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Abstract. We discuss Bitcoin mining markets and the market for ASICs.
We model the economic pairing between sellers and buyers via optimal
transport, and argue that if the supply is sufficiently constrained, there will
be a unique equilibrium.

1. Introduction

These notes attempt to give a brief background to the fundamental market
concepts that drive Bitcoin mining. We start by introducing some classical
models, and then apply these directly to the naturally occurring economics in
Bitcoin mining. The full picture depends on at least 4 markets, and indirectly
on many more markets beyond that. Perhaps the most significant factor is
the price of Bitcoin, which is driven by independent forces. (This separation
is by design, some would argue, and serves to distinguish proof-of-work from
proof-of-stake.) The central market is the production of the hashes, which are
converted to Bitcoin via proof-of-work and the difficulty adjustment. But
because Bitcoin requires sophisticated ASICs to mine, the mining market de-
pends heavily on the market for the ASICs themselves. In 2021, the capacity
to produce ASICs is heavily competitive and depends on the ability of ASIC
producers to gain access to chip-making facilities. These foundries are in hot
demand: ASIC production is in competition with worldwide markets for other
technologies, such as iPhones. In this chapter we present various models that
may be useful for analyzing mining as an economic market. The market
for hash production is fairly simple and straightforward, thanks to Bitcoin’s
simple rules and the difficulty adjustment. This will be covered in section 2.

The market for special equipment is a bit more complicated, and will be
discussed in section 3 . It is exceeding difficult to present a grand unifying
theory, and also somewhat pointless as the reality is complicated, in particular
when involving predictions, which are tough to make, especially about the
future. The goal is develop some toy models giving an idea of how the market
should work. Section 4 will offer some simple applications: Incentives for
“green” mining and the profitability of intermittent mining.
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2. Hashing as a market

In the first section we deal with miners with a fixed allocation of equipment
and study what drives them to mine.

2.1. Cournot Oligopoly Model. We begin introducing a market model de-
scribing the mining production. As has been noted [4], the Bitcoin mining
market is one of the most perfectly competitive markets that occur in nature.
There are no transportation costs for hashes, the barriers to entry are rela-
tively small, and the products (hashes) are identical. These dynamics will lead
to a competitive market with many participants.

Rather than simply observing that Bitcoin mining is a perfectly competitive
market, we will go ahead and derive this fact by taking a limit of a classical
model, the Cournot oligopoly model. That is, we are going to consider the
model for oligopolistic markets, but take the number of firms to be quite large.
As the number of firms become large, the dynamics approach those of perfectly
competitive markets. This will give us an opportunity to explore the dynamics
and also the motivations for and against collusion.

A discussion of mining as an oligopoly market is similar to the standard
discussion found in many economic textbooks. Mining has the feature that
the price is not determined by the supply of hashes, but the share of revenue
is. As we will see these two effects combine to create a model in which revenue
is inversely proportional to the supply. We will introduce the classical model,
and then describe how this should be tweaked to apply to to mining.

2.1.1. Classical model. In a classical oligopolistic market, there will be a num-
ber of firms {Fi} producing a certain good . Each producer {Fi} incurs a
cost ci per unit of the good produced, and sells to consumers a price P. Each
producer produces output quantity qi. For this particular model, we assume
that price is determined by where supply and demand meet, that is, there is a
function P (q) which describes the price when the total quantity of goods (over
all the firms) is q. The function P (q) should be decreasing: more quantity
produced means lower prices. We also assume that there is one price at which
the good is sold across the market (no price differentiation.)

For each firm, we define a profit function

πi(q1, .., qn) = P (q)qi − ciqi

which represents the market price times the quantity produced by firm i, minus
the cost of producing this quantity.

This represents an n-player game: Each player chooses a quantity qi and
receives a payoff πi which depends on the choices {qj} .
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To determine the Nash equilibrium, we use multi-variable calculus. The
space of all possible choices of {qj} will be

R+
n = {(q1, .., qn) | qi ≥ 0 for all i} .

If we assume that the costs ci > 0 and the price P (q) → 0 when q → ∞, the
positive values for the profit function πi must occur inside a compact region,
and must occur in the interior, provided each firm is making a profit. (If that
firm will not make a profit, we ignore this firm and reassign the number n to a
smaller number.). Suppose that P (q) is a differentiable function. Then if qi
is an interior value that maximizes πi while holding each {qj, j 6= i} constant,
we will need

∂πi
∂qi

(q1, ..., qn) = 0.

Computing, we check that this is

dP

dq
(q)qi + P (q)− ci = 0. (2.1)

So for a Nash equilbrium, we need to find q1, q2, ..., qn and q = q1 + ... + qn
such that (2.1) is satified.

Exercise 1. Let

P (q) = 100− q

3
and assume there are two firms producing goods, with costs 4 and 5 per unit,
respectively. Find the Nash equilibrium. (Hint: (2.1) is a 2×2 system of
linear equations).

2.2. A model for the mining market. In order to apply the general model
to mining, we need a reasonable description of how price (meaning the amount
paid out per hash, not the price of Bitcoin) depends on the output. The price
of Bitcoin itself is not determined by the supply of hashes, rather the price
is determined by the independent market of supply and demand for Bitcoin.
Bitcoin’s price PB will be considered to be a variable that does not depend on
the number of hash created by the miners. Nonetheless, the price paid per
hash has a very specific expression, thanks to the difficulty adjustment:

P (q) = χ
PB
q

where

PB = Price of a bitcoin in dollars

q = total hashes produced by all miners in a ten minute period

χ = Block reward, in units of bitcoins.
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2.3. Linear cost model. In our simplest model, we will assume that the
miners are paying a fixed per unit cost. This is unlikely for large demand,
but reasonable for smaller demand, as we will discuss, but it will provide the
basis for a toy model.

Each producer produces qi hashes at a cost ciqi. The profit is determined
by

πi = χ
qi
q
PB − ciqi.

We are assuming a difficulty-adjusted view. This model isn’t accurate in the
very short term, but zooming out beyond two weeks it will be true. For this
reason we also assume that PB nor q is going to changed drastically over a two
weeks period.

Applying (2.1)

− χPB
q2
qi + χ

PB
q
− ci = 0. (2.2)

Now at a Nash equilibrium, this will be true for each i and we may sum:∑
i

(
−χPB

q2
qi

)
+
∑
i

χ
PB
q
−
∑
i

ci = 0

that is

(n− 1)χ
PB
q

=
∑
i

ci.

So

q =
χPB(n− 1)∑

i ci
.

The total quanity q uniquely determined, we can then solve for each qi using
(2.2):

qi =
χPB

q
− ci

χPB
q2

=
χPB(n− 1)∑

j cj

(
1− (n− 1)ci∑

j cj

)
. (2.3)

Notice that if all costs ci = c are equal, this reduces to

qi =
χPB(n− 1)

n2c
and profits will be

πi =
1

n2
χPB. (2.4)

Conclusion 1. If we assume that each producer has the same fixed cost per
hash, profits decrease on the order of 1

n2 , where n is the number of miners.
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Inspecting (2.3) we see that the condition for profit to be positive for miner
i can be formulated as

n∑
i=1

cj ≥ ci(n− 1)

that is
ci ≤

n

n− 1
average {cj} .

This suggests that if this model holds true, for n large, there is a very narrow
band of per units costs that will remain profitable.

In reality mining costs may change depending on how many hashes are
produced: A firm may have more efficient machines that are turned on first,
and less efficient machines turned on to meet demand.

2.3.1. Uniqueness of n. The quantities determined by (2.3) are well-defined
provided the values {cj} are known; necessarily this requires knowledge of how
many and which firms are mining profitably. The computation above assumed
that all miners are mining profitably: The qi value must not be negative. In
the situation where one or more of the producers is predicted to produce a
negative quantity, this firm should be excluded, and the computation should
be redone, with only the firms that can produce profitably.

It is a reasonable question to ask: Are there different combinations of mining
firms that will be able to mine profitably to the exclusion of other firms?
Excluding one firm from the computation should change the profitability for
all firms.

It turns out that for linear costs, there is a unique maximal subset of firms
that can mine profitably (proof is left as exercises.) That is, given a set of
firms S who are interested in mining, there will be a unique subset S ′ ⊂ S
such that 1) The Nash equilibrium determined when only firms mining from
S ′ provides non-negative profits for all members of S ′, and 2) For any larger
set S ′′ strictly containing S ′, the Nash equilibrium (2.3) will prescribe negative
quantities to some miners.

Exercise 2. Show that if the firms are ordered by costs c1, ..., cn, then if there
is a Nash equilibrium that is profitable for the kth firm, it must be profitable
for all firms i ≤ k.

Exercise 3. Show that if the firms are ordered by costs c1, ..., cn, and if the
equations (2.3) computed when only the firms 1, ..., k participate prescribe a
negative value for the kth firm, these equations will also prescribe a negative
value for the (k + 1)st firm if the first k + 1 firms are included.

Exercise 4. Use induction on Exercise 3 together with the results of Exercise
2 to conclude that there is a unique maximal profitable subset of mining firms.
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This phenomenon will be a recurring theme when computing Nash equi-
libria: We may attempt to compute the equilibrium using the assumption
that marginal profit is zero, and that the quantity is within the bounds of the
problem. If we find after doing the computation that this assumption fails,
we may remove a player and try again - the equations should all have changed
a bit when we try again.

2.4. Monopolist pricing and collusion. The monopolist hashing model
is drastically different. If there is single miner producing hashes, they will
maximize the function

π =
q

q
χPB − cq.

The upper bound on values that can be obtained here is χP, which will be
approached as the hash output approaches 0. So a monopolist who is the only
player in a hash market would expend as little positive energy as possible, and
still claim 100% of the rewards. In practice, this is unlikely; even the slightest
bit of competition for the mining market would change this dynamic.

Note that the reward for collusion in the mining market is extremely high,
but the reward for defecting is also extremely high: If the set of miners is
fixed and cartelized, they could in theory, agree to reduce hashrates all the
way to near zero, and split the proceeds. Costs would go to near zero, but the
total revenues would be the same and profits would be large. However, the
nature of the market allows anyone to sweep in and claim a windfall of profit
by defecting from (or simply never agreeing to) such an arrangement.

Example 2.1. Suppose that there are 5 miners, each with identical costs to
produce hashes. Each will make a profit of χPB/25. If all 5 where to collude
and produce very small number of hashes, each could claim profits of χPB/5.
If 3 collude to exclude the other 2, and proceed to produce very few hashes they
could claim profits of χPB/3. This latter scenario requires that the other 2
have given up and dropped out.

2.5. Nonlinear cost models. For Bitcoin mining, a linear cost at all scales is
unlikely. Specialized equipment is costly to purchase. Less efficient equipment
(say from 4 years ago) is less costly and may be more available.

It’s difficult to model this precisely, but we will consider a simple toy exam-
ple.

Example 2.2. Consider a firm that invests continually over time, purchasing
equipment every month that consumes the same amount of energy, but that
becomes exponentially more efficient due to Moore’s law. If we run time
backwards, the function

O(t) = E0e
−λt
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measures the output of the equipment acquired t years ago, where E0 is the ef-
ficiency of equipment produced today. Note that the first hashes one produces
will incur a cost 1

E0
. In order to properly model the cost as a function of

total output, we need to solve for t in terms of total q. This is best done by
first computing an expression for q in terms of t :

q(t) =

∫ t

0

E0e
−λsds =

1

λ
E0(1− e−λt).

Inverting, some computations yield

t =
1

λ
ln

(
E0

E0 − λq

)
.

Now because we are assuming that each time interval’s worth of equipment
consumes the same amount of energy, t is a constant times the cost used to
produce q. In other words, up to some constants, we expect

c(q) = C ln

(
E0

E0 − λq

)
= C ln

(
1

1− θq

)
.

In general, we can assume that the marginal cost ci(qi) to produces hashes
increases with qi. We observe

Total cost to produce qi hashes =

∫ qi

0

ci(s)ds.

The profit function for each miner is a concave function in output, as can be
seen by differentiating. Starting with

πi = χ
qi∑

j 6=i qj + qi
PB −

∫ qi

0

ci(s)ds, (2.5)

we take the first derivative,

∂

∂qi
πi = χ

∑
j 6=i qj(∑

j 6=i qj + qi

)2PB − ci(qi),
and the second

∂2

∂q2i
πi = −2χ

∑
j 6=i qj(∑

j 6=i qj + qi

)3PB − d

dqi
ci(qi). (2.6)

Clearly if the marginal cost ci(qi) to produce hashes is non-decreasing, this
quantity above is negative and the function is strictly concave. We say a
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function f(x) is strictly concave, if for each x, y and t ∈ (0, 1) we have

tf(x) + (1− t)f(y) < f(tx+ (1− t)y).

If the function f is twice differentiable, this is equivalent to the condition that
f ′′(x) < 0 for all x except perhaps isolated points at which f ′′(x) = 0.

2.6. Nash Equilibrium in the mining market. We recall a Theorem
due to Rosen in 1965 [5].

Theorem 2.1. Suppose that the strategies of n players are described by a con-
vex and compact (closed and bounded) subset of Euclidean space (q1, .., qn) ∈
Rn. If the payoff functions πi are continuous and strictly concave in the vari-
able qi, a unique Nash equilibrium will exist.

This theorem, combined with (2.6) tells us there is a unique Nash equilib-
rium for miners with increasing marginal cost functions.

Remark 2.1. The theorem guarantees uniqueness or a fixed n-player game
with concave payoff: It applies even when we include miners who will be non-
profitable; Their outputs will be zero: We take our compact convex region to
be a cube

{(q1, ..., qn) | 0 ≤ qi ≤ R}
for some R >> any feasible hashrate. This allows some values of qi to take
the value 0.

We will prove existence directly, as it gives us an opportunity to use the
Brouwer fixed point theorem.

Theorem 2.2 (Brouwer Fixed Point Theorem). Suppose that F : K → K
is a continuous function, and K ⊂ Rn is a convex and compact (closed and
bounded) subset of Euclidean space. Then F has at least one fixed point,
namely an x∗ such that F (x∗) = x∗.

To use this theorem, we define the following function

F (q1, q2, ..., qn)

= (arg maxπ1 (∗, q2, ..., qn) , arg max π2 (q1, ∗, q3, .., qn) , ..., arg max πn (q1, q2, ..., ∗)) .
Here

arg max π1 (q1, ∗, ..., qn) = {q2 : the maximum for s 7→ (q1, s, ..., qn) is attained at q2} ,
etc. By strict concavity, this arg max function is well-defined and unique. A
strictly concave function on a compact set must achieve a unique maximum.

Exercise 5. Prove that the arg max function is continuous as a function of
all variables, provided the function is strictly concave in each variable.
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The function F is continuous and F must have a fixed point

F (q1, q2, ..., qn) = (q1, q2, ..., qn),

in other words, the best strategy given fixed q2, ..., qn must be q1. The best
strategy given q1, q, ..., qn must be q2, that is, this set of strategies must repre-
sent a Nash equilibrium.

2.6.1. Profitability. Allowing each mining firm to produce until production
capacity runs out (equivalently, ci(q) = +∞), there will be a Nash equilibrium,
that is, a point (q1, q2, ..., qn) at satisfying

χ
q − qi
q2

PB − ci(qi) = 0 for all i. (2.7)

We can solve for the value of a unit of hash:

χ
PB
q

= χ
qi
q2
PB + ci(qi)

and compute the profit:

πi = qi

(
χ
qi
q2
PB + ci(qi)

)
−
∫ qi

0

ci(s)ds

= χ
q2i
q2
PB +

∫ qi

0

[ci(qi)− ci (s)] ds.

The first term, involving the square of the firm’s proportion of the pool, is
reminiscent of (2.4), but allows for more general distribution of hashrates.
The next term represents the surplus between the maximum that they pay for
hashrate and what they pay for less expensive hashes.

Observe that solving for the ci(qi) in (2.7) will tell us the maximum marginal
cost cmax

i (qi) paid by each firm. Summing as before we conclude that

qi = q

(
1− (n− 1)cmax

i (qi)∑
j c

max
j (qi)

)
. (2.8)

So we conclude the following: A miner will be able to mine profitably, provided
that

cmax
i ≤ n

n− 1
average

{
cmax
j

}
.

If we take the other values
{
cmax
j , j 6= i

}
as given, this condition is equivalent

to the statement that the mining firm has access to hashing at marginal cost
ci for any ci satisfying

ci <
n− 1

n− 2
averagej 6=i

{
cmax
j

}
.
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3. Market for ASICs

In the Cournot model, it is assumed that the price depends on the total
quantity of goods produced. Firms that produce the goods decide how much
to produce, and price is a dependent variable that will respond to the choice
of quantities.

Another model, called Bertrand competition, does not assume that price
is determined precisely by output, rather that firms will choose a price, and
the quantity of output will increase or decrease to meet the demand which
happens at that price. In short, the quantity sold by each firm is a function
of the prices charged by each of the suppliers.

The profit function is similar, but now depends on a vector of prices p1, ..., pn :

πi(p1, .., pn) = Di (p1, .., pn) pi − c̃iqi.

Here Di represents the demand met by firm i given the firms have specified
these prices, and c̃i is the production cost. In the most competitive settings,
the model requires that consumers will always choose the producer that sells
at the lowest price. This is a bit of an extreme assumption: It assumes that
the buyer of a $129.99 product will switch to a competitor if the competitor
offers the same product for $129.98. In practice, methods of buyer or product
differentiation deal with this discontinuity. However, the basic Bertrand model
makes this assumption. Necessarily, this also requires the assumption that
the capacity to produce is unconstrained: The firm can produce billions of
dollars worth of goods on a moment’s notice.

3.0.1. Nash equilibrium with Bertrand assumptions. Suppose that multiple
firms are competing to sell the same good. Is there a Nash equilibrium
in the choice of prices?

First we observe that each firm sells only at price pi ≥ c̃i, otherwise they
would be producing and selling at a loss. Observe next that any firm hoping
to make a sale must sell goods at costs no higher than any other firm. So
pi = pj for all i, j unless the firm is already resigned to not making any sales.
Now if all firms are selling at the same price, they should be splitting the
quantity sold. But if pi = pj > c̃i, firm i can charge price pi − ε > c̃i,
(this is called epsilon-undercutting) and steal all of the customers from the
other firms. An infinitesimal decrease in per unit revenue combined with a
significant non-infinitesimal increase in quantity yields a much better profit.
We conclude that there is only one possible Nash equilibrium, and that is that
each firm with cost c̃ := mini {c̃i} charge c̃ and each other firm either drops
out completely, or charges a higher price, knowing they will expect no sales
and zero profits.
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The Bertrand model says that with such competitive assumptions in place,
products will be sold at cost, for zero profit, and only firms that produce at
the minimum cost will engage the market. In practice this is a bit extreme.
Product and consumer differentiation allow for a less severe cutoff function
happening near p1 = p2, allowing for Nash equilibria with positive profits.
Reality also dictates that production cannot instantly toggle from 0 to mil-
lions. So this model is somewhat imperfect. However, in many cases, it is
approximately correct.

Clearly, because hashrate cannot be increased arbitrarily, the Bertrand
model does not apply to the market for mining. However, it may apply,
with some modifications and constraints, to the market for mining equipment.
We will explore this in several stages.

3.1. Future assumptions in a model. In this section, we set up a slightly
more cumbersome model simply for the purpose of becoming aware of it before
reducing to a more tractable model.

Suppose a miner produces qi(t) hashes while incurring electricity cost ci (t) .
In general, we would like to allow ci(t) to depend on time, because this may
depend on expectations of costs into the future. The miner sees an expected
profit function given by

E [πi] = E

[∫ ∞
0

(
χ(t)P (t)

q(t)
qi(t)− ci(t)qi(t)

)+

dt

]
Here, P (t) is the price function into the future, χ(t) is the blockreward function
(which will be cut in half at some point with the next four years, so does
have nontrivial time-dependence) and ci(t) is the electricity cost (also possibly
time-dependent) per unit hash produced. The notation (·)+ indicates that
if the inner quantity falls below zero, mining will be halted and no loss will be
incurred. Thus we can also rewrite this as

E [πi] = E

[∫
{t|χ(t)P (t)

q(t)
qi−ci(t)qi≥0}

(
χ(t)P (t)

q(t)
qi − ci(t)qi

)
dt

]
(3.1)

where the expression {
t | χ(t)PB(t)

q(t)
qi − ci(t)qi ≥ 0

}
denotes the time interval on which the machine will remain profitable. We
expect this to be finite and not too small. Predicting this exactly is obviously
going to be somewhat difficult.

A side-remark here on discounting: Often it is unfair to compare future
money to money today. Typically, money today is more valuable than money
in the future. One can deal with this by explicitly discounting, say multiplying
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the function inside the integral by e−δt for some small δ, or, we can also declare
that the future price P (t) and cost ci (t) has absorbed the discount. This
amounts to ”gauge-fixing” the price to today’s dollars, i.e. a Bitcoin worth
$1.34 Million in 2045 may be counted as being worth $780,000 in today’s
dollars, but in 2045. Note that discounting can involve not only loss of buying
power, but the opportunity cost of money. This latter approach is simpler
computationally.

Now suppose that a miner has equipment to produce hashrate qi today,
and is deciding whether or not to take on new equipment. To maximize the
expectation, take the derivative of (3.1) with respect to qi and ask if the future
returns exceed the price of the additional units being purchased.

dE [πi]

dqi
= E

[∫
{t|χ(t)P (t)

q(t)
qi−ci(t)qi≥0}

(
χ(t)PB(t)

q(t)
− χ(t)PB(t)

q(t)2
qi − ci(t)

)
dt

]
(3.2)

If this value is larger than p, the miner will be willing to pay p to obtain the
equipment.

Three comments: First, if the miner possesses a negligible portion of the
hashrate, the second term is ignored and the integral becomes

E

[∫
{t|χ(t)P (t)

q(t)
qi−ci(t)qi≥0}

(
χ(t)PB(t)

q(t)
− ci(t)

)
dt

]
. (3.3)

Second, it follows directly from the expression that if two mining firms have
the same costs but one has a larger portion of the current hashrate, the firm
with the larger hash rate will have slightly less expected increase in profits and
thus will have a slightly lower threshold at which a purchase would become
profitable. The end result is that both costs ci and current hash qi will
differentiate the miners and create a total demand curve D(p) for mining
units that decreases as the Bitcoin market price decreases.

Finally one may choose to ignore this second term if the firms takes the
perspective that the unit will be sold to another miner in the event that miner
i does not procure it. In other words, (3.2) does not price in the ”defensive”
incentive to prevent other miners from buying mining equipment. If we take
this perspective, the second term in (3.2) is ignored and we are left with (3.3).
Our analysis in the sequel will use (3.2), assuming that the the firm will not
purchase equipment defensively.

3.1.1. Simplified model. For a simpler model, which we adopt in the sequel,
we need some assumptions.
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Time Epoch. First, it makes sense to define a time epoch - this is meant to
roughly approximate the profitability window of ASICs being purchased today,
or the time over which any reasonable predictions can be made, whichever is
shorter. This could be a year or two. Beyond this time period predictions
about price and equipment supply availability become quite fraught and not
worth coding into a hard mathematical model. We assume that decision
makers have a time epoch in mind when making a decision, and are not making
decision based on hunches about the price of a bitcoin or ASICs decades into
the future.

We assume that PB(t) is roughly a constant PB into a near future that
includes the life-span of the mining equipment. If the block reward halving
is approaching, one may also take a weighted average of the block reward χ.
The same is true for q(t) : While we will be solving for the values qi(t), rather
than closely inspect the time-evolution of these values, we simply assume these
remain close to constant values qi over the time epoch.

The decision-making process involves deciding how much hash rate ∆qi that
a miner will add to their arsenal. The marginal profit obtained by purchasing
mining equipment capable of producing ∆qi addition hashrate over the lifetime
of the equipment is determined by the profit function

πi =
χPB

q +
∑

j ∆qj
(qi + ∆qi)− ci (qi + e∆qi)− p∆qi (3.4)

where

PB = price of Bitcoin in dollars averaged over the time epoch

q = total hashes that will be produced by all miners with machines already acquired

over the time epoch

qi = total hashes produced by miner i over the time epoch, from already

purchased equipment

∆qi = total hashes purchased by miner i deployed over the time epoch

χ = Block reward in Bitcoins

ci = expected electric cost over the time epoch

e = electrical inefficiency of the equipment to be purchased

p = price of the equipment required to produce one unit of hash.

We’re introducing “electrical inefficiency” e here: This is a unit of energy per
hash that describes the electricity required to create one unit of hash with a
specified type of ASIC. For example, if we take the electric cost c to be given
in $/kW-h, we may take e to be in units of kW-h/TH, then the cost to produce
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a hash with this electricity cost and this equipment, will be ec, now in units
of $/TH.

3.2. Monopolistic model for ASICs. Suppose that there is only one sup-
plier of ASICs, which has electrical inefficiency e. Miners need to buy from
this supplier in order to produce a competitive hashrate. The supplier decides
to price the units at p.

We will attempt to construct a demand function D(p) in terms of price as
follows. For each given p find a Nash equilibrium describing the miners choice
of additional units to purchase {∆qi} . One can check that the function (3.4)
πi(∆q1, ...,∆qn) is concave in the variables ∆qi, thus the Nash equilibrium will
exist and be unique by arguments very similar to those found in the example
in section in (2.6). We differentiate each profit function

∂πi
∂∆qi

=
χPB(

q +
∑

j ∆qj

) − χPB(
q +

∑
j ∆qj

)2 (qi + ∆qi)− cie− p

set these to zero

χPB

(
q − qi +

∑
j

∆qj −∆qi

)
= (cie+ p)

(
q +

∑
j

∆qj

)2

and sum over i

χP ((n− 1)q + (n− 1) ∆q) =
∑
i

(cie+ p) (q + ∆q)2

leading to

q + ∆q =
χPB(n− 1)∑

i(cie+ p)
.

This gives us a demand function in terms of price:

D(p) = ∆q =
χPB(n− 1)

np+
∑

i ci
− q. (3.5)

Now the profit made by a monopolist firm selling the equipment with pro-
duction cost c̃p will be

D(p)(p− c̃p) =

(
χPB(n− 1)

np+
∑

i ci
− q
)

(p− c̃p),

and the monopolist’s price will be determined by maximizing this profit func-
tion, provided that the supplier does not have capacity constraints. If the
optimal price results in a demand D (pmax) which is larger than the capacity
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of the supplier, the supplier is wise to increase price until D (pmax) decreases
to the capacity that can be satisfied.

3.3. Duopolisitic unconstrained markets for ASICs. Suppose there are
two or more suppliers for ASICs. If we take the (somewhat unrealistic)
Bertrand type assumption that the market is unconstrained, we find the same
dynamics. Provided that one supplier has the ability to ε-undercut the other,
the only feasible Nash equilibrium will happen when each supplier is making
zero profits. In a Nash equilibrium, producers will sell equipment at cost or
not at all.

3.4. Duopolisitic constrained markets for ASICs and the Edgeworth
paradox. A more interesting question is what happens when the supply is
constrained. To illustrate the problem, consider a made-up demand function
given by

D(p) =
1000

p+ 8
− 50

If a monopolist is unconstrained and incurs a production cost of 1 per unit,
they would maximize the function

π(p) =

(
1000

p+ 8
− 50

)
(p− 1)

which is maximized when

p ≈ 5. 416 4

D(p) ≈ 24. 536.

If the production capacity C is less than 24. 536, the supplier will find the
maximum price so that D(p) ≥ C.

Now suppose there are two ASIC producers each with capacities C1 and C2.
Suppose that C1 = C2 = 20. If each wishes to max out their capacity, the
total demand should be

1000

p+ 8
− 50 = 40

so one could imagine that each may charge price

p =
1000

90
− 8 ≈ 3. 111 1

as this would be the largest price each could charge while saturating their
demand.

At this price both sellers sell 20 units and make a profit of

20 ∗ (3. 111 1− 1) ≈ 42. 222.
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Now what happens if one producer increases the price? Suppose that one firm
decided to charge.

p = 3.33.

What we expect to happen is that the total demand will be determined by the
higher of the two prices, namely

D =
1000

3.33 + 8
− 50 = 38.261

Buyers prefer the lower price and 20 units will be filled at the price 3.11, while
the remaining 18. 261 units will be purchased at price 3.33. So the profits will
be

18. 261 ∗ (3.33− 1) ≈ 42. 548

20 ∗ (3. 11− 1) ≈ 42. 222.

So it follows that in this case, the value that saturates the capacity is not profit
maximizing for both: either can raise prices, sell less and still increase profits.
This leads to the next question - why doesn’t the second firm also raise their
price? Indeed they can. In fact their incentive is larger to do so - they will
not lose sales until they meet or exceed the price of the firm with the higher
price. It follows that p2 < p1 is not an equilibrium. So any Nash Equilibrium
must have p1 = p2. However, this is also impossible. If p1 = p2 > 3. 111
neither capacity is saturated and the demand is being split. Either firm can
ε-undercut to get a significant jump in demand. We conclude there is no
Nash equilibrium. This is the Edgeworth paradox.

One objection to this construction is that the “step-function” effect of ε-
undercutting doesn’t reflect a realistic model. Would this same phenomenon
occur if the jump was smoothed out a bit? The answer is that the phenomenon
is robust and may often persist even when the discontinuity is smoothed out.

3.4.1. Hotelling differentiation and smoothed out transition function. In real-
ity, buyers are often slightly differentiated. Thus some consumers will have a
larger threshold for price discrepancies and won’t immediately switch suppli-
ers. A classic example is described by the following: Suppose two suppliers
of the same product are situated at the opposite sides of a small town. Con-
sumers will take into consideration both price and transportation cost to travel
to the supplier. If the transportation cost is small, most consumers will prefer
the cheapest price, however, if consumers are modeled on a continuum, one
would expect the demand transitioning from one to another when prices are
changed continuously.

Suppose that there are two prices p1, p2 not far from one another. Instead
of a hard cutoff function, one could imagine a differentiable function η(p1, p2, t)
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with the property that

η(p1, p2, t) = 0 | p1 − p2 ≥ t
η(p1, p2, t) = 1 | p2 − p1 ≥ t
η(p1, p2, t) = 1

2
| p1 = p2

where ∣∣∣∣ dηdp1
∣∣∣∣ ≈ ∣∣∣∣ dηdp2

∣∣∣∣ ≈ 1

2t

on the transition region where

|p1 − p2| < t.

Then the amount of product sold by firm 1 when p1 ≥ p2 would (provided we
are away from constraints C1, C2) be given by

D(p1)η(p1, p2, t)

while the amount sold by firm 2 would be

D(p1) [1−D(p1)η(p1, p2, t)] .

This can provide a smooth transition from one to the other. The larger
price p1 at which marginal purchases are being made will be determined by
the demand function, hence D (p1) is the total demand and hence the sum of
the two expressions.

Exercise 6. Construct a continuous function transitioning from supplier 1
and supplier 2 given prices p1 and p2

Exercise 7. With the function constructed in Exercise 6 , consider the above
example in section 3.4. Show that for small enough values of t, there is no
Nash equilibrium.

3.5. Four Regimes. We find that there are essentially three regimes for mod-
eling. A fourth classification would be an inhomogeneous mixture of the
three.

(1) Bertrand regime. In this regime, the capacity for ASIC producers
to produce is essentially unlimited or is at least larger than any reason-
ably expected demand. The economics behave like the Bertrand model
predicts. This regime is where there is maximum competition among
ASIC producers, and machines will be offered at near cost. This is
probably not a realistic model in 2022.

(2) Edgeworth regime. When the supply is constrained, but not too
tightly, we get a situation where market dynamics allow for no Nash
equilibrium. This is characterized by moderate constraints on supply.
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(3) Strongly constrained regime. When the supply is strongly con-
strained, Nash equilibriums will be predictable and often computable.
The incentive for competing suppliers to raise prices so that their
sales are below capacity which occurs in the Edgeworth paradox is
not present: The best pricing options will always ensure that demand
saturates supply.

(4) Mixed. When there are differentiated miners and suppliers, there
can be an abundance of one type of ASIC and dearth of another. The
market can be predictable in some segment of the curve and not in
others. For example there may be an abundance of inefficient mining
equipment and a lack of efficient mining equipment.

3.6. Miner and supplier differentiation. In practice, while there may be
only a few suppliers of ASICs, they provide an array of efficiencies and prices,
and once these have been sold and are distributed, there will be a large array
of mining equipment for sale, not only as new equipment, market but also on
the used market.

In the sequel we’re going to assume that both the miners and the ASIC
producers are competitive: Due to ample mining equipment already being in
the possession of entities who may be motivated to sell for different reasons,
sellers will behave somewhat competitively. However, competitive does not
mean unconstrained. While there may be a number of sellers the number of
units can be constrained, and this leads to interesting pricing dynamics. As
we will see, with constraints, this typically does not mean that equipment will
be sold at costs.

When considering the possibility that miners have an option to choose which
supplier to buy from and that these suppliers might be offering different prices,
the different costs and inefficiencies serve to differentiate.

In order to set this up, we consider a system with n mining firms, and each
mining firm has electricity costs, given by

ci = electricity price, given in units of $/kW-h.

Suppose that there are m different producers of ASICs, and suppose that they
each produce a machine that has electric inefficiency ej, that is

ej = electricity required to produce hashes, given in units of kW-h/TH.

(For simplicity, and without loss of generality, we treat a supplier producing
separate units is two suppliers. This shouldn’t change our computations.)
Now the supplier offers their units at price pj where

pj = price of equipment that will produce a TH, given in units of $/ TH.
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(Continuing with our assumptions,this will be over a fixed time epoch approx-
imating the profitability like of the machine, say a year or two.)

Now for the miner with cost ci, the cost to purchase from supplier j and
produce a unit of hash would be

ejci + pj.

Naturally, given a distribution of options, the miner with electrical costs c is
going to buy from the producer that results in the lowest per hash cost to the
miner. So given a set of prices {pj}, we define a function

u(c) = min
j

(ejc+ pj) . (3.6)

Notice that u is a function taking as argument any c (which can be extended
to a continuum) and is given by the minimum of a family of linear functions,
hence is a piecewise linear, continuous, and concave function. Given a set of
inefficiencies {ej} which are fixed, the values {pj} which are to be determined
by the sellers will define this function u. A miner with cost c may purchase
from firm j whenever

u(c) = ejc+ pj

is satisfied.

3.7. Unconstrained supplier markets. When suppliers are able to increase
their supply, as in the situation of the Bertrand model, the pricing will usually
be close to cost, but with the exception that sometimes differentiation, as
described in the previous section, will allow some suppliers to enjoy a monopoly
over some segment of the market. If each supplier prices their equipment at
price pj we can construct u(c) as in (3.6.)

Again, this is a concave function, determined by the minimum of linear
functions. One can split up the domain of costs C as a union of closed
intervals of the form

Cj = {c | u(c) = ejc+ pj}

and think of this as the region over which supplier j is the preferred supplier.
Notice that by increasing the price pj the supplier will shrink this region. If
the shrinking of this region (as a set of real numbers) does not result in a
shrinking of the number of miners who prefer this supplier, the supplier has
monopolistic control over this region.

Example 3.1. Suppose there are three producers, with production costs (7, 8, 11)
respectively, and who produce machines with inefficiencies (5, 4, 3) respectively.
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If the producers sell at costs, the function u will be defined by

u (c) =
5c+ 7 : c ≤ 1

4c+ 8 : 1 ≤ c ≤ 3
3c+ 11 : 3 ≤ c

and the domain is split up according to preferred producer. If the majority
of the miners have electric costs within the region 1 ≤ c ≤ 3 it may make
sense for the 2nd supplier to price monopolistically (price somewhat above cost
in order to maximize profit) because the real competition is only on the edge
of the region. For example, by raising price from 8 to 8.25 the miner cost
function becomes

u (c) =
5c+ 7 : c ≤ 1.25

4c+ 8.25 : 1.25 ≤ c ≤ 2.75
3c+ 11 : 2.75 ≤ c

showing that the supplier has gained a per unit profit of 0.25, and has lost only
the miners with costs in the regions 1 ≤ c ≤ 1.25 and 2.75 ≤ c ≤ 3.

A deeper look at this type of problem leads us into concepts from optimal
transportation.

3.8. The Legendre Transform and conventions from optimal trans-
portation. The form of the definition (3.6) is reminiscent of the Legendre
transform. We will see that price and miner cost are related by transforms.
Because the price determines a pairing from miners to suppliers, these type
of functions and transforms arise naturally in the study of matching problems
in economics, in particular the optimal transportation problems. We follow
conventions used in [6, Chapter 5]

3.8.1. The classical optimal transportation problem for finite source and tar-
get. We introduce this topic by describing the classical optimal transportation
problem for finite sets of point masses.

Suppose that α1, ..., αm are positive values which represent masses at points
x1, ..., xm and µ1, ..., µn are positive values representing masses at points y1, .., yn
such that ∑

αj =
∑

µi,

and consider the cost function

ψ(x, y) =
1

2
|x− y|2 .

An optimal transportation plan is a set of values

bij ≥ 0
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for

i ∈ {1, .., n}
j ∈ {1, ...,m}

satisfying ∑
i

bij = αj for each j ∈ {1, ...,m} (3.7)∑
j

bij = µi for each i ∈ {1, .., n} (3.8)

such that ∑
i,j

bijψ(ej, ci) ≤
∑
i,j

b̃ijψ(ej, ci)

for all other

b̃ij ≥ 0

that satisfy the constraints (3.7) (3.8).
This is often described as the earth mover’s problem. Suppose you have

m piles of dirt at locations x1, ..., xm, with volumes α1, ..., αm, respectively,
and n holes at locations y1, .., yn and the total volume of dirt is equal to the
total amount of space in the holes. How do you fill in all the holes with the
available dirt while minimizing the work done in transporting dirt?

This one-dimensional version of the problem (assume the points are all on
the line) has an easy to describe solution: Starting to move the dirt from the
left-most point to the left-most hole. If this dirt fills up the hole, proceed
to the second left-most hole and begin filling this hole. Otherwise use the
second left-most pile of dirt to continue to fill the hole. Continue to move
monotonically to the right until the right-most dirt pile is used to fill the
right-most hole.

The literature surrounding the optimal transportation problem in general
dimension is complex and rich. Fortunately, for our needs we will only study
one-dimensional problems. More general results have been developed which to
apply to markets with more dimensions of differentiation, see [2] and references
therein. For most nicely behaved cost functions ψ, the solutions will exhibit
this monotonic behavior. The solutions may appear easy to describe in the
one-dimensional case, provided we know the source and target masses {αj}
and {µi} . However, in many cases we will be interested in solving for these
masses as a key step in finding a Nash equilibrium.

In what follows, we may be able to solve the problems without using optimal
transportation, however, because the language is well-developed and because
optimal transportation is an important and worthwhile area of mathematics,



22 MICAH WARREN

we will go ahead and develop the presentation in terms of optimal transporta-
tion.

3.8.2. The optimal transportation problem, in general, and for the ASIC mar-
ket. Let

C = {c ∈ R+ | c is the electric costs of some miner}
E = {e ∈ R+ | e is the electric inefficiency of an ASIC for sale} .

Then the operational cost is given by

ψ(c, e) = ce,

which describes the cost to create a unit of hash for miner with cost c and
ASIC with inefficiency e.

For a general ψ, we say that a function p : E → R is ψ-convex, if there
exists a function ζ(c) such that

p(e) = sup
c∈C

(ζ(c)− ψ(c, e)) .

We define the ψ-transform of p via

pψ(c) = inf
e∈E

(p(e) + ψ(c, e))

and the ψ-subdifferential of p

∂ψp =
{

(e, c) ∈ E × C : pψ(c)− p(e) = ψ(c, e)
}
.

For a function u : C → R, we say that u is ψ-concave if

u(c) = vψ(c)

for some function v : E → R.
We also define the ψ-transform

uψ(e) = sup
c∈C

(u(c)− ψ(c, e))

and the ψ-superdifferential

∂ψu =
{

(e, c) ∈ E × C : u(c)− uψ(e) = ψ(c, e)
}

It is a well known fact (Legendre Duality, cf. [6, Proposition 5.8]) that p is
ψ-convex if and only if (

pψ
)ψ

= p.

Exercise 8. Show that a function f(x) is convex if and only if it is ψ-convex
for ψ(x, y) = −xy
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We are going to look for pair of function (p, e) where p will describe a price
in terms of efficiency, and u will describe the cost to the miners. These will
be ψ-transforms of one another, and will describe the pairing support for an
optimal transportation problem. We define the pairing support to be the
set

Γ(p,u) = {(e, c) ∈ E × C : u(c)− p(e) = ψ(c, e)} .
In general, if

{(j, i) | bij > 0} ⊂
{

(ej, cj) ∈ Γ(p,u)

}
then the {bij} will define an optimal transporation plan between mass distri-
butions α and µ if {bij} satisfies (3.7) and (3.8).

Notice that if we start we a price function p, the compute u = pψ; we’ve
created a pairing support Γ(p,u). This may or not be the correct pairing
support for the problem we want to solve: The solutions requires constraints
(3.7) and (3.8). Now by raising or lower different pj values, we change the
regions

Cj = {c | u(c) = ejc+ pj} .
One can change these so that each Cj contains the appropriate amount of mass
αj. That is ∑

ci∈Cj

µi ≥ αj.

Note that the possible splitting of mass µis may be necessary to satisfy the
problem. This corresponds to endpoints of the domains Cj landing precisely
on a values ci. This is why the above is an inequality, instead of an equality.

The optimal transportation problem stated for miners and suppliers can
be described as follows. Suppose that we are given n miners with various
electric costs {ci} looking to purchase equipment in order to produce µi units
of hash (assume for now these are predetermined.) Suppose there m suppliers
of ASICs each with electric inefficiencies {ej}, and each produces αj units of
hash. Suppose also that ∑

µi =
∑

αj.

How do we match them so that the total amount spent on electricity is min-
imized? In this case we are simply fixing the weights and seeking a ”general
welfare” solution, we aren’t allowing the parties to optimize their own objec-
tives. This a ”central planner’s problem:” A socialist authority could declare
what units are to be sold to which miners. Of course, we aren’t interested in
this sort of solution - we would prefer to study solutions that are not imposed
by central authorities. However, the structure of the solutions are the same.
We will develop solutions to the ”free market” problem in the next section.

Here and in the sequel, we will order the miners by cost efficiency and the
suppliers in order by decreasing inefficiency. For the cost function ψ (e, c) = ec,
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solutions will pair the least efficient with the most efficient, so we can move
from left to right monotonically with this indexing. This can be seen by
noting that the function u is concave, so the slopes ej will be decreasing as
one moves from the left to the right along the c-axis. For ψ (e, c) = ec, the
function u has a predictable shape: It’s a concave function, determined by
the minimum of a set of lines. Each of these lines have positive slope, and
the slope decreases while c moves to the right. This means as c becomes
larger, the value(s) e∗ for which

e∗ (c) = {e | u(c) = p(e∗) + e∗c}

must be monotone decreasing with c.

Exercise 9. Let a1 < a2 and b1 < b2. Show that a1b2 + a2b1 < a1b1 + a2b2.
Explain why this is relevant to the preceding paragraph.

Example 3.2. For a simple example, suppose there are 3 miners and 2 suppli-
ers, and suppose the miners each want to produce 1/3 units, and the suppliers
have 1/2 units each for sale. Suppose mining costs are (3, 4, 5) and electric
inefficiencies are (7, 6).

We can think of a pairing as {bij : i ∈ (1, 2, 3) , j ∈ (1, 2)} where

bij = how many units are purchased by miner i from supplier j

Summing over the miners, we need

3∑
i=1

bij =
1

2
for j = 1 or 2 (3.9)

and summing over the suppliers

2∑
j=1

bij =
1

3
for i = 1, 2 or 3. (3.10)

Then the goal is the minimize ∑
bijciej.

Among the set of positive {bij} with constraints (3.9)(3.10).
We may begin to solve the problem by pairing the most efficient electricity

with the least efficient ASIC. In general, we should always expect that

(e1, c1) ∈ Γ(p,u).

In this case, the miner with electric costs c = 3 will buy as many units as
possible from the supplier with inefficiency 7. This can only be 1/3 so we
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conclude that

b11 = 1/3

b12 = 0

and that
u(3)− p(7) = 3 ∗ 7

which is equivalent to
(7, 3) ∈ Γ(p,u).

We next look at the second miner. There is still 1
6

available from supplier 2.
So we will have

b21 =
1

6
and

u(4)− p(7) = 4 ∗ 7

hence (7, 4) ∈ Γ(p,u). This miner still needs to purchase 1/6 more which they
will do from the other supplier, hence

b22 =
1

6

and (6, 4) ∈ Γ(p,u) :
u(4)− p(6) = 4 ∗ 6.

Finally, the miner with electric costs 5 will purchase from the second supplier
the remaining 1

3
that is

b32 =
1

3
and (6, 5) ∈ Γ(p,u)

u(5)− p(6) = 5 ∗ 6.

This information allows us to piece together the functions p and u provided
we fix a particular value. For example, if we let p(6) = p0, we conclude

u(5) = 5 ∗ 6 + p(6) = p0 + 30

u(4) = 4 ∗ 6 + p(6) = p0 + 24

p(7) = u(4)− 4 ∗ 7 = p0 − 4

u(3) = 3 ∗ 7 + p(7) = p0 + 17.

The optimal transportation problem we solved above is for a fixed allocation
to each miner and a fixed allocation from each supplier. It doesn’t specify the
price, only up to a constant, but it does specify the differences in prices. Again,
this is a socialized optimization problem. If the surplus is socialized, raising or
lowering prices by a constant is essentially robbing Peter to pay Paul. We see
in the next section that supply constrained markets give suppliers an upper
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hand in determining prices to suit their profit objectives. In fact, suppliers can
choose the price function p in order to guarantee that buyers choose optimal
allocations. This is related to the notion of a Cournot-Nash equilibrium, see
[1].

3.9. Constrained markets and the main Theorem. A relevant and in-
teresting setting is when the ASIC producers are constrained, that is, each is
bound by some capacity, and the mining firms are not: they can expand pro-
vided the equipment is available and it is profitable to do so. Before proving
a theorem, we encode this condition in a definition that although may be hard
to verify, defines a notion of supply constrained in a very practical way.

Suppose that there are m suppliers, each with capacity αj, and production
costs c̃j. Suppose we know the demand functions

Dj (p 1, ..., pm) = demand for ASIC j at prices ~p

which determine demand for any set of prices.

Definition 1. A market is strongly supply constrained if the following
condition holds. For any j, if

Dj (p 1, ..., pm) = αj

then

(p̃j − c̃j)Dj (p 1, ., p̃j, pm) ≤ (p− c̃j)Dj (p 1, ., pj, pm) (3.11)

for all p̃j ≥ pj.

Essentially, the definition says that if prices are chosen precisely to saturate
the capacity and no lower, increasing prices will yield a decrease in profit.
This is possible to check in some explicit examples. It’s unclear whether the
definition should be more restrictive by requiring the hypthoses to hold for all j
simultaneously. The definition may be hard to check in practice, but it’s really
more an heuristic characterzing the strongly constrained regime, allowing us
to make a clear statement of a theorem involving optimal transportation.

Theorem 3.1. Suppose that a market is strongly supply constrained. Let µi
be a set of buyer demands with∑

i

µi =
∑
j

αj

and let
(
p, pψ

)
be a pair solving the optimal transportation problem between µ

and α, and suppose also that for each j

Dj(p) = αj. (3.12)

Then the price function p represents a Nash equilibrium from the perspective
of both suppliers and buyers.
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Proof. First, we consider suppliers. Since each supplier is at capacity, decreas-
ing the price cannot increase their sales, so will only result in lower profits.
Increasing prices, on the other hand will not increase profits, by (3.11) which
follows from the hypothesis and (3.12). Implicitly, when we computed the
demand functions, we are assuming that buyers are already buying from sup-
pliers based on a Nash equilibrium from the perspective of the buyers, given
the fixed prices p. �

Before stating our most general theorem, we continue the set up from section
3.2. Let

PB = Price of Bitcoin in dollar

χ = Block reward in Bitcoins

q = total hashes that will be produced by all miners with machines already acquired,

over the upcoming epoch

qi = total hashes produced by miner firm i over the upcoming epoch,

with equipment already owned

q0 = total hashes that will be produced by miners over the epoch, by miners

not on the market for new ASICs

∆qi = total hashes purchased by miner i

ci = expected electrical cost over the expected lifetime for miner i

pj = price of the equipment required to produce one unit of hash from producer j

ej = electrical inefficiency of equipment sold by producer j

ẽi = average electrical inefficiency of equipment already owned by mining firm i

αj = hashrate available for sale by producer j

Q = total hashrate during epoch = q +
n∑
i=1

∆qi.

The problem: Determine the prices pj, the quantities ∆qi and pairings bij
representing purchases from miner i from producer j so that the demand for
each ASIC at this price function is equal to the supply.

We assume that the costs are ordered increasingly, that is

c1 ≤ c2 ≤ ... ≤ cn

while the reverse is true for the inefficiencies

e1 ≥ e2 ≥ ... ≥ em.
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Theorem 3.2. Suppose the supply market is strongly supply constrained. There
exists a unique set of prices {p(ej)} and quantities ∆qi demanded by the buy-
ers at costs u = pψ, such that ∆qi will be paired optimally to capacities {αj}
according to (p, u). This pairing represents a Nash equilibrium for all partici-
pants.

Proof. Existence. Our goal is to show that there is a set of prices for which
the demand function

Dj (p 1, ..., pm) = αj for all j.

We define the function

u(ci) = inf
ej

(ejci + p(ej)) .

The profit function for each miner is given by

πi =
χP

q +
∑

j ∆qj
(qi + ∆qi)− ciẽiqi − u(ci)∆qi.

Implicit in this statement are two key assumptions: 1) either the miner is
purchasing from a single supplier, or the miner is indifferent to the suppliers
that they are purchasing from, and 2) The miner is able to purchase the
amount they want from the supplier(s) that they prefer to purchase from.

Our strategy is to use these assumptions, and derive the conditions for the
appropriate optimal transportation problem. Then we will show that the opti-
mal transportation problem has a solution. Necessarily, these two assumptions
will be true for a solution of the optimal transportation problem. Thus we
will have a solution to the problem.

The miner will purchase hash rate until doing so becomes no longer marginally
profitable, that is when

∂πi
∂∆qi

=
χPB (Q− qi −∆qi)

Q2
− u(ci) (3.13)

= 0.

As before, we sum this relationship over i :
n∑
i=1

χPB (Q− qi −∆qi)

Q2
=

n∑
i=1

u(ci) (3.14)

and get

=
χPB
Q2

(
nQ−

n∑
i=1

qi −
n∑
i=1

∆qi

)

=
χPB
Q2

((n− 1)Q+ q0)
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that is
n∑
i=1

u(ci) = χPB

(
q0
Q2

+
(n− 1)

Q

)
= Θ. (3.15)

In this constrained situation we assume that ∆q is precisely the available
capacity to be purchased, that is

n∑
i=1

∆qi =
m∑
j=1

αj

and q is known, so this quantity Θ is determined at the outset of the problem.
Using (3.13), we can also solve for the amount of hash purchased by each miner
in this plan

q − qi +
∑
k

∆qk −∆qi =
u(ci)

χPB

(
q +

∑
k

∆qk

)2

∆qi = Q− qi −
u(ci)

χPB
Q2.

Now switching to the optimal transport framework, let

µi = ∆qi.

Thus the problem reduces to the following: Find a pair of function (p, u) such
that:

(1)

u = pψ,

(2) the optimal transportation problem pairing the weights {αj} to {µi}
given by

µi = Q− qi −
u(ci)

χPB
Q2 (3.16)

has pairing support in the set

{(ej, ci) : p(ej)− u(ci) = ψ(ej, ci)}
(3) and finally ∑

u(ci) = Θ.

If we can show such a pair (p, u) exists, it follows that the demand equations
will be satisfied and the pairing will represent a solution.

With this in mind, we construct a set of admissible values for the function
u. Let

A =

{
~u = (u(c1), .., u(cn)) ∈ Rn |

∑
u(ci) = Θ

(ci+1 − ci) em ≤ u (ci+1)− u(ci) ≤ (ci+1 − ci) e1, ∀i

}
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One can check that set of values is a compact convex subset of Euclidean space.
We are going to use the Brouwer fixed point theorem on this set.

Define cumulative measure functions:

ρ1 (~u) = Q− q1 −
u(c1)

χPB
Q2

ρ2 (~u) = ρ1 (~u) +Q− q2 −
u(c2)

χPB
Q2

ρ3 (~u) = ρ2 (~u) +Q− q3 −
u(c3)

χPB
Q2

...

ρn (~u) = ∆q

which represent the cumulative hashrate purchased as we move from most
efficient miner to least efficient.

Next construct a function η0 on [0,∆q] as follows

η0 (x) =


e1 if x < α1

e2 if α1 ≤ x < α1 + α2

...
en if α1 + α2 + αn−1 ≤ x

 .

Notice that η0 is not a continuous function, so it won’t make a good ingredient
in the fixed point theorem. Instead, we approximate η0 with a function ηε(x)
with the properties that

(1) ηε(x) = η0 (x) for all x such that |x− αj| > ε for all αj
(2) ηε(x) is continuous
(3) ηε(x) is monotone decreasing.

Next we define

Vε (~u) =


v1,
v2,
v3
...
vn

 =


v1,

v1 + (c2 − c1) ηε (ρ1) ,
v2 + (c3 − c2) ηε (ρ2)

...
vn−1 + (cn − cn−1) ηε (ρn−1)

 (3.17)

where

v1 =
Θ−

∑n−1
k=1(n− k)η (ρk) (ck+1 − ck)

n
.

Observe that∑
vi = v1 + (v1 + (c2 − c1) ηε (ρ1)) + (v1 + (c2 − c1) ηε (ρ1) + (c3 − c2) ηε (ρ2)) ...

= nv1 + (n− 1) (c2 − c1) ηε (ρ1) + (n− 2) (c3 − c2) ηε (ρ2) + ...+ (cn − cn−1) ηε (ρn−1)

= Θ.
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So the values V (~u) are in the set A. Thus

Vε : A → A

is a continuous map, and has a fixed point, such that

Vε(~u) = ~u.

We want to show that this determines a solution to the problem, passing to the
limit if necessary. First, we suppose that for some ε > 0 the values η′ε(ρi) = 0
for all i. In this case, constructi the measure values

µ1 = Q− q1 −
u(c1)

χPB
Q2

µ2 = Q− q2 −
u(c2)

χPB
Q2

...

µn = Q− qn −
u(cn)

χPB
Q2

and go about computing the optimal transport map from {µi} to {αj}. Sup-
pose that this optimal transport plan is defined by (p̃, ũ) . Note that due to
the order-preserving property, and the fact that η′ε(ρi) = 0 there will be a
clean value ej(i) such that

ρi ∈

(
j−1∑
k=1

αk,

j∑
k=1

αk

)
that is

(ej, ci) ∈ Γ(p̃,ũ)

(ej, ci+1) ∈ Γ(p̃,ũ).

thus

ũ(ci)− p(ej) = ciej

ũ(ci+1)− p(ej) = ci+1ej.

Thus

ũ(ci+1)− ũ(ci) = (ci+1 − ci) ej
= (ci+1 − ci) η0(ρi).

But by the construction (3.17) these are exactly the same relations satisfied
by the {u (ci)} . It follows that ũ = u and u describes the optimal pairing
between the measure {µi} to {αj} . This is what we wanted to show.
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Now we suppose that for each ε > 0, the solution to Vε(~u) = ~u does not
satisfy η′ε(ρi) = 0, for some i. Take a sequence of εk → 0, and for each εk let
~u(k) be a fixed point solution, and let

Λk =
(
~u(k), ρ

(
~u(k)
)
, ηεk

(
ρ
(
~u(k)
)))
∈ A× [0, 1]n × [en, e1]

n.

This gives a sequence of points {Λk} inside a closed and bounded set in Eu-
clidean space. By the Heine-Borel Theorem, this must have a limit inside
the same set. Namely, there will be a value

Λ∞ = (~u∞, ρ (~u∞) , η∗) ∈ A× [0, 1]n × [en, e1]
n.

such that (possibly choosing a subsequence of {k})

~uk → ~u∞

ρ (~uk)→ ρ (~u∞)

ηεk
(
ρ
(
~u(k)
))
→ η∗.

One can check that if ρi → ρ∗i where

ρ∗i ∈

(
j−1∑
k=1

αk,

j∑
k=1

αk

)
then necessarily

η∗i = ej

However, if

ρ∗i =

j−1∑
i

αj

for some k, then

η∗i ∈ [ej, ej−1]

This means that the differences in the values ~u∞ are determined by these η∗i .
At this point, we may check that this set of ~u∞ values will define an optimal

transport plan from the measures µi constructed from ~u∞ to {aj} . We are
done with existence.

Uniqueness. We show that the function u solving the problem is unique.
Suppose there are two solutions, u and u′, u with u 6= u′. We assume without

loss of generality that

u(c1) < u′(c1).

or if, u(c1) = u′(c1), then

u(c2) < u′(c2)
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and so forth until a value ck0 is found where the functions are not equal.
Beyond that, as the sums must be the same, there will be a first value k > k0
such that

u(ck) ≥ u′(ck).

It follows that

u(ck)− u (ck−1) > u′(ck)− u′ (ck−1) . (3.18)

Now because

u(ci) ≤ u′(ci) for i = 1, ..., k − 1

with at least one of these inequalities strict, we have that

µi ≥ µ′i for i = 1, ..., k − 1

and
k−1∑
i=1

µi >
k−1∑
i=1

µ′i. (3.19)

Now let

r = sup {m | u(ck−1)− p(em) = ck−1em}
r′ = sup {m | u′(ck−1)− p′(em) = ck−1em} .

The remainder of the proof (left as an exercise) follows from the following
claim, which contradicts (3.18)

Claim 1. For r and k defined above,

r ≥ r′

and

u(ck)− u(ck−1) ≤ er (ck − ck−1)
u′(ck)− u′(ck−1) ≤ er (ck − ck−1) .

�

Exercise 10. Prove Claim 1. Hint: First prove the following Lemma.

Lemma 3.1. Suppose that (er, ck) ∈ Γ. Then for any r 6= s

p(er)− p(es) + ck (er − es) ≤ 0.

Suppose that (es, ck−1) ∈ Γ. Then for any r 6= s

p(er)− p(es) + ck−1 (er − es) ≥ 0.
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Exercise 11. Argue that in the strongly constrained regime, every Nash equi-
librium should arise as described in Theorem 3.1. Hint: First show that if
the function p is not a ψ-convex function, then there will be some supplier j
such that no miner prefers supplier j as their most cost-efficient choice. This
means that either 1)the demand for ASIC j is not saturated; or, 2) There must
be room for at least one other suppliers to increase price without losing any
demand. Hence a non-convex price function p (e) cannot describe equilibrium
prices.

3.10. Supply constrained markets, examples.

Example 3.3. Suppose we have four mining firms each with electricity costs
10,11,12, and 15 respectively, and assume each has current capacity to produce
3 units of hash in the upcoming time epoch. Suppose there are two foundries
producing ASICs for purchase with electric inefficiencies 7 and 5, and with
output capacities 4 and 6 respectively. Suppose the price is 5000 and assume
block reward is 1. (At this point we are more or less making up units so we can
ignore them, like physicists, in order to keep the computations simple.) Find
the allocation and the prices charged by the producers.

Solution: First identify

q = 4 ∗ 3 = 12

α1, α2 = 4, 6

∆q = 10

Q = 22

q0 = 0

so by (3.15)
4∑
i=1

u(ci) = 5000 ∗ 3

22
=

7500

11
. (3.20)

So we want to find u(10), u(11), u(12), u(15) such that (3.20) holds and so that
the weights

µi = 22− 3− u(ci)

5000
222

are paired with α1 = 4, α2 = 6 in an optimal transportation plan involving u.
Now our proof of Theorem 3.2 involved the Brouwer fixed point theorem,

which doesn’t describe how to construct the solution. Constructing the so-
lution may require some basic trial and error. We may be able to take an
educated guess at the pairing support, check to see if it this pairing support
will support the solution, and modify if necessary. That is, considering the
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monotonicity in the pairing, there are only so many possibilities for the match-
ing: Certainly µ1 and α1 are paired, as are µ4 and α2 but because we aren’t
told precisely how big µ1 is we aren’t sure what happens in the middle.

Perhaps the easiest way is to pay attention to where the break between
suppliers happens: Either µ1 is split between α1 and α2 or there is a clean
break between µ1 and µ2 or µ2 is split, and so forth.

To begin we will try the situation where µ1 is split. This necessarily means
that µ1 > α1, and

Γ = {(7, 10) , (5, 10) , (5, 11) , (5, 12) , (5, 15)}
as only the price 7 is paired with the electrical cost 10. In this case,

u(10)− p(7) = 7 ∗ 10 from (7, 10) ∈ Γ

u(10)− p(5) = 5 ∗ 10 from (5, 10) ∈ Γ

u(11)− p(5) = 5 ∗ 11 from (5, 11) ∈ Γ

u(12)− p(5) = 5 ∗ 12 from (5, 12) ∈ Γ

u(15)− p(5) = 5 ∗ 15 from (5, 15) ∈ Γ.

Taking the difference of the first two equations, we get

p(5) = p(7) + 20.

Now taking differences of the remaining equations

u(11)− u(10) = 5

u(12)− u(11) = 5

u(15)− u(12) = 15.

Without knowing u(10) we may add up∑
u(ci) = 4u(10) + 5 + 10 + 25 = 4u(10) + 40

so

4u(10) + 40 =
7500

11
,

u(10) =
7500
11
− 40

4
=

1765

11
giving

µ1 = 22− 3−
1765
11

5000
222 = 3. 468.

Now unfortunately, in the matching we chose, we needed µ1 > α1 = 4 so this
matching failed. But we are not too far off. Next try a matching where the
split happens for µ2 : that is µ1 < α1 and µ1 + µ2 > α1 and

Γ = {(7, 10) , (7, 11) , (5, 11) , (5, 12) , (5, 15)}



36 MICAH WARREN

Similar computations

u(10)− p(7) = 7 ∗ 10

u(11)− p(7) = 7 ∗ 11

u(11)− p(5) = 5 ∗ 11

u(12)− p(5) = 5 ∗ 12

u(15)− p(5) = 5 ∗ 15.

From the difference of the second and third equations we get

p(5) = p(7) + 22.

Subtracting the first and second equations, and so forth

u(11)− u(10) = 7

u(12)− u(11) = 5

u(15)− u(12) = 15.

Similarly to before, ∑
u(ci) = 4u(10) + 46

and

u(10) =
7500
11
− 46

4
=

3497

22
leading to

µ1 = 22− 3−
3497
22

5000
222 ≈ 3. 613 2

µ2 = 22− 3−
3497
22

+ 7

5000
222 ≈ 2. 935 6

µ3 ≈ 2. 451 6

µ4 ≈ 0.999 6.

Notice that because
µ1 + µ2 > α1

this particular matching is compatible with our assumptions. We can then
determine the price via

u(10)− p(7) = 7 ∗ 10.

Thus

p(7) = 119. 95

p(5) = 141. 95.

Now one thing we didn’t do before diving into the solution of the problem is
to attempt to prove that the regime is strongly supply constrained. However,
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we can always a posteriori go ahead and look at how the quantities sold will
respond to a change in prices and conclude that the given solution is a Nash
equilibrium.

Suppose that p(7) were to be increased. As the value p(7) determines the
costs u(10) and u(11), moving equally in the opposite direction, the equation
(3.16) suggests that a small change ε in p(7) will result in a decrease in µ1 of

− ε

χPB
Q2 ≈ −0.096 8ε.

So the change in revenue obtained from selling to µ1 will be approximately

3. 613 2ε− 0.096 8 ∗ 119. 95ε

≈ −7. 998 0ε.

This confirms that a price increase for this supplier would be a bad idea.
Note that we haven’t mentioned the production cost, which could influence
the computation. Nor have we considered the effect on u(11) which should
be smaller, but in the same direction.

In general, observe that differentiating the profit obtained results in

d

dp(ej)
[αj(p) ∗ (p(ej)− c̃j)] = αj −

Q2

χPB
(p(ej)− c̃j)

so if the profit margins are large enough so that

αj ≤
Q2

χPB
(p(ej)− c̃j)

it will generally be a bad decision to raise prices in a manner that will cause
the demand to decrease below capacity.

Example 3.4. Same as Example 3.3, but suppose instead each firm is already
producing 20 units of hash per time epoch and suppose that price is 10000.

First identify

q = 4 ∗ 20 = 80

α1, α2 = 4, 6

∆q = 10

Q = 90

so
4∑
i=1

u(ci) = 10000 ∗ 3

90
=

1000

3
. (3.21)



38 MICAH WARREN

So we want to find u(10), u(11), u(12), u(15) such that (3.20) holds and so that

µi = 90− 20− u(ci)

10000
902

are paired with α1 = 4, α2 = 6 in an optimal transportation plan involving u.
Again we look for where the break between suppliers happens: Either µ1 is

split between α1 and α2 or there is a clean break between µ1 and µ2, or µ2 is
split, and so forth.

To begin we will try a situation where µ1 is split. This necessarily means
that µ1 > 4. In this case, as above we get

u(10) =
1000
3
− 40

4
=

220

3

and

µ1 = 70−
220
3

10000
902 ≈ 10. 6.

but

10. 6 > 10

so this is most certainly wrong. If we were to continue, we would find that the
values µi would still add to 10, so some must be negative. So the problem with
our assumption is that we allowed for a situation that the quantity purchased
by the least efficient miner is negative; this is not feasible. So instead, we
can assume that it is impossible to have a Nash equilibrium involving the 4th
miner, who would be losing money by joining the market.

The solution is to drop the 4th miner and try again.
Dropping the 4th from the ASIC market sets up a new game. This time

we have q0 = 20 : This represents that the 4th miners is not interested in
purchasing, but is continuing to mine. We assume they continue to mine
their 20. (We could definitely ask whether they should continue to mine -
since we aren’t given the efficiency of the equipment they own, we don’t have
the information to make this determination, and we leave the assumption alone
and proceed.)

This time, we get

3∑
i=1

u(ci) = 10000

(
20

902
+

2

90

)
=

20 000

81
. (3.22)
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and

u(10) =
20 000
81
− 15

3
=

18 785

243

u(11) =
18 785

243
+ 5

u(12) =
18 785

243
+ 10

also

µ1 = 70−
18 785
243

10000
902 ≈ 7. 383 3

µ2 = 70−
18 785
243

+ 5

10000
902 ≈ 3. 333 3

µ3 = 70−
18 785
243

+ 10

10000
902 ≈ −0.716 67.

This is closer, but still not a feasible solution, as µ3 < 0.
Repeating the process again but removing the third miner, we will get:

µ1 = 70− 77. 747 ∗ 81

100
≈ 7. 024 9.

µ2 = 70− 82. 747 ∗ 81

100
≈ 2. 974 9

p(7) ≈ 7. 746 9

p(5) ≈ 27. 746 9.

3.10.1. Remarks. There are many variations on these types of problems, we
will not work examples of each. But we can observe general principles.

The more hashrate that is already in place, the larger effect the electricity
cost has on pricing out the mining firms with higher electricity cost. This
isn’t hard to argue mathematically: As q becomes large relative to ∆q the
more likely it is that all of the equipment will be going to the miners with
cheapest electricity.

We are not exploring, as it can become involved, what happens when a min-
ing firm has access a variety of electricity sources.

The first term in (3.13) describes the marginal revenue to a miner producing
a unit of hash:

χPB (Q− qi −∆qi)

Q2
.
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This is clearly linear in price, but is nonlinear in Q and decreasing in qi and
∆qi. If two mining firms have access to the same electric costs, the firm with
the lower current hashrate will have more incentive to increase hashrate, and
the firm with higher hashrate may be priced out of new equipment. This is
generally good for decentralization as it allocates hashrate towards firms with
less current production.

4. Two easy applications

4.1. Subsidies for green mining. A concern with Bitcoin mining is that
the energy consumption is massive and grows with proportional to the block
reward, posing ecological risk. On the counterside of this claim is a claim
that a consistent global market for renewable energy incentivizes the buildout
of renewable energy sources that otherwise may have not been tapped. It
is certainly not in the scope of this text to offer an opinion, certainly both
arguments are founded on some valid assumptions. Instead we only wish to
give some frameworks and tools which will allow the debate to be waged on
solid footing.

For example, it has been proposed that the move towards green mining can
be encouraged by subsidies for green miners, giving green miners a large share
of the market, ultimately crowding out the unheathly coal-burning miners, see
[3]

We show how our methods can be used to explore this idea quantitatively.
We take the assumption that the subsidy is given to green miners in the form
of a per-hash subsidy on equipment purchases. Notice that a lump sum doesn’t
change the profit motives, but a per unit price change does.

As a toy model, we consider a case where there is a base hashrate q0 and
only two mining firms are in the market for hashrate, which is supplied by a
single supplier. One is mining renewable energy at cheaper electric cost, while
the other is mining using energy obtained from expensive coal. We consider
the situation when a third party agrees to subsidize any purchase by the first
(green) miner by contributing ε to the cost. Setting the profit derivatives
to zero

∂π1
∂∆q1

=
P (Q− q1 −∆q1)

Q2
− (u(c1)− ε) = 0

∂π2
∂∆q2

=
P (Q− q2 −∆q2)

Q2
− u(c2) = 0
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where we see the ε has gone to slightly reduce the cost. Summing, as before
we get

2∑
i=1

u(ci) = P

(
q0
Q2

+
1

Q

)
+ ε

There’s no price differentiation, so necessarily

u(c1)− p(e1) = c1e1

u(c2)− p(e1) = c2e1

and

u(c1) =
P
(
q0
Q2 + 1

Q

)
+ ε− (c2 − c1) e1

2

u(c2) =
P
(
q0
Q2 + 1

Q

)
+ ε+ (c2 − c1) e1

2
.

Solving for

∆q1 =
Q

2
− q1 −

q0
2

+
ε+ (c2 − c1) e1

2P
Q2

∆q2 =
Q

2
− q2 −

q0
2

+
−ε− (c2 − c1) e1

2P
Q2.

From this we conclude the following: for each per unit price subsidization of
ε, a quantity of

δ =
εQ2

2P
that would have been purchased by the miner with cost c2 will be purchased
by the miner with cost c1.

The price

p(e1) =
P
(
q0
Q2 + 1

Q

)
+ ε− (c2 + c1) e1

2
will have increased by ε/2.

We leave it to the reader to find real world quantities that make computation
meaningful.

4.2. Intermittent mining. Another debate, not unrelated, is whether a min-
ing firm can sustain profitability on cheaper but intermittent energy sources.
Again, we only offer a framework to settle toy versions of this question, and
leave the details of the debate to the more worldly. We consider a similar
situation to the one above - there are only two miners in the market for new
equipment, but suppose that the one with cheapest electricity is only able mine
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a fraction of the time η ∈ (0, 1) . For simplicity in our toy model, assume that
neither mining firm has current hashrate.

The profit function in this case

π1 =
P

Q
η∆q1 − (ηc1e1 + p(e1)) ∆q1

π2 =
P

Q
∆q2 − (c2e1 + p(e1)) ∆q1

noticing that the η shows up in the revenue term, the electricity term, but not
the flat purchase price term. Differentiating,

∂π1
∂∆q1

= η
P (Q−∆q1)

Q2
− (ηc1e1 + p(e1)) = 0

∂π2
∂∆q2

=
P (Q−∆q2)

Q2
− (c2e1 + p(e1)) = 0.

These equations can be written

P (Q−∆q1)

Q2
η − ((η − 1)c1e1 + u(c1)) = 0

P (Q−∆q2)

Q2
− u(c2) = 0.

Now from
u(c2) = u(c1) + (c2 − c1) e1

we have

P (Q−∆q2)

Q2
=
P (Q−∆q1)

Q2
η − (η − 1) c1e1 + (c2 − c1) e1

=
P (Q−∆q1)

Q2
η − ηc1e1 + c2e1.

Combine this with
∆q2 + ∆q1 = ∆q :

P (Q−∆q + ∆q1)

Q2
=
P (Q−∆q1)

Q2
η − ηc1e1 + c2e1

or

(1 + η) ∆q1 = (η − 1)Q+ ∆q +
(c2 − ηc1) e1Q2

P
.

So one question we could ask, is, how low can η fall before it becomes a bad
idea to purchase new equipment at market prices?

The answer:

η =
Q−∆q − c2e1Q2

P

Q− c1e1Q2

P

< 1
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describes the profitability threshold.
For example, suppose the current hashrate is q0 = 100, there are 10 units

for sale, the electric costs are 10 and 12 and the ASIC inefficiency is 5

η =
100− 12∗5∗1102

10000

110− 10∗5∗1102
10000

≈ 0.553 54

meaning that a firm with lower electricity costs but wishing to obtain a unit
that was meant to be run with 50% uptime would be priced out of the market.

Exercise 12. Consider the example above. Is there a cost c1 < 10 so that the
first miner will obtain all the hash rate, even with η = 1/2?
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