
@y 2 f V1Al avyn < ¢ f V1Al avi +C Y f V' A]? av, (o).
dr Jp L = JL

A Weinstein neighborhood map determines the equation the flow must satisfy,
and we could derive estimates of all orders based on this particular equation. How-
ever, the flow is expected to leave a given neighborhood after some time, and we
will need to take a new neighborhood. We would need to know the speed of the
flow to patch estimates from one neighborhood to another, but this requires know-
ing the size of the Weinstein neighborhoods around the Lagrangian submanifolds
at different times.

We require charts with uniform geometric estimates. To obtain these we appeal
to uniform local Darboux coordinates given in [JLS11]. These charts are local but
are given with uniform geometric bounds. The short-time existence of the flow is
already determined by the global Weinstein neighborhoods; we write the flow in
these Darboux charts as a scalar equation from which we derive integral estimates
for derivatives of any order.
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4.1. Uniform Darboux charts. We record [JLS11, Prop.3.2 and Prop.3.4] on
existence of Darboux coordinates with estimates on a symplectic manifold. Let
m: U — M be the U(n) frame bundle of M. A point in U is a pair (p,v) with
a(p,v)=peMandv:R*" - T, M an isomorphism satisfying v*(w,) = wp and
v*(hl,) = ho (the standard metric on C"). The right action of U(n) on U is free:
¥(p,v) = (p,voy)foranyye Un).

Proposition 4.3 (Joyce-Lee-Schoen). Let (M, w) be a real 2n-dimensional sym-
plectic manifold without boundary, and a Riemannian metric h compatible with w
and an almost complex structure J. Let U be the U(n) frame bundle of M. Then
for small € > 0 we can choose a family of embeddings ), : B2 — M depending
smoothly on (p,v) € U, where B" is the ball of radius & about 0 in C", such that
forall (p,v) € U we have

(1) Yy (0)=pand d¥,,lo=v:C"—> T,M,
(2) Tpyoy(0) =T, oy forally € Un);

3) T, @) = wy = 5L dzj Adzjiand
@) 1, () = ho + O([z]).

Moreover, for a dilation map t : 312{’ — B given by t(z) = tz where t < &/R, set
b, =72, 0 O)*h. Then it holds

(5) W, = hollco < Cot  and |0k, llco < Cit,

where norms are taken w.r.t. hy and 0 is the Levi-Civita connection of hy.

Proposition 4.4. Suppose that M is a compact symplectic manifold with a compat-
ible Riemannian metric h. Suppose that L is a compact Lagrangian submanifold of
M with second fundamental form bounded above by K and volume bounded above
by Vo. Given ¢, > 0, there exists an ro = ro(K, c,) > 0 and a finite cover of L by
Darboux charts (), ,, B%(:’ — M centered at points p; on L such that

(1) The connected component of L N B%: containing p; is represented by a
graph (x, dgo(j)) over B%g‘ NR" x {0} for some potential Y.

(2) The tangent plane at each point of this connected component satisfies a
closeness condition with respect to the planes v;(R" x {0}) :

“4.2) max e-v<cy
lel,=1, e€T L
Ivldozl,ve{O}XR”

where the dot product is in the euclidean metric 6o, and cy, is a small uni-
versal constant (say ¢, = ﬁﬁ ) chosen so that quantities such as the vol-
ume element and coordinate expression for h are bounded by universal
constants.

(3) The ambient metric h is very close to the euclidean metric, that is ||h—d¢|| <
¢y for some ¢, (can be the same c, as in (2) above).

(4) The submanifold L is covered by the charts obtained by restricting these
charts to B%g‘( Pj)
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(5) The number of such points { P j} satisfies

C(n)Vy

4.3) N(K,Vy) < m

Proof. At each point p € L we take a Darboux chart (), as described above with
that 7,L = R" x {0} in the given chart. Note that after some fixed re-scalings,
we can assert via Proposition 4.3 that 1), exists on ng and satisfies any near
euclidean metric conditions we choose to prescribe, including the closeness condi-
tion: |h — dp| < c. Now we may apply Proposition 5.1 which asserts existence of a
ball B (p) € R" x {0} over which L is representable as a graph, with (4.2) holding.
The quantity rg will depend on K.

Consider the compact immersed submanifold L as a metric space (L,d). Tak-
ing a finite cover of metric balls B, ,4(p) for p € L and applying Vitalli’s cover-
ing Lemma, we conclude that there is a subset of these points {p;} so that L =
U;B3,,4(p;) and B,,/4(p;) are mutually disjoint. By (4.2), LN B3, /4(p;) is in the im-
age of a graph given by Proposition 5.1. In particular, the disjoint B,,4(p;)’s have
a minimum total volume w,c"ry. The bound (4.3) on the number of balls follows.
As {Bsyya(pi)} covers L and each of these balls is contained in a graph over By ,
we take the set of the graphs as the cover. O

The scalar functions from the the exact sections of T*L are globally defined on
L via the abstract Weinstein map Y. We have utilized them to establish short-time
existence and uniqueness for our geometric flow of F. However, for higher order
a-priori estimates, we need to set up the flow equation in a Darboux chart with
estimates on the metric as described above. Fortunately, each (), , is a symplecto-
morphism, which takes gradient graphs (x, dy) to Lagrangian submanifolds, so the
computations in section 3.1 can be repeated verbatim, with (', , in place of ¥. In
particular, in each chart, the flow is determined by an equation

T

Ox40xI Ox OxP
Remark 4.5. A precise computation in Darboux coordinates of the expression
(3.10) gives

h (H, Jep) = gV, + gijf5+n + g ;MM gl gy SR

im+n m+n,j

(4.4) ¢ = —g"g" + G(x, Dp, D*¢, D*¢).

. o <l o G g
+ 87 priep1 0" Th i — gur?j‘f’pq - 8"rj6 mrzmm%q
G e . o i
— 80Ty ., #pq = 8" ki1 Tl rnPpa
where f;lj are Christoffel symbols in the ambient metric (M, #). Considering that
each expression of the form g? is a smooth function in terms of D¢ with depen-
dence on zero order of & and each f’f; expression depends on Dh and A, one may

conclude (after computing div(JH) as in (3.11)) that G can be written as a sum of
expressions that are

(1) quadratic in D3¢ and smooth in D%, h in a predetermined way
(2) linear in D3go, smooth in ngo, h, Dh in a predetermined way
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(3) smooth in D?@, h and linear in D/ in a predetermined way
(4) smooth in D?@, h, Dh in a predetermined way.

This allows us to make a claim that there is uniform control on the important
quantities involved in the equation we are solving.

Proposition 4.6. Suppose that L is a compact Lagrangian manifold with volume V
and evolves by (1.1) on [0,T). If the norm of second fundamental A of L, satisfies
|Algy < K fort € [0,T), then after a fixed rescaling on M there is a finite set of
Darboux charts such that

(1) The submanifold is covered by graphs over B%" NR" x {0}.

(2) The submanifold is graphical over Bg” N R" x {0} in each chart.

(3) The slope bound (4.2) holds over B5(0).

(4) The flow (1.1) is governed by (4.4) locally in these charts.

(5) For each chart, the G from (4.4) satisfies a uniform bound on any fixed
order derivatives of G (in terms of all four arguments, not with respect to
X coordinate before embedding.)

(6) The number of charts is controlled

Vo

4.5) N(K,Vp) < C(K)r”(l()'
0

Proof. Rescale M so that rop = 5. Then the expression G becomes predictably
controlled by Remark 4.5. Choosing a cover with interior balls, as in the proof of
Proposition 4.4, determines the necessary number of balls. O

4.2. Localization. Let L, evolve by (1.1) with time ¢ € [0, T'), and assume |Algr) <

K for all L;. Our goal is to establish integral bounds for |V1A|§ 0’ which only depend
on k, K, M and the initial volume Vjy of L. To derive the differential inequality (4.1)
at any time 9, we use Proposition 4.6 and express geometric quantities g, A, V/A,
etc., in the (no more than N) Darboux charts in terms of ¢(x, ) for x € BS. By
compactness of L and smoothness of the flow, the flow will continue to be described
by graphs of de(x, t) in this open union of N charts for 7 € [#g, t) for some #; > 1y.

To be precise, each of the Darboux charts in Lemma 4.6 has a product structure;
we may assume that each chart contains coordinates B} (0) X B;(0) so that L is
graphical over Bg (0) and further that the collection of B{(0) x Bj(0) covers L. Now
we may fix once and for all a function n which is equal to 1 on B{(0) X Bj(0) and
vanishes within B3(0) x Bj(0). For a given chart T (here @ € {1,..N} indexes
our choice of charts) we call the function 7,. This function will have uniformly
bounded dependence on the variables x and y in the chart.

Now once these 7, are chosen, we may then define a partition of unity for the
union of charts which form a tubular neighborhood of L, which will restrict to a
partition of unity for small variations of L:

2

Mo
(4.6) P2 =L
W
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By compactness of the unit frame bundle and the smoothness of the family of
charts defined in Proposition 4.3, the transition functions between charts will have
bounded derivatives to any order. Thus, in a fixed chart, where a piece of L is rep-
resented as {(x, dp(x)) : x € B1(0)}, the dependence of p(zl will be uniformly con-
trolled in terms of these variables, so there is a uniform pointwise bound

4.7 |D2p2| < C(D*¢, D*¢, Dy, x)

were this dependence is at most linear on D>p. We will be using the x coordinates
as charts for L.

Note also that, if we have a uniform bound on %Dgo and L%ngo we can conclude

a positive lower bound on #; — fy; the flow will be described by graphs of ¢(x, f) in

these N charts, and the condition (4.2) will be satisfied for a slightly larger c], (say

1

= ——= instead of ¢,, =

’ 1
= 5va v

4.2.1. Expression for metric and second fundamental form. In the Darboux charts
for M, the manifold L is expressed graphically over the x coordinate via

x> F(x) = (x,dp(x)) .
Thus we have a tangential frame:
(4.8) ei = 0iF = Ei + g6 Epen
with
i = hij + 00" 0 16" hmanyieny + 10" hiixieny + ik " hnsny)-

Recalling (2) and (3) in Proposition 4.4 we may assume that the expression of /4 in
these coordinates is very close to 6;; and that D?y is not large.
Differentiating the components of the induced metric gives

0, gij = function of (x, Dy)
+ Terms involving up to three factors of D?p but no higher

+ Terms involving up to two factors of D?p and one factor of D>¢.

Lemma 4.7. In a Darboux chart, using the coordinate basis (4.8) for the tangent
space and {Je;} for the normal space, the covariant derivatives of the second fun-
damental form and of the potential ¢ are related by

(4.9) V1A = D20 + 5y
where S is a smooth controlled function depending on the chart, h and D*@, S
depends also on D*¢ and for k > 3 :
(1) Each Sy is a sum of of multilinear forms of D*, ..., D¥*1¢
(2) The coefficients of these forms are functions of (x, Dy, D%, D3ga)
(3) The total sum of the derivatives of D¢ that occur in a given term is no
more than k — 2.

(Note that (4.9) is interpreted as literal equality of the symbols in the choice of
basis, not simply “up to a smooth function”)
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Proof. Starting with k = 1, differentiate in the ambient space

66‘;8]' = f‘ﬁ-Eﬁ + (pjmiémkE,H_k + ¢jm5mkf‘§+k’iEﬁ + (,DijOri(Smkérlf‘B

n+k,n+lEB'
Using e; and Je as frame and normal frame,
Aiji = (Veej, Jep)
= w(er, @ jmid™ Ensi) + wley, f’?,-Eﬁ +o jmémkf€+k’iEﬁ +to jm‘priémkérlff knsiEB)
=pji+8

where S is a smooth function involving D?¢ and the ambient Christoffel symbols
at (x, Dy) and recalling

Osls ifg=s+nforse{l,..n}
— i, ifg=sef{l,..n}.
Now for k = 2 (V denotes covariant derivatives on the submanifold):

(VA)ij = 0pAiji — A (Vepel-, ej, el) -A (ei, Ve, e, el) —-A (e,-, ej, Vepel) .

w(er, Ep) = W(E; + o’ E j1n, Ep) = {

Now we can compute the Christoffel symbols with respect to the induced metric g:
Vep e =1x D3<p + lower order
thus
(VA)piji = @jiip + OwS1 — A * (D3(,0) + lower order
= Qjlip T D3<,0 * D390 + 1 = D390 + smooth in other arguments.

Here and in sequel, we use A * B to denote a predictable linear combination of
terms from tensors A and B, and 1 = T to be a predictable linear combination of 7.
Now

V2A = D¢ + D*p « D¢ + lower order
V3A = D¢ + D¢ « D¢ + D*¢ « D*p + lower order
and so forth. The result follows by inductively applying the product rule and noting
vilg = D(Vk_zA) + D3<p « VK2 A + lower order
by the formula for covariant derivative. O

4.3. Integral inequalities. We will use || - || for the supremum norm in the eu-
clidean metric 6y and

’Dm¢|g = gliighh giming, . o
to denote the norm squared with respect to g for the locally defined m-tensor D™ ¢
instead of the higher covariant derivative tensor V"¢. We find that this makes

computations on the chosen Darboux chart more transparent. Note that since g is
close to &y on the chart (with estimates on errors)

D"l
\D™gl

e(l-cp1+cpy)
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and
(I =cp)dx <dVy < (1 +c,)dx

for some small ¢,,. Thus we may regard as equivalent estimates on integrals against
dx and integrals against dV,, provided the quantities we are integrating are nonneg-
ative. However, if the quantity being integrated is not known to be non-negative,
we have to be precise in performing estimates.

All estimates below implicitly depend on ¢, but ¢, need not be tracked closely:
it need not be close to zero.

4.3.1. Interpolation inequalities. We use Gagliardo-Nirenberg interpolation to de-
rive integral inequalities that allow us to integrate multilinear combinations of
higher derivatives of ¢. For simplicity of notation, we will use C for uniform
constants with dependence indicated in its arguments. For our application, we give
interpolations for different range of indices.

Lemma 4.8. Let & be a smooth compactly supported vector-valued function on R".

(D) If j1+ jo+ j3+ ...+ jg =m, then

f D&« D¢« Ding]* < C |1g27 f IDel’ .
Q) If 1+ jo+ j3a+ ...+ jg + = 2m where j, < mand j* >0, then
- j j g j2m) (2m = J* a2 I 2m/ j*
f |D/1¢ « D¢« Ding| < CllEN% (T f D™l + > |mep(§)||p* )

Q) Ifj1+...+j-=2m+ 1andall j; <m, then for e >0

f |D/1¢ « DP¢..« DIE| < & f |Dﬁ1”§-‘|2+C(s,ﬁ1,||§||m) ( f |Dmg|2+ f me,,(f)).

m

P and apply the generalized Holder’s inequality

Proof. For (1), use p; =

; ; ) 2 a2
[Iexnie.csief < D7}, . D],
and then use the Gagliardo-Nirenberg interpolation inequality (cf. [FFRS21, The-

orem 1.1]) with 6; = £,

For (2), taking p; = zj—m and p* = 2J—" if j* > 0, then

f|DJ'1§ « DRE. % DJ'q§’ < HDhg”m ||qu§“pq “Xsupp(f)”p* )

Now apply the Gagliardo-Nirenberg interpolation inequality with §; = ﬁ applying
Young’s inequality if j* > 0.
For (3), we may split, witha<m<m+1<b
1+ ..+ js=a
Js+1 + ...+ jr-=b.
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Now for some p, g conjugates to be determined, let

{ ap ifie{l,.., s

b].q ifie{s+1,..r}.

Apply the generalized Holder’s inequality

J1 J2 Jr Ji J
(4.10) f D7+ D¢...x D] < D] .. [Dve]]
We have from the Gagliardo-Nirenberg interpolation inequality
i _di i
' D¢ || el ™ ifi€(l,..s) withg; = £
el <y | ..
| 1e ";;; Iéllo ™", ifie{s+1,...r} with; = 2L

m+l1
Taking the product and then applying Young’s inequality (for the same p, q)

_b_

[ L O e A i el
< C(e, p, g, I€llo) HDﬁ’f o +e|De ";;'
~ aGi+1) -
(“.11) = Cle. p.q.r. ) [P j::;ﬁf:ii +e[|p™ e
m(a+1)
where in the last line we have made the choices
_2(m+1) _2(m+ 1)
I
Since 1 < a < m we have
a(m + 1)
ma+1)

and can use Holder’s and Young’s inequalities to get

22’(5;:{; < C(a,m) (f|Dm§| fXS“p"(f))

omitting the last term in the case a = /m. Chaining together (4.10, 4.11, 4.12) gives
the result.

4.12)  Clep,q)||D"¢

O

Lemma 4.9. Let f € C*(By) andr) < rp < 4.
) If j1+ ...+ js = m, then

m
f|Dj"f---Djff2sC(m,rl,rz)Ilfllgg_ZZf Disf
B, j=0 By,

Q) If 1+ jo+ j3+ ...+ jg+ j =2 where j, < imand j* > 0, then

o -* J—
ﬁ |D1zf DIl < Cn, ry, 1) WA /2m)[ ] Zf 'Djf| 7 H/\’supp(f)||f:l/j
"
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Q) Ifj1+...+j-=2m+ 1 and all j; < m, then fore > 0
m
f DIt f « DEfow Dif] < & f D7 +Cl, 1, 2, 1 lloo) [Z f Dl + 1].
By By Jj=0 By
Proof. Setij € C;(B3) thatis 1 on By, 0 on B3(0)\B,,(0), 0 <7 < 1 and |[fjllcm <
C(m). By Lemma 4.8 (second line below)

fB|Di1f...Dixf2§f |Di1(7~7f)“‘Dix(f?f)|2

1 2

<1 fB i)

2
m
~ - )
< o ile W12 Y, [ [pisf
j=0 By,
The second and third inequalities in the statement of the Lemma follows by apply-
ing the previous Lemma in a similar way. O
The following is simple but will be used repeatedly, so we explicitly note it.

Lemma 4.10. Suppose that ri < ry. Then for & > 0

f D3 <& f D + C@ 1) f Dk
B, B, B,

1 2

Proof. For some 7] = 1 on B,, supported inside B,,

f |Dk+3<p|2 7= _f DM*20 (ﬁsz+4<p + 2ﬁDﬁDk+3(,o)

32 32
Séf ﬁ2|Dk+4<p|2+éCf ﬁZ’Dk+2¢|2
r € By,
+1f ﬁ2|Dk+3(p'2+Cf |D]~7|2|Dk+290|2'
2 B, Br,
Thus
f ’Dk+3<,0|2§2§f 7”72 ’Dk+4<p|2+%Cf (ﬁ2+|Dﬁ|2)'Dk+24p|2.
By, B, & B,

4.3.2. Evolution inequalities.

Proposition 4.11. Let pi € Cy(B2(0)) defined by (4.6). Working in Darboux
charts, for € > 0 we have

d
(4.13) f E(’Dm‘pﬁ dvg) 2 < f Dl g2V + & f D gRay,
B B> B3

k+2
m 12
+C(k,8,||90||c3)(2 f I soigdvgﬂ]-
m=3 v B3
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Proof. In a Darboux chart, express dV, = V,dx. We have

E(1026[ V) =2 @0 (1 s 722
 Gir i i O (817182 g2V

(4.14) =~ 2088 " Puipg + i (Pi1.iinn8 84212V
+ Pi it Pt jusa Ot (gi‘j1 gl g2k Vg) .

We count the highest order of derivatives of ¢ in x!, ..., x" for each term below:

1) g.g7", V, are of 2nd order
(2) 0:g,0:g7" and 8,V, = V,g"0,g;; are of 6th order
(3) (&8P Pr1pg)ir . ir., is Of (k + 6)th order and G, _;., is of (k + 5)th order.

For the sake of notation, we will use

(1) P = P(x, Dy, D*p, D’p),

(2) Q = P(x, Dg, ..., D3¢) to be described in (4.18) and below.

(3) Bounded second order quantities are absorbed and not explicitly stated un-
less necessary (in particular, dV, will be dropped when not being differen-
tiated.)

Multiplying p? to localize in a chart then integrate on L, we may then perform:

(A) Integration by parts twice the first term in (4.14) leads to

(4.15)

i (=28" 8" uipg)in..iver (@51...jon 8" 822V ) pF = —2]1; |Dk+4¢|g P2 dVe+I
2 2

where
I= j}; Dk+4¢*(D4¢ + P« DM2pp2 4+ DM« (P * p2 + Dp(zl) + D20 % (P « Dp> + sz(zl)) .
2

To deal with the first term in /:
4.16)

2
Dk+4¢*(D4¢ + Pz)*DkJ'zgo < 8]}; p(ZIIDk+4g0|2+C(6)fB 0> ( D2« (D44p + P2)| )
2 2

B>
Lemma 4.9 with m = k, f = D¢ and r, = 5/2 yields
2 = i3 2
f |Dk+2¢ " D4¢| < C(DB"D)ZI |D<’+3¢| .
B, =0 Bs)»

Applying Lemma (4.10) to the highest order term provides a bound of (4.16) by
the positive terms in (4.13) noting also that

f |Dk+2¢*P2|2 < C(D3<,o)f |Dk+290|2‘
B> By
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Next
“4.17)

1 2
f |(P # p% + Dp2)D*p 5 D3| < & f DM lr + —C(P) f |D*3y|
B> B € B

recalling that Dp, is bounded by uniform constants and D?p. By Lemma 4.10
(choosing & ~ ce?), (4.17) is bounded by

2 1 2
Sf p§|Dk+4‘P|2+8f |Dk+4<p| +_3Cf |Dk+2(p|
Bz B3 &€ B3

which is of the correct form. Finally for /, using (4.7),

2
<e f P2DMH P +C(e, P) f |D* 2"
By B>

j}; |Dk+4¢p * Dk+2go * (P * ng + szczl)
2

(B) Note that when applying the product rule successively to G, we will get

(1) A single highest order term which is linear in the highest order with coef-
ficients involving at most order D3¢.

(2) Second to highest order terms that are linear in the second highest order,
may have a factor of D*¢, all other dependence of lower order.

(3) Terms of lower order, which could be multilinearly dependent on various
lower orders.

Thus
(4.18) Giy iy = 1% D" + Q.

with Q having highest order D**3¢. This is observed by iterating the following
expansion: Using DG to denote a derivative in x of the composition

x = Gx, Dep(x), D*¢(x), D*p(x))
and DG to denote derivatives in all 4 arguments of G, we have
DG = DG+ (D*¢ + D¢+ D*g + ¢)
where ¢ is the term generated by DG/Dx. Continuing
D’G = DG % (D°¢ + D*¢ + D¢ + D¢ + (D*¢ + D¢ + D*¢))
+D’G « (D*g + D’p + D’¢ + ¢)  (D*¢ + D¢ + D¢ + ¢)

(4.19) DG = DG « (DM**g + D + D2 + )
+ DG * (Dk+3(,0 + D"2p + DM+ ) s (D4<p + D¢+ Do + ¢)
+ DG * (Dk+2<p + ) * {(Dsgo + ) + (D4g0 + ) % (D4(p + )}
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Now integrate by parts:

i1j ] +. ] +. 2 —_ 2 i1j i =+ ] =+
jl; Gil--~ik+2 (90j|~~-jk+2glljl"'glk 2 zvg)pa - _f Gil~~-ik+laik+2 [pa (90j1~~-jk+2glljl"'glk 2 2vg)]
2

B>

:f (Dk+4(P*Dk+3§0),0§ +f (ng +p§P)Dk+4<p*Dk+2(p
B By
+ fB (0 D3¢) p% + fB (Dp + paP)Q = D2,
2 2

We use Peter-Paul’s inequality we split into two types of terms:

2
€ f |D***|” pl+ & f Q%%
B> B>

and
C(e, Dpq) f (D2l + |26} P2 + P+ 1362,
B>
First,
f ’Dk+3cp|2 (P2+P+ 1)/?(21 < C(D3(,0)f |Dk+3¢p|2
B> B>

is bounded by the argument in Lemma (4.10).

One can prove by induction, observing (4.18) and (4.19), that for each term in
Q, the total number of derivatives of D> that arise will sum up to no more than
k+1(@G.e Do« DOpxD3p = D340« D330« D3*2p, here k—4+3+2 =k+1.)
Applying Lemma 4.9 for f = D3¢ and m = k + 1 to each of the squared terms
gives

k+1

f Q*dVy < C(ID%¢l) D | 1Dl
By i=0 B3

thus & fBz Q%d V, has the correct bound, by Lemma 4.10.
Finally we finish bounding the last term in (4.14)

f Oiripr®iroiina0r (87182 .82V ) p2 = f (D20« D2« D) o],

Apply Lemma 4.9 for f = D3¢ and i = k

k+3
f (Dk+2¢*Dk+2‘p*D6‘p)p(2Y < sf |Dk+4¢|2 +C(s,k,D3t,0)Zf |Dj¢|2
B, B3 =3 B3

We may then sweep away the fBz |Dk+3(,0|2 term Lemma 4.10 (choosing & ~ ce?)
to conclude the proof. O
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Proposition 4.12. Let pi € Cy(B2(0)). Considering the decomposition in Lemma
4.7, for € > 0 we have

d k+2 .
[ At vsigmgascucno S [ it
By 2. ),

+8f |Dk+4cp‘2.
B;
Proof. Recall that

(4.20) Sy = (1 + D3<p)*(Dk+1g0+Dkgp*D4go+Dk_l(p*D4gp*D4tp+Dk_]¢*D5(,0+...)

Differentiating with respect to ¢ generates product rule expansions with 4 orders of
derivatives added to a factor in each term, that is (modulo lower order geometrically
controlled values like V)

4.21)
d
7 |Sk|§ dVe = (1 + D3(p) * (Dk+590 + Dk+4¢p * D4(,0 + Dkgo * D8(,0 + ) * S
(Dégo + D7go) * (Dk+ltp + Dfo « D*o + D" 'p « DY « D*o + ) xS .

Integrate by parts:

fBz (D50« (1+ D)+ S4) p3 = fBz DM s (DY xSy + (1 + Do) + DS 1) p}

Dk+4 l D3 S D 2

o ] (1 D) e 50) 2 D2}

<e f Dl 02 + Cle) f (1%« 51 + D% « DS, o2
By By

+C(s)f |(1 +D3¢)*Sk|2 IDpaP? .
B,

Now apply Lemma 4.9 with f = D’pand m = k — 1
k+2
(4.22) f (|D4<p*Sk|2 + |D3¢*Dsk|2)p3, < Ck.D’g) Y f IDigl.
B, — B3
J=3 773

Similarly using 7 as in the proof of Lemma 4.9, we have
k+1

f ](1 + D) x Sk’z IDpal? < C(Dpa. D) Y f IDig|.

B, =3 Bj

Continuing with the terms in (4.21)

f (1 + D3¢)*(Dk+4gp « D4 Sk)p(zy < Sf ’Dk+4<p|2p§+C(8)f |D3<p s« Do« S 2,03
B, B, B,

with the latter term enjoying the same bound as (4.22). The remaining terms are of
the form

f (D¥*7gx D2 5 D¥agp)
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with jj + ...+ j, < 2k so

k+3
f (D@ D25 D¥ip) pl < C(m, D) [Z f |DJ¢|2 + 1]
B, — B3
J=3

by Lemma 4.9 again. Applying Lemma 4.10 to fBg |D"+3go|2 completes the desired
bound for the integral of the (4.21) terms. .

Next
(4.23)

d d
f — (UD! 2, S 1)gd V) p2dV = f (D 5 S i) padV+ f D205 = (S % V) p2.
B> dt B B dt

Integrating the first term by parts twice yields

Dk+6tp>x<Skp§ =f Dk+4¢p>kD2(Sk>kV)pé+Dp§*D(Sk*V)+D2p(2l*(Sk*V)
B B>

<e f D[ p2 + Cle) f D25 [ 02 + C (&, D*02) f (IDS K +1S4P).
B By By

Again Lemma 4.9 with f = D3p and /1 = k and r, = 5/2

k+3
(4.24) f |Dsz|2pisC(k,D3so)Z f DIl
):73 =3 VBsp2
5 k+2 )
(4.25) < f D4l + C (&, k, D? f D’
£ B3| ¢| (5 ‘P); B3| ¢l

using Lemma 4.10.
Now look at second term in (4.23). Note that

d

The highest order term can be dealt with via integration by parts away from D3¢
and then an iterated Peter-Paul, carefully choosing smaller £ and using Lemma 4.9.
For the remaining terms, we need the third statement in Lemma 4.9 which gives

fB (D*Iigx D¥ig « . x DY) 2 < 8[ Dk
2

Bs),

k
5 S 2
+C<s,k,§,||f||oo)[§ f Dy +1]
— Jp
=0 52

as ji + ..+ j, = 2k + 1. A final application of Lemma 4.10 to me |Dk+3(,o|2
completes the proof. O
In Proposition 4.11 we have isolated ‘good’ terms —2 fBz |D"+4(,o|2 p2. We would

like to use them to offset the ‘bad’ terms of the form & f& |Dk+4tp’2 dV, that occur

in Propositions 4.11 and 4.12. Because the expressions for D"y are different
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in each chart in the cover, the difficulty arises that we cannot directly beat the
terms occurring on a larger ball by terms on a smaller ball of different charts, even
when the smaller balls cover the larger ball. To make an argument that the bad
terms in a larger ball of one chart are offset by the good terms in a smaller ball in a
different chart requires bounding the bad terms by a global, well-defined geometric
quantity involving derivatives of the second fundamental form, modulo a lower
order difference. This is the point of the following lemma.

Lemma 4.13. Take a finite cover of charts Y%, each over B4(0) and partition of
unity p(zl in B>(0) in each respective chart as described by (4.6). Then

k+1

> f D avy <oy f VAl av, + C.
p B3 L

m=0

Proof. Note that from Lemma 4.7
2 2
D4, < 2|V1A| +21S k-

Let: = Flz Then we have, taking 77 = 1 on each B3(0), with 77 € C.°(B34,(0))

f D<o av, <2 f (91 +15122) ave
B3 B

3

<2 f V<Al av, +2 f 1S keal2 7PV
B3 B3,

f D"l av, + 1
B3y,
by Lemma 4.9. Iterating this argument, using

k+2
f D3| dv, <2 f vkaf*av, +c| Y f ’Dmg0|2dVg+1]
B3y, B3y, m=3 ¥ B3+

and so forth, for a total of k + 1 steps, we have by using |D3go| < |A| + C that

) k+3
< 2f |VHA| av, + C
Bs

m=3

k+1
f Dl av, <2y f V<1 AP R av, + C.
B; By ey

m=0 &

Now for any set of functions #j, who are 1 on B, C B4 on each chart T, we can
bound

2.0 ~2 2 2
;f& V4| Uadvgﬁlilgg(; na(x))£|VmA| dv, ngL|V'"A| dv,.

It follows that
k+1

> f Dl v, < 2Ny f VAP av, + C.
a VB3 m=0vL
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4.4. Proof of the main theorem.

Proof of Proposition 4.2. At a fixed time fy we may take the ambient charts {*}
for a tubular neighborhood of L and subordinate partition of unity {pfl} which re-

strict to charts (via the x coordinate) for L with the same partition of unity.
Differentiate

d k=1 4|2 _ d el 2
¢ oo 4 st)
d 2
) jf;z (; pi] dt [('Dk+2(’0lg +ISilg + 2D, Sk)g)dvg]
= i k+2 2 2
- Za: fBz dt (’D S0|g dvg)pa

+2, fB % (1S4l + 240", S 1)) dVe | 7.
o 2

Thus

d k=1 4|2 k4 2 2 k4 2
(4.26) d—th|V 1A|gdvgs—2za:f32 | <p|gpadVg+8;L3 D4 pldv,

k+2
+ZC<k,s,||¢||c3>[Z fB |Dm¢|§dvg+1]
@ m=3 3

by Propositions 4.11 and 4.12. Now apply Lemma 4.13

k+1
> f ID*4el2dv, < [NCZ f IV"APdV, + C]
a VB3 m=0vL
k+1
=NC ) fL|V'”A|2 (Zpg) dV,+C
m=0 a

k+1

=NC Y > | v aPpav,

m=0 «a By
k+1

<NCH Y fB 2 z(|Dm+3¢|2 + |Sm+1|§)p§dvg

m=0 «a

2
:2NCZ f (|D"+4<,o| +|Sk+z|§)pidvg
@ By

k
+2NC Y fB 2 (|D’"+3<p|2 + |Sm+1|§)p§dvg.
2

m=0 «
Note that from Lemma 4.10

2 1
2 f |DM3 | phav, < — f |Dk+4ga|2dVg+C(N, |Dp3,|) f ID**2p*av,.
B 4NC Jp, B,
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Note also Lemma 4.9, recalling (4.20), then Lemma 4.10 on the highest order
resulting term gives

k+3
2
2| ISkalipldve<C )] f D"l + C
B m=3 v Bs)2

L k+4 2 2 O 2
< e fBS DMyl dVg+C(N,|Dpa|)mZ=3fB3 D"l +C.

Thus
k+2
S0 iptgPav, <anc Y’ f (D] plave +8nC Y S f 0" ef p2av
o YB3 a VB m=3"a VB

k+1

4.27) +8NC Y f 1S wl? p2dV.
B>

m=1 «

Choosing € < 2NC )~!in (4.26) in light of (4.27) we have

d ) k+2 ) k+1
— | |[v¥A] av, < C(N, k, llgllcs) f D"yl + f|s 2+1].
% [19iafav, SR

Applying Lemma 4.9 to the f IS m|§ terms and then Lemma 4.13 to the |Dm90|§
terms yields the result. O

Proof of Theorem 4.1. Suppose now that F' is a solution to (1.1) with |A] < K on
[0, T). Starting with

fL AR dV,(t) < K Vol (L) < C

we may apply Proposition 4.2 and apply differential inequalities: continuing with
d
— f IVAP* dV,(1) < C f IVAP* dV,(t) + C f JAP? dV, (D)
dt L L L
and so forth, obtaining bounds of the form
(4.28) f VLA dVy() < Ck, K, Fo, T)
L

for arbitrary k.
Now at any £y € [0, T) we may take a cover Y* as described in Proposition 4.6.
By Lemma 4.13 and (4.28) we have

(4.29) 1D"¢]|, 5, < Cks K, Fo, T)

for all &, in every chart. By Sobolev embedding theorems, we have Holder bounds
on D@ over B, for each chart. In particular, there will be uniform bounds on %Dgp
and %ngo which control the speed of the flow in the chart and the rate of change
of the slope the manifold L, makes with respect to the tangent plane at the origin in
the chart. We conclude then the manifolds L, will continue to be described by the
set of charts taken at ¢y for t < max {7, fo + 7} for some positive T with an apriori
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lower bound. (Perhaps we take c, slightly larger in (4.2)). By choosing ty near T
we are assured that these fixed charts describe the flow for all values ¢ € [ty, T).

Now observe that with fixed speed bounds, the paths x — F(x,t) of the normal
flow are Lipschitz and hence the normal flow extends to a well-defined continuous
map

(4.30) F:Lx[0,T] - M.

We claim that F (-, T) is a smooth immersion. While within a chart, the vertical
maps

(4.31) F(x) := (x,dg(x, 1))

converge in every Holder norm to a smooth map at 7', we still must argue that the
charts given by the x coordinates do not collapse as ¢+ — T. This can be argued
locally, using coordinates on L,,. For any given x € L,  we may choose a chart
such that x € B1(0) ¢ B3(0). We are already assuming F' is an immersion at #y SO
this coordinate chart gives us a coordinate chart for the abstract smooth manifold
L. For t > tg the normal flow F is given by

(4.32) F(x,1) = (ri(x), do(x(x), 1))

for some local diffeomorphism y,(x) : B;(0) — B»(0) from Claim 3.3, provided
that 7y is chosen close enough to T such that

Yi(x) € By(0) for all x € By(0) and 1 € [1o, T).

This choice of 7 is possible given that x;(x) is controlled by the normal projection
of ‘i—f and the inverse (dF)™', for F defined by (4.31), both of which are universally
controlled given (4.2) and (4.29).

Now because (4.31) is uniformly smooth, it can be extended smoothly to [#y, T +
0), as well as the normal flow associated to this extension. Applying Claim 3.3
(note that we may extend the flow outside B3 in a nice way which doesn’t affect
the behavior in B>(0)) we get a smooth diffeomorphism y7. For x € B{(0) we can
compute the normal flow F,

F(x, T) = (er (), do(xr(x), T))

which is a smooth extension of (4.32) to 7, by the uniform estimates on ¢. Now
F(x,T) is a smooth immersion from B;(0) because y7 is a diffeomorphism. As x
was chosen arbitrarily, we conclude the continuous extension of F defined in (4.30)
must be a smooth immersion from L at T'.

We may now restart the flow by Proposition 3.2 with initial immersion F(x, T').
The time derivatives of the new flow and F agree to any order at 7. Therefore
the new flow is a smooth extension of F to [0, T + &) for some € > 0. Moreover,
Theorem 3.4 asserts that this is the only smooth extension. O

5. APPENDIX

5.1. Submanifold with bounded second fundamental form A. Itis a known and
frequently used fact that when |A| is bounded then the submanifold can be written
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as a graph over a controlled region in its tangent space. We provide a proof below
for any dimension and codimension.

Proposition 5.1. Let L* be a compact manifold embedded in a compact Riemann-
ian manifold (M**', g). Suppose that the second fundamental form of L satisfies
|A] < K for some constant K > 0. Then L is locally a graph of a vector-valued
Sfunction over a ball B.(0) C T,L in a normal neighbourhood of p € L in M and
r>CM,g)(K + 1)_1f0r some constant C(M, g) > 0.

Proof. Step 1. Bound the injectivity radius of L from below in terms of K. Assume
M is isometrically embedded in some euclidean space. For the embedding F :

LF EA M1 5 RE1 denote its second fundamental form by A and note that
A< C(Al+ 1) < C(K + 1)

where C only depends on the isometric embedding ¢. Let y : S' — L be a short-
est geodesic loop based at a point p € L which is parametrized by arc-length s.
Suppose y(0) = y(a),y’(0) = ¥’'(a). Take a hyperplane P in R¥*" such that P inter-
sects y at a point p orthogonally. There is a point g € v where y meets P again at
first time. The angle between the unit vectors y’(p) and y’(g) in R**" is at least -
Therefore

(p) -v(q)| = V2.

Since Foy : S! 5L ki R+ factors through L where 1 is a geodesic, we have (cf.
[ES64], [EL78] for the notation of the second fundamental form Vd¢ of a mapping
¢ between Riemannian manifolds),

Vd(F oy) =dF o V(dy) + Vd(F)(dy,dy) = Vd(F)(dy, dy).
Since the Christoffel symbols of S! and of R”** are 0 we have
Vd(F oy)=(Fov)".
Therefore
(Foy)" = AF)Y,7).
Integrating along the portion of y from p to g, we get

q
V2l (p) - (@) < f |(Foy)|ds < C(K +1)a.
p

We conclude that that the length a has a lower bound C/(K + 1).
From the Gauss equations and |A] < C(K + 1), the sectional curvatures of L are
bounded above by C%(K + 1)%. We conclude inj(L) < C(K + 7! [Pet06, p.178].

Step 2. Take a normal neighbourhood U c L around a given point p € L and
assume U is contained in a normal neighbourhood V of M at p. We will use C(g)
for constants only depending on the ambient geometry of (M, g). Now, on V we
will use 6 = (-, -)ge+, to measure length of various geometric quantities already
defined in (V, g). First,

|Als < C(g)lAl; < C(g)K.
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Identify T, L with R¥ x {0} ¢ RF*.. Let e (x), ..., ex(x) be the orthonormal frame
on U obtained by parallel transporting an orthonormal frame e1(0), ..., ex(0) at T),L
along the unique radial geodesic ry(s) in (U, f*g) from O to an arbitrary point x € L,
and let e144(0), ..., €;+%(0) be the orthonormal frame of (TpL)L. Integrating along
v(s) leads to

[Cei(x), ej41(0))] = [(ei(x), 41(0)) = (ei(0), e}41(0))|

Xl g

= I fo £<€i(’yx(s)),€j+l(0)>ds
{x|

:| i (€i(s), ej1(0))ds

|X|
< f

{x]
=L|wmm+%@%mmm
< C(®)K |x|

(V8 i ejui(O)]ds

as VL e = 0 on L. Therefore, there exists ry = C(g)K~' (where C(g) may differ
from the one above) such that for any x € B,,(0) the projection of each e;(x) in each

fixed normal direction e;(0) is at most ¢,/ V1 and the norm of the projection is no
more than some universal constant ¢, ; that we get to choose. It is known that such
T L projects bijectively to T, L. Therefore, locally around any x € B,,(0), implicit
function theorem asserts that U can be written as a graph over a ball in 7 L, hence
as a graph over a ball in T),L from the projection. The graphing functions over
the fixed reference plane 7pL must coincide on the overlap of any pair of such
balls. This yields a global graphing function F over Bj (p) C T,L. Moreover,
|IDF| < C(g,]) because DF is close to T, L which is close (measured in /) to T),L
via the projection. O
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